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C O G N I T I V E  N E U O R S C I E N C E

Compression of dynamic tactile information 
in the human hand
Yitian Shao1, Vincent Hayward2,3,4, Yon Visell1*

A key problem in the study of the senses is to describe how sense organs extract perceptual information from the 
physics of the environment. We previously observed that dynamic touch elicits mechanical waves that propagate 
throughout the hand. Here, we show that these waves produce an efficient encoding of tactile information. The 
computation of an optimal encoding of thousands of naturally occurring tactile stimuli yielded a compact lexicon 
of primitive wave patterns that sparsely represented the entire dataset, enabling touch interactions to be classified 
with an accuracy exceeding 95%. The primitive tactile patterns reflected the interplay of hand anatomy with wave 
physics. Notably, similar patterns emerged when we applied efficient encoding criteria to spiking data from popu-
lations of simulated tactile afferents. This finding suggests that the biomechanics of the hand enables efficient 
perceptual processing by effecting a preneuronal compression of tactile information.

INTRODUCTION
The sense of touch, which is essential for skilled manipulation and 
object perception, relies on the encoding of mechanical signals col-
lected by the skin and subcutaneous tissues into neural representations. 
While neural responses to tactile stimuli are often associated with 
mechanical inputs arising from small skin regions, we recently observed 
that dynamic touch elicits mechanical waves in the tactile frequency 
range that spread throughout the whole hand, with transient excitations 
decaying within 30 ms (1). Dynamic tactile inputs can thus drive 
widespread tactile afferent populations (2, 3). These touch-elicited 
waves have been found to facilitate fine perceptual discriminations 
(4, 5) and can be used to infer actions, the attributes of touched objects, 
and locations of contact with the hand (1, 6–8). Receptive fields of 
neurons in somatosensory cortical areas were observed to span large 
hand areas and multiple digits (9, 10). The large spatial scale inte-
gration at the early stages of processing (11, 12) induces cortical neurons 
to exhibit integrative responses to tactile inputs delivered to widespread 
limb regions (13–15). Thus, somatosensory processing could depend 
on information transported by mechanical waves that propagate in 
tissues to remote locations, distant from the loci of mechanical contact.

An analogy could be drawn to the cochlea, where the transport 
of dispersive mechanical waves via the basilar membrane imparts 
preneuronal filtering to auditory stimuli (16), supporting a frequency- 
place transformation (17–20). Similar processes have been observed 
for mechanical waves propagating in the hand (3). In the rodent 
vibrissal system, whisker mechanics also impart preneuronal processing 
to tactile stimuli (21, 22).

If the transport of mechanical waves in the hand facilitates efficient 
somatosensory information encoding, then it should be possible to 
describe tactile stimuli in terms of a smaller space of informative 
parameters. This would allow stimuli to be represented as combinations 
of a small number of primitive features, or tactile patterns. These 
representations are commonly observed in sensory systems. They 

correspond to an efficient sensory coding hypothesis that proposes 
neural circuitry to have evolved to capture relevant sensory infor-
mation with the fewest physical and metabolic resources (23, 24). 
Studies of commonly encountered visual and auditory stimuli show 
that representations in the neural pathways for perceptual processing 
can emerge from the need to efficiently encode information in natural 
scenes (25–28).

Here, we show how mechanical waves in the hand produce an 
efficient encoding of tactile inputs. By optimally encoding a dataset 
of thousands of naturally occurring whole-hand tactile stimuli, we 
obtained a compact lexicon of primitive spatiotemporal patterns that 
sparsely represented information in the entire dataset, enabling it to 
be classified with an accuracy exceeding 95%. These primitive patterns 
reflected the interplay of the anatomy of the hand and the physics of 
tactile wave propagation and were evocative of hand sensory function, 
including the individuation of digits and the denser innervation of 
the distal ends of the fingers. We obtained notably similar patterns 
when we applied the efficient encoding criteria to spiking data from 
populations of simulated tactile afferents. These results reveal a possible 
important contribution of the hand biomechanics to early somato-
sensory processing, which may be compared to the role of cochlear 
mechanics in early auditory encoding. This new knowledge revises 
existing views of touch sensing and may aid the understanding 
of hand sensory function and deficits affecting the sense of touch. 
It also furnishes new principles that may guide the design of elec-
tronic tactile sensors that could leverage the ability of propa-
gating waves to communicate touch information. These devices 
may yield important applications in robotics, prosthetics, and 
medicine.

