Y. Shao, V. Hayward, and Y. Visell, Spatial patterns of cutaneous vibration during whole-hand haptic interactions, Proc. Natl. Acad. Sci. U.S.A, vol.113, pp.4188-4193, 2016.

B. H. Pubols, Effect of mechanical stimulus spread across glabrous skin of raccoon and squirrel monkey hand on tactile primary afferent fiber discharge, Somatosens. Res, vol.4, pp.273-308, 1987.

L. R. Manfredi, A. T. Baker, D. O. Elias, J. F. Dammann, I. et al., The effect of surface wave propagation on neural responses to vibration in primate glabrous skin, PLOS ONE, vol.7, p.31203, 2012.

J. W. Morley, M. J. Hawken, and P. D. Burge, Vibratory detection thresholds following a digital nerve lesion, Exp. Brain Res, vol.72, pp.215-218, 1988.

X. Libouton, O. Barbier, Y. Berger, L. Plaghki, and J. Thonnard, Tactile roughness discrimination of the finger pad relies primarily on vibration sensitive afferents not necessarily located in the hand, Behav. Brain Res, vol.229, pp.273-279, 2012.

A. I. Weber, H. P. Saal, J. D. Lieber, J. Cheng, L. R. Manfredi et al., Spatial and temporal codes mediate the tactile perception of natural textures, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.17107-17112, 2013.

B. Delhaye, V. Hayward, P. Lefèvre, and J. Thonnard, Texture-induced vibrations in the forearm during tactile exploration, Front. Behav. Neurosci, vol.6, p.37, 2012.

L. R. Manfredi, H. P. Saal, K. J. Brown, M. C. Zielinski, J. F. Dammann et al., Natural scenes in tactile texture, J. Neurophysiol, vol.111, pp.1792-1802, 2014.

Y. Iwamura, M. Tanaka, M. Sakamoto, and O. Hikosaka, Rostrocaudal gradients in the neuronal receptive field complexity in the finger region of the alert monkey's postcentral gyrus, Exp. Brain Res, vol.92, pp.360-368, 1993.

M. Sur, Receptive fields of neurons in areas 3b and 1 of somatosensory cortex in monkeys, Brain Res, vol.198, pp.465-471, 1980.

R. S. Johansson and I. Birznieks, First spikes in ensembles of human tactile afferents code complex spatial fingertip events, Nat. Neurosci, vol.7, pp.170-177, 2004.

F. Bengtsson, R. Brasselet, R. Johansson, A. Arleo, and H. , Integration of sensory quanta in cuneate nucleus neurons in vivo, PLOS ONE, vol.8, p.56630, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01537855

E. P. Gardner and R. M. Costanzo, Spatial integration of multiple-point stimuli in primary somatosensory cortical receptive fields of alert monkeys, J. Neurophysiol, vol.43, pp.420-443, 1980.

M. Prsa, K. Morandell, G. Cuenu, and D. Huber, Feature-selective encoding of substrate vibrations in the forelimb somatosensory cortex, Nature, vol.567, pp.384-388, 2019.

J. M. Enander and H. , Somatosensory cortical neurons decode tactile input patterns and location from both dominant and non-dominant digits, Cell Rep, vol.26, 2019.

R. Nobili, F. Mammano, and J. Ashmore, How well do we understand the cochlea?, Trends Neurosci, vol.21, pp.159-167, 1998.

G. and V. Békésy, Experiments in Hearing, 1960.

E. Boer and M. A. Viergever, Wave propagation and dispersion in the cochlea, Hear. Res, vol.13, pp.101-112, 1984.

M. Chatterjee and J. J. Zwislocki, Cochlear mechanisms of frequency and intensity coding. I. The place code for pitch, Hear. Res, vol.111, pp.65-75, 1997.

A. Gallardo, B. Epp, and T. Dau, Can place-specific cochlear dispersion be represented by auditory steady-state responses?, Hear. Res, vol.335, pp.76-82, 2016.

M. A. Neimark, M. L. Andermann, J. J. Hopfield, and C. I. Moore, Vibrissa resonance as a transduction mechanism for tactile encoding, J. Neurosci, vol.23, pp.6499-6509, 2003.

