M. Wansbrough-jones and R. Phillips, Buruli ulcer: emerging from obscurity, Lancet, vol.367, pp.1849-1858, 2006.

, World Health Organization. Neglected tropical diseases, hidden successes, emerging opportunities, 2009.

V. Sizaire, F. Nackers, E. Comte, and F. Portaels, Mycobacterium ulcerans infection: control, diagnosis, and treatment, Lancet Infect. Dis, vol.6, pp.288-296, 2006.

, World Health Organization. Buruli ulcer (Mycobacterium ulcerans infection, Fact Sheet, 2018.

H. Simpson, Mapping the global distribution of Buruli ulcer: a systematic review with evidence consensus, Lancet Glob. Health, vol.7, pp.912-922, 2019.

L. Marsollier, Colonization of the salivary glands of Naucoris cimicoides by Mycobacterium ulcerans requires host plasmatocytes and a macrolide toxin, mycolactone, Cell Microbiol, vol.7, pp.935-943, 2005.

K. M. George, Mycolactone: a polyketide toxin from Mycobacterium ulcerans required for virulence, Science, vol.283, pp.854-857, 1999.

E. Marion, Mycobacterial toxin induces analgesia in buruli ulcer by targeting the angiotensin pathways, Cell, vol.157, pp.1565-1576, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01117565

Q. B. Vincent, M. F. Ardant, L. Marsollier, A. Chauty, A. Alcais et al., HIV infection and Buruli ulcer in Africa, Lancet Infect. Dis, vol.14, pp.796-797, 2014.

D. P. O'brien, A. Murrie, P. Meggyesy, J. Priestley, A. Rajcoomar et al., Spontaneous healing of Mycobacterium ulcerans disease in Australian patients, PLoS Negl. Trop. Dis, vol.13, p.7178, 2019.

E. Marion, FVB/N Mice spontaneously heal ulcerative lesions induced by Mycobacterium ulcerans and Switch M. ulcerans into a low mycolactone producer, J. Immunol, vol.196, pp.2690-2698, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01284881

D. P. O'brien, Exposure risk for infection and lack of human-to-human transmission of Mycobacterium ulcerans disease, Australia. Emerg. Infect. Dis, vol.23, pp.837-840, 2017.

G. E. Sopoh, Family relationship, water contact and occurrence of Buruli ulcer in Benin, PLoS Negl. Trop. Dis, vol.4, p.746, 2010.

J. Bustamante, S. Boisson-dupuis, L. Abel, and J. L. Casanova, Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-gamma immunity, Semin Immunol, vol.26, pp.454-470, 2014.

J. L. Casanova and L. Abel, The genetic theory of infectious diseases: a brief history and selected illustrations, Annu Rev. Genomics Hum. Genet, vol.14, pp.215-243, 2013.

A. Alcais, C. Fieschi, L. Abel, and J. L. Casanova, Tuberculosis in children and adults