RESULTS
We formulated the efficient encoding of tactile information as an 
optimal matrix factorization problem and evaluated its predictions 
using a database of whole-hand tactile stimuli, comprising spatio-
temporal skin accelerations, a(x, t), that were captured at 30 different 
locations, x, via a sensor array worn on the hand during performances 
of 13 manual gestures and 4600 interactions with objects (see Fig. 1 
and Materials and Methods). Each of the 4600 captured stimuli was 
represented in the dataset by 18,000 samples.
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These stimuli were encoded via a compact lexicon of M primi-
tive spatiotemporal patterns, or “bases,” wi(x, t), weighted by time- 
dependent activations, hi(t), that were unique to each stimulus

    ̂  a  (x, t ) =   ∑ 
i=1

  
M

     ∑ 
=0

  
T−1

    h  i  (t − )  w  i  (x,  ) , where  w  i  (x, t ) ≥ 0,  h  i  (t ) ≥ 0   (1)

We computed an optimal encoding (Fig. 2A) by maximizing the 
information about every element of the dataset, a(x, t), that was gained 
by observing the estimate,    ̂  a  (x, t) , as determined by Eq. 1. The simul-
taneous optimization of the model with respect to wi(x, t) and hi(t) 
(see Materials and Methods) yielded a set of “tactile basis patterns,” 
wi(x, t), that together produced an efficient encoding, revealing the 
latent structure hidden in the ensemble of stimuli. These basis patterns 
optimally represented the dataset in the sense of maximum likelihood 
(see Supplementary Text).

The bases may also be interpreted as an array of analysis filters 
that extracted information from the stimuli via different, complementary 
patterns of spatiotemporal integration of mechanical signals in the 
hand. These filters may be compared to spectrotemporal tuning func-
tions in auditory processing (29) or spatiotemporal receptive field filters 
in retinal processing (30). In a minimal functional model of neural 
population coding, these filter outputs may be passed through non-
linear transfer functions to predict neural firing.

Model (1) included a non-negativity constraint to match the rec-
tifying property of mechanotransduction (31). This encouraged a 

sparse encoding, (32, 33), as observed in mammalian visual (34) 
and auditory (35) cortices and in rodent barrel and somatosensory 
cortices (36, 37).

Although the analysis was blind to the conditions that gave rise 
to the signals, the tactile bases were evocative of hand sensory func-
tion (Fig. 2, A and B). Most were initially localized at the distal ends 
of single digits (the most densely innervated regions of the hand). 
They traveled proximally at rates of 1 to 10 m/s, while decaying over 
10 to 30 ms, matching the causal physics of waves in the hand (see 
the Supplementary Materials). Other bases evolved from the distal 
region of individual digits to diffuse regions of the hand surface 
(Fig. 2A). In the frequency domain, pairs of bases exhibited similar 
spatial patterns but distinct frequency characteristics. For example, 
the encoding yielded pairs of bases that were both spatially localized 
within one digit but had different filtering properties: low pass, from 
about 20 to 80 Hz (Fig. 2B, basis 2), or high pass, from 80 to 160 Hz 
(Fig. 2B, basis 6). Similar patterns emerged when the encoding rank 
M, or number of bases, was adjusted (Fig. 3B) or when optimizing 
with different initial conditions, data subsets, or optimization ob-
jectives (figs. S1 to S6).

It could be hypothesized that the structure of our dataset favored 
such an encoding, in which several spatiotemporal basis patterns 
were associated with individual digits. For example, 45% of the 4600 
analyzed tactile stimuli were elicited by gestures that produced con-
tact at only one digit. To investigate this possibility, we applied the 
same analysis to a subset of the data that excluded tactile stimuli 
produced by single-digit gestures. We repeated the same analysis 
using an additional subset that only included stimuli produced via 
gestures involving contact with all five digits. In each case, the 
results were highly similar to those we obtained from encoding the 
entire dataset (fig. S9), including distinct basis patterns that were 
primarily localized in single digits.