K. Bagdasarian, M. Szwed, P. M. Knutsen, D. Deutsch, D. Derdikman et al., Pre-neuronal morphological processing of object location by individual whiskers, Nat. Neurosci, vol.16, pp.622-631, 2013.

F. Attneave, Some informational aspects of visual perception, Psychol. Rev, vol.61, pp.183-193, 1954.

H. B. Barlow, Possible principles underlying the transformation of sensory messages, Sensory Communication, pp.217-234, 1961.

B. A. Olshausen and D. J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature, vol.381, pp.607-609, 1996.

Y. Dan, J. J. Atick, and R. C. Reid, Efficient coding of natural scenes in the lateral geniculate nucleus: Experimental test of a computational theory, J. Neurosci, vol.16, pp.3351-3362, 1996.

A. J. Bell and T. J. Sejnowski, The "independent components" of natural scenes are edge filters, Vision Res, vol.37, pp.3327-3338, 1997.

M. S. Lewicki, Efficient coding of natural sounds, Nat. Neurosci, vol.5, pp.356-363, 2002.

J. J. Eggermont, P. M. Johannesma, and A. M. Aertsen, Reverse-correlation methods in auditory research, Q. Rev. Biophys, vol.16, pp.341-414, 1983.

S. Hochstein and R. M. Shapley, Quantitative analysis of retinal ganglion cell classifications, J. Physiol, vol.262, pp.237-264, 1976.

R. S. Johansson and J. R. Flanagan, Coding and use of tactile signals from the fingertips in object manipulation tasks, Nat. Rev. Neurosci, vol.10, pp.345-359, 2009.

D. D. Lee and H. S. Seung, Algorithms for non-negative matrix factorization, Advances in Neural Information Processing Systems (NIPS, 2001), pp.556-562

D. Donoho and V. Stodden, When does non-negative matrix factorization give a correct decomposition into parts?, Advances in Neural Information Processing Systems (NIPS, 2004), pp.1141-1148

W. E. Vinje and J. L. Gallant, Sparse coding and decorrelation in primary visual cortex during natural vision, Science, vol.287, pp.1273-1276, 2000.

H. Terashima, H. Hosoya, T. Tani, N. Ichinohe, and M. Okada, Sparse coding of harmonic vocalization in monkey auditory cortex, Neurocomputing, vol.103, pp.14-21, 2013.

S. P. Jadhav, J. Wolfe, and D. E. Feldman, Sparse temporal coding of elementary tactile features during active whisker sensation, Nat. Neurosci, vol.12, pp.792-800, 2009.

S. Crochet, J. F. Poulet, Y. Kremer, and C. C. Petersen, Synaptic mechanisms underlying sparse coding of active touch, Neuron, vol.69, pp.1160-1175, 2011.

A. H. Beck, A. R. Sangoi, S. Leung, R. J. Marinelli, T. O. Nielsen et al., Systematic analysis of breast cancer morphology uncovers stromal features associated with survival, Sci. Transl. Med, vol.3, pp.108-113, 2011.

E. P. Simoncelli and B. A. Olshausen, Natural image statistics and neural representation, Annu. Rev. Neurosci, vol.24, pp.1193-1216, 2001.

M. S. Lewicki and T. J. Sejnowski, Coding time-varying signals using sparse, shift-invariant representations, Advances in Neural Information Processing Systems (NIPS, 1999), pp.730-736

M. Santello, G. Baud-bovy, and H. , Neural bases of hand synergies, Front. Comput. Neurosci, vol.7, p.23, 2013.

M. L. Lipton, M. C. Liszewski, M. N. O'connell, A. Mills, J. F. Smiley et al., Interactions within the hand representation in primary somatosensory cortex of primates, J. Neurosci, vol.30, pp.15895-15903, 2010.

G. Foffani, J. K. Chapin, and K. A. Moxon, Computational role of large receptive fields in the primary somatosensory cortex, J. Neurophysiol, vol.100, pp.268-280, 2008.