The space of possible tactile stimuli is constrained by contact 
and continuum mechanics (Fig. 3A and fig. S8). To assess the number 
of bases, wi(x, t), that were needed to capture information about the 
causal origin of the stimuli, we varied the encoding rank and trained 
support vector machine (SVM) classifiers to predict the gestures from 
the activation patterns. The encoding was not selected to optimize 
classification accuracy. Nonetheless, the classification accuracy 
increased with the number of bases and was greater than 90% if at 
least 7 bases were used, or greater than 95% if 12 bases were used. 
A high classification accuracy is not necessarily expected to be 
achieved when the number of input dimensions exceeds the number 
of classes. For example, there are binary prediction tasks, such as 
cancer prognosis prediction from images, where the consideration of 
multitudes of features is required to achieve moderately accurate 
classification (38).

The bases encoded the stimuli via a small number of time-dependent 
activation weights (Fig. 2, C and D). Stimuli elicited by multifinger 
gestures were encoded by several bases, while simpler gestures acti-
vated one or two. Tactile stimuli produced via similar gestures yielded 
similar activation patterns (fig. S5), while dissimilar gestures resulted 
in dissimilar activations, even when the same combinations of digits 
were involved.

The encoding residual decreased with the number of bases. Five 
bases were sufficient to maximize the accuracy (80%) with which 
stimuli from one participant could be classified using only data 
from the other participants (Fig. 3C). These five bases were highly 
conserved between individuals and were associated with individual 

Fig. 1. Recording touch-elicited waves in the whole hand. (A) Sensor placements and 
(C) view of the 30 three-axis micro-electromechanical system accelerometers worn on 
the hand. (B) Representative patterns of propagating vibrations in the skin, drawn from 
the dataset. Each was elicited via hand-object contact during one of 13 manual gesture 
types (see Materials and Methods). (D) Example of 90 acceleration time series elicited by 
tapping Digit II. The signals rose quickly and faded within 30 ms after contact. (E) Skin- 
object contacts elicit vibrations that propagate throughout the hand as elastic waves.
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digits (Fig. 3B). The activations of the bases (Fig. 2, C and D) exhibited 
a high degree of sparsity preserved across many trials (see table S1). 
Those that were associated with multiple finger contact were less 
sparse and more diverse than those involving just one finger. Infor-
mation independence among the basis activations decreased with the 
number of digits engaged.

The observed encoding efficiency of the mechanical signals was 
a consequence of spatiotemporal integration supplied by the tactile 
basis patterns. Prevailing physiological models leave little doubt that 
the spatial and temporal properties of touch-elicited mechanical signals 
are reflected in the volleys of afferent activations during natural hand 
interactions. However, extant methods preclude the simultaneous 
capture of neural signals from populations of peripheral afferents in 
the behaving hand. We instead computationally predicted the spiking 

responses of a population of 773 vibration-sensitive afferents excited 
by the raw mechanical signals in the entire dataset (fig. S7). The neural 
simulation yielded 773 spike trains for each of the 4600 trials in the 
dataset.

We optimized the encoding of the predicted neural responses 
with the same method that was used for mechanical signals. The results 
were notably similar (Fig. 3, D and E). The spiking bases exhibited 
similar patterns of spatial integration to the bases that we obtained 
using the mechanical data, including individuation of digit repre-
sentations and denser activation of the fingertips. The results of the 
classification tasks were qualitatively similar to those that we obtained 
from the mechanical data, despite the higher dimensionality of the 
input data (see Materials and Methods). This suggests that the en-
coding revealed organizational principles that would be preserved 

Fig. 2. Optimal spatiotemporal primitives and encodings. (A) Each row represents a spatiotemporal basis pattern. Motifs were similar when the rank, M, was varied 
(Fig. 3). The tactile bases, displayed at 2-ms intervals in descending order of activation, reflect the individuation of digits and larger representations of commonly used 
digits II and III. (B) Analysis within different frequency bands revealed that different basis patterns captured distinct frequency content. (C) Activations, hi(t) (shown in 
grayscale, temporal resolution: 1 ms), produced by encoding the displayed tactile stimulus (see Fig. 1). Blue ticks show the time instant for each displayed stimulus frame. 
(D) Mean activations for stimuli elicited by each gesture class, averaged across all encoded trials.
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by neurotransduction and that went beyond the mere properties of 
skin vibrations.

DISCUSSION
The size and the diversity of our corpus of data were limited by 
experimental constraints, as in many other studies using corpora of 
motor or sensory data (39–41). Although we selected the gestures 
on the basis of the most reasonable assumptions available, a larger 
dataset could be captured during spontaneous manual activities 
outside of the laboratory or specified on the basis of on analyses of 
conditions in which our species evolved.

A useful comparison can be drawn to research on hand move-
ments and grasping. Research in this area has shown how a relatively 
small number of coordination patterns (“synergies”) can explain most 
of the variability in hand movement data. Similar coordination 
patterns have been observed in studies based on different laboratory 
datasets, or on spontaneous manual activities outside the laboratory, 
with some task dependency (41). The dimensionality of the analysis 
presented here is much larger than typically arises in hand kinematic 
studies. Nonetheless, analogous considerations may apply to our 
findings. Our analyses of subsets of the mechanical data yielded 
basis patterns that were very similar to those that we obtained from 
the combined dataset.

The tactile basis patterns were also invariably organized along a 
gradient from higher to lower finger individuation. This is opposite 
to the trend that is observed in grasping studies and may evince an 
important difference in organizational principles between the tactile 
and motor systems. The larger degree of individuation that our 
findings suggest appears to be a consequence of the physics of 
vibration transmission in the skin, which causes propagating vibra-
tions to attenuate with increasing distance from their source. In con-
trast, hand movement studies reveal a higher degree of multidigit 
coordination, which is facilitated by the biomechanics of the limb.

While the behavioral relevance of propagating vibrations in the 
limb is not fully understood, previous research shows how these 
vibrations can mediate tactile perception (4, 5). Further research is 
needed to clarify the relevance of the predictions from efficient tactile 
encoding to hand function and somatosensory processing.

Our findings suggest that the biomechanics of the hand can facili-
tate tactile perception by effecting the preneuronal compression of 
tactile information in the whole hand. This compression was produced 
by a compact lexicon of primitive tactile wave patterns. Spatiotemporal 
integration supplied by these basis patterns optimally encoded the 
tactile stimuli. Recent studies of neural correlates of somatosensory 
processing reveal that, at the earliest stages of cortical processing, 
individual neurons exhibit complex responses to tactile stimuli dis-
tributed throughout the extremities (15, 42, 43). These studies, together 

Fig. 3. Learning and evaluating efficient tactile encodings. (A) Random sampling of 100 tactile stimuli drawn from the dataset illustrates its diversity (time averages 
shown). (B) Maximizing the efficiency with which the stimuli were encoded yielded primitive bases, wi(x, t) (time averages shown). Each row corresponds to an encoding 
of fixed rank, M, from M = 2 to 12 bases, arranged in order of increasing activation. Individuated digit representations were highly conserved. Higher-rank encodings in-
cluded additional diffuse patterns. (C) The encoding residual decreased with the rank, while classification improved. (D) Results based on the neural simulations. As the 
number of spiking bases increased, the encoding residual decreased, and classification also improved. (E) Optimizing the encoding of spiking data from 773 simulated 
afferents yielded bases (M = 8 shown) that integrated activity in neural populations throughout the hand. They reflected the individuation of digits and denser activation 
of the fingertips, similar to results obtained with the mechanical data.
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with the new findings presented here, show how traditional depic-
tions of receptive fields do not reflect the extent of early somato-
sensory integration (44), including effects of mechanical transmission 
in the body.

MATERIALS AND METHODS
Apparatus
In our previous study (1), we developed a custom array of 30 three- 
channel miniature accelerometers (model ADXL335; Analog Devices) 
attached to the skin to record the stimuli (Fig. 1C). The sensors were 
attached to the dorsal hand region, because collecting measurements 
from the volar region of the hand during natural activity remains 
technically prohibitive, due to the necessity to expose the glabrous 
skin to contact. However, we observed that patterns of mechanical 
wave propagation generated in the volar and dorsal regions are quite 
similar (fig. S8), indicating that similar results would be associated 
with the volar hand region.

Each accelerometer had a mass of 40 mg. We used noncontact 
laser vibrometry to verify that the small mass of the sensors did not 
significantly affect the measurements. They were soldered to a 
miniature two-sided printed circuit board (dimensions, 6 mm × 8 mm), 
had a wide bandwidth (0 to 1600 Hz in X and Y; 0 to 550 Hz in Z), 
and a dynamic range overlapping that of the vibrotactile system (±35.3 
m/s2). The accelerometers were affixed to the skin using an elastic, 
skin- compatible prosthetic adhesive (Pros-Aide, FX Warehouse, 
Philadelphia, PA). The 90 analog signals measured via this apparatus 
were sampled at a frequency of 2.0 kHz and quantized with a reso-
lution of 12 bits by a data acquisition system (model PCIE-6321, 
National Instruments, Austin, TX).