J. L. Reed, P. Pouget, H. Qi, Z. Zhou, M. R. Bernard et al., Widespread spatial integration in primary somatosensory cortex, Proc. Natl. Acad. Sci. U.S.A, vol.105, pp.10233-10237, 2008.

P. Smaragdis, International Conference on Independent Component Analysis and Signal Separation, pp.494-499, 2004.

N. Hurley and S. Rickard, Comparing measures of sparsity, IEEE Trans. Inf. Theory, vol.55, pp.4723-4741, 2009.

H. P. Saal, B. P. Delhaye, B. C. Rayhaun, and S. J. Bensmaia, Simulating tactile signals from the whole hand with millisecond precision, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.5693-5702, 2017.

N. Cauna and G. Mannan, The structure of human digital pacinian corpuscles (corpus cula lamellosa) and its functional significance, J. Anat, vol.92, pp.1-20, 1958.

R. S. Johansson, U. Landström, and R. Lundström, Responses of mechanoreceptive afferent units in the glabrous skin of the human hand to sinusoidal skin displacements, Brain Res, vol.244, pp.17-25, 1982.

B. Stark, T. Carlstedt, R. G. Hallin, and M. Risling, Distribution of human pacinian corpuscles in the hand: A cadaver study, J. Hand Surg, vol.23, pp.370-372, 1998.

Y. Shao, H. Hu, and Y. Visell, A wearable tactile sensor array for large area remote vibration sensing in the hand, 2019.

R. D. Blandford and K. S. Thorne, Applications of Classical Physics, 2003.

T. J. Moore, A survey of the mechanical characteristics of skin and tissue in response to vibratory stimulation, IEEE Trans. Man Mach. Syst, vol.11, pp.79-84, 1970.

H. Azhari, Basics of Biomedical Ultrasound for Engineers, 2010.

J. Achenbach, Wave Propagation in Elastic Solids, vol.16, 2012.

J. M. Pereira, J. M. Mansour, and B. R. Davis, Dynamic measurement of the viscoelastic properties of skin, J. Biomech, vol.24, pp.157-162, 1991.

J. Liu, D. Wang, Y. Gao, C. Zheng, Y. Xu et al., Regularized non-negative matrix factorization for identifying differentially expressed genes and clustering samples: A survey, IEEE/ACM Trans. Comput. Biol. Bioinform, vol.15, pp.974-987, 2018.

A. Sotiras, S. M. Resnick, and C. Davatzikos, Finding imaging patterns of structural covariance via non-negative matrix factorization, Neuroimage, vol.108, pp.1-16, 2015.

T. T. Vu, B. Bigot, and E. S. Chng, Speech enhancement using beamforming and non negative matrix factorization for robust speech recognition in the CHiME-3 challenge, 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), pp.423-429, 2015.

D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature, vol.401, pp.788-791, 1999.

D. J. Field, What is the goal of sensory coding?, Neural Comput, vol.6, pp.559-601, 1994.

Z. Qiu, T. Yao, and T. Mei, Learning spatio-temporal representation with pseudo-3D residual networks, Proceedings of the IEEE International Conference on Computer Vision, pp.5533-5541

D. H. Kim, W. Baddar, J. Jang, and Y. M. Ro, Multi-objective based spatio-temporal feature representation learning robust to expression intensity variations for facial expression recognition, IEEE Trans. Affect. Comput, vol.10, pp.223-236, 2017.

J. Kim, K. P. Truong, G. Englebienne, and V. Evers, Learning spectro-temporal features with 3D CNNs for speech emotion recognition, 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII, pp.383-388

P. Bashivan, I. Rish, M. Yeasin, and N. Codella, Learning representations from eeg with deep recurrent-convolutional neural networks, 2015.

Y. Yang, E. Aminoff, M. Tarr, and K. E. Robert, A state-space model of cross-region dynamic connectivity in MEG/EEG, Advances in Neural Information Processing Systems (NIPS, 2016), pp.1234-1242

V. Ramanarayanan, L. Goldstein, and S. S. Narayanan, Spatio-temporal articulatory movement primitives during speech production: Extraction, interpretation, and validation, J. Acoust. Soc. Am, vol.134, pp.1378-1394, 2013.

, This article cites 52 articles, 9 of which you can access for free