Data
The data consisted of touch-elicited vibrations of the skin that were 
captured from four individuals (one female and three males, aged 
19 to 23 years old). Experiments were conducted consistent with 
institutional ethics guidelines, and all participants gave their informed 
consent. No participant reported or exhibited abnormalities of the 
hands. All were right hand dominant and wore the accelerometer 
array as indicated in Fig. 1A. The accelerometers were positioned 
on the hand’s dorsal surface so that they would not interfere with 
touch interactions. The signals were captured from the dorsal surface of 
the hand, which avoided introducing artifacts in the data. Because 
of the properties of vibration transmission in the hand, the captured 
signals are quite similar to those occurring in the volar surface (see 
fig. S8). The positions were anatomically standardized. Tactile signals 
in the hand were measured as individuals performed 13 different 
prescribed manual gestures during each of the 4600 trials. The gestures 
were selected to be similar to those used when interacting with the 
environment in everyday life. The majority involved coupled movement 
of multiple digits and contact between different parts of the hand and 
objects: tapping a steel plate with individual digits or combinations 
of digits, feeling the surface via sliding contact, two-finger grasping 
of a small or large plastic cylinder (diameter d = 40 or 56 mm, masses 
m = 31 g) with digits I and II, grasping a plastic ball (d = 63 mm, 
m = 26 g) with all fingers, and indirectly tapping a surface via a stylus 
(d = 6 mm, length L = 155 mm, m = 30 g) held in digits I and II. Par-
ticipants were instructed to use forces of approximately 1 N. The 
gestures were otherwise unconstrained. Measurements were captured 
in successive blocks of identical activities. Each block of measurement 

trials lasted 45 s and was composed of 20 trials (tapping gestures) or 
10 trials (other gestures). Visual cueing helped participants to maintain 
a pace of 2 or 4 s per trial in respective cases. The tactile signals elicited 
by each gesture spanned 1 to 2 s of data. For analysis, we extracted 
the time-varying acceleration magnitude, ‖ak(t)‖, from each kth 
accelerometer (see below), truncated each trial to 600 ms, and 
downsampled the data to 1.0 kHz. The analyzed data from each trial 
thus consisted of 30 time-varying signals of 600-ms duration sampled 
at 1.0 kHz, yielding 18,000 data samples per trial. Thus, the nominal 
dimensionality of each of the 4600 spatiotemporal stimuli in the 
dataset was 18,000. The total storage of the dataset required 165 MB.

Spatiotemporal patterns of skin oscillations
Although the skin acceleration measurements were sampled at a 
discrete array of points, they provided a sufficient representation of 
information in the fields of tactile waves in the hand, because the 
wavelength, , was at least twice as large as the accelerometer spacing, 
thus satisfying a Nyquist criterion. From wave mechanics, summarized 
further on in Supplementary Text,  satisfies a dispersion relation  = 
c(f ) /f, where c(f )  < 10 m/s was the frequency-dependent speed of surface 
wave propagation in the analyzed range of frequencies, 10 < f < 1000 Hz. 
We determined that  = c(f ) /f was larger than 10 mm for all fre-
quencies. Further discussion is provided in Supplementary Text.

To match the rectifying properties of tactile afferents, we first 
computed signal magnitudes. The acceleration magnitude from the 
kth accelerometer at time frame t was computed as ak(t) = ‖ak(t)‖2, 
where ak(t) is the vector signal from the kth accelerometer. We trans-
lated the accelerometer signals into spatiotemporal skin motion by 
interpolating the acceleration magnitudes among nearby measure-
ment locations, as shown in Fig. 1B, using an inverse-distance filter, 
informed by biomechanical measurements (1, 3). The acceleration 
amplitude a(x, t) at each location x = (x1, x2, x3) on the surface of the 
model hand was computed as a weighted sum of accelerations ak(t) 
at nearby sensors 

    
a(x, t ) =   

 ∑ k=1  30   f(   k  (x ) )  a  k  (t)
  ───────────  

 ∑ k=1  30   f(   k  (x ) )
  ,

    
 with    i  (x ) =   β ─  d  k  (x ) + α   − C, andf() =  {   

,  ≥ 0
  0,  < 0   
   (2)

where k(x) is a function of the distance dk(x) from position of the 
interpolated point x to that of the kth accelerometer and f() is a 
half-wave rectifying operator replacing all negative values with zeros. 
We evaluated Eq. 2, using values  = 25.5 mm,  = 17.0 mm, and 
C = 8.7 × 10−2, which we selected on the basis of previously published 
data. (3) This yielded time-dependent spatiotemporal stimuli com-
prising trials with a duration of 100 ms (or 200 ms for sliding gestures). 
These were rendered on a scale-normalized three-dimensional 
hand to characterize patterns of skin vibrations during active touch 
(movie S1).

We analyzed frequency content in the stimuli by filtering them 
to extract content in separate frequency bands: 10 to 20 Hz, 20 to 
40 Hz, 40 to 80 Hz, 80 to 160 Hz, 160 to 320 Hz, and 320 to 500 Hz 
(Fig. 2B). To avoid artifacts, filtering was performed using zero- 
phase finite impulse response filters.

Spatiotemporal encoding
The model of efficient spatiotemporal encoding is based on convo-
lutive non-negative matrix factorization (45). This model may be 
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compared to that used to represent stimulus encoding in the auditory 
system (40). The model is mathematically simple; requires few arbitrary 
choices, the effects of which are readily analyzed; can accommodate 
physiologically motivated assumptions; and can be compared with 
models of sensory encoding in other modalities. It encoded the tactile 
stimuli, a(x, t), by determining the values of hi and wi that provided 
the best statistical estimate,    ̂  a  (x, t ) = a(x, t ) + (x, t) , of a(x, t) as de-
termined by model (1), where  is a residual error.

The same tactile basis patterns, wi(x, t), encoded all 18,000 sample 
values of all 4600 stimuli in the dataset. The activation weights, hi(t), 
associated with each basis differed for each stimulus. Both factors were 
jointly estimated from the data. Each basis could assume arbitrary 
non-negative values for each position and time. No other statistical 
assumption was made about the data. The model was causal (Eq. 1); 
hence, the bases described responses that ensued with delays, . We 
set their duration, T, to the time required for mechanical waves in 
the hand to decay, about 30 ms, although our findings were robust 
to variations in duration (see fig. S4). This duration spanned 30 time 
samples at the sample rate of 1 kHz. Each basis pattern was therefore 
represented by 900 values. We computed optimal encodings with 
ranks M = 2 to 12, corresponding to 2 to 12 basis patterns. For each 
value of M, we determined the optimal basis set and per-stimulus 
activation weights via simultaneous iterative optimization over wi 
and hi, beginning from random initializations of each (32). This opti-
mization maximized the statistical information about the stimulus, 
a(x, t), that is gained by observing the estimate,    ̂  a  (x, t)  (see Eq. 1), as 
measured by the Kullback-Leibler divergence

    D  KL  (a(x, t ) ,   ̂  a  (x, t ) ) =  ∑ 
x,t

     (  a(x, t ) ln   a(x, t) ─   ̂  a  (x, t)   − a(x, t ) +   ̂  a  (x, t )  )      

This measure quantified the dissimilarity between a and    ̂  a   , regard-
ing them as statistical distributions that encoded information. Under 
mild assumptions, minimizing the Kullback-Leibler divergence is 
equivalent to maximizing, with respect to hi(t) and wi(x, t), the like-
lihood of model (1) to represent the data.

Solving this minimization problem involved the determination 
of parameters hi(t) and wi(x, t) that best captured information in the 
ensemble of data.

Classifying manual interactions from tactile codes
The optimization yielding the tactile codes was performed in an un-
supervised manner, without using knowledge about the manual inter-
action that produced the tactile signals, the touched objects, or any 
other factors.

To assess the number of bases, wi(x, t), that were necessary to 
capture information about the causal origin of the stimuli, we varied 
the encoding rank (number of bases) and designed a classification 
task whose objective was to use the activation weight pattern to 
identify the gesture that elicited the stimulus. We integrated the weights 
over time,     ̄  h    i   =   1 _ T   ∑ t=0  T−1     h  i  (t) , to eliminate the adverse effects arising 
from timing differences across trials. The task involved multiclass 
classification, which we implemented as thirteen 1-versus-12 classi-
fication tasks. We avoided classification methods, such as convolu-
tional neural networks, that would require extensive model tuning. 
We instead opted for SVM classifiers, which require few choices 
and are theoretically sound, involving a convex optimization. All 
classifiers used a radial basis function SVM kernel (width, 5.0; selected 
using an independent validation set). We evaluated classification 
performance using a standard (10-fold) cross-validation method, with 

a 90% training and 10% testing data split. To assess the between- 
individuals generalizability of these inferences, we performed a 
cross-individual validation, in which we trained a classifier on data 
from three participants and tested it on data from the fourth and 
averaged the results across each left-out participant.

Evaluating the sparseness of the encoding
The model included a non-negativity constraint that encouraged 
sparseness. Sensory processing research has often connected neural 
representations with sparse codes (34–37).

The Hoyer sparseness measure, a normalized ratio of 𝓁1 and 𝓁2 
norms, is often preferred, on the basis of criteria discussed in the 
literature (46)

  Sparseness(h ) =   
 √ 
_

 n   − (∑ ∣ h  i  ∣) /  √ 
_

 ∑  h i  
2   
  ──────────────   √ 

_
 n   − 1     

where n is the number of elements in h.

Encoding efficiency
We assessed the diversity of the encoding by computing the empirical 
Shannon information entropy of the activation values across the entire 
dataset, as follows. Discretize the activation values hi(t) and let pk be 
the probability that a randomly drawn activation from any stimulus, 
channel, or time has a value lying in histogram bin k. The joint en-
tropy of activations in all channels was

   H  J   = H({ h  1  ,  h  2  , … ,  h  M  }) = −   ∑ 
k=1

  
K

     p  k    log  2    p  k     

The distribution, pk, was computed from all values of hi(t) in the 
entire dataset, for all i. The entropy HJ was maximized when all 
weight values were equally likely and decreased as the sparseness of 
the code increased. This measure revealed differences between 
encoded stimuli produced by different actions (table S1). The joint 
activation entropy HJ was highest for gestures involving multifinger 
contact and lowest for contacts of single fingers, suggesting that the 
model was most efficient at encoding gestures involving individual 
digits. For each basis, we computed the entropies, H(hi)

  H( h  i   ) = −  ∑ 
k
     p( h  i,k   )  log  2   p( h  i,k   ), i = 1, … , M   

where hi, k are the discrete values of the activation coefficients, hi, 
from the histogram distribution, p(hi, k), computed using the entire 
dataset. These entropies were then summed

   H  S   =   ∑ 
i=1

  
M

   H( h  i  )   

giving a result that satisfied, HJ ≤ HS. Equality was reached if the 
activations for different bases were statistically independent; thus, 
HS − HJ measured the degree of dependence of the activations among 
the bases (table S1). When this quantity was minimized, the bases 
represented maximally independent components of the data.

Encoding neural population responses: Spiking simulations
Because no method is known to record neural activity in multiple 
peripheral afferents during natural manual interactions, we used a 
biologically justified neuron spiking simulation software [TouchSim 
(47)]. This software predicted, in silico, the firing patterns of 773 
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vibration-sensitive afferents distributed throughout a simulated hand 
in response to the touch-elicited vibrations of the skin that we captured 
in vivo.

We computed skin displacements from the skin acceleration data. 
The skin displacement signals were used to drive the TouchSim model. 
For each of the 4600 trials of the entire database, the model produced 
and output spike trains for each of the 773 simulated Pacinian 
corpuscle afferents [PC afferents form a class of afferent fibers ter-
minating in Pacinian corpuscles thought to play a major role in the en-
coding of skin vibrations (48–50)]. We also computed mean firing rates 
for each. The output of the simulation was thus the spike train data and 
mean firing rate of the afferents for each trial. Representative trials, 
and mean firing rates for several gesture classes, are shown in fig. S7.

We analyzed the mean firing rate data for all 773 PCs using a 
non-negative matrix factorization procedure, similar to the one used 
in our analysis of the acceleration data. Informed by our analysis of 
the acceleration data, we performed the non-negative matrix factor-
ization analysis of the simulated neural data for 2 to 12 bases, yielding 
11 different encodings of increasing dimensionality. The eight-basis 
solution is shown in Fig. 3E. Each basis describes a distribution of 
mean firing rates used in the encoding. The bases bore a notable 
resemblance to those that we obtained by analyzing the acceleration 
data. We evaluated the quality of the encodings using a classification 
task, residual measure, sparseness measure, and a cross-participant 
classification task. The classification and evaluation procedures were 
exactly the same as those used for the accelerometer data and were 
not optimized for these data. Nonetheless, classification rates reached 
90% with eight bases (Fig. 3D).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/16/eaaz1158/DC1

View/request a protocol for this paper from Bio-protocol.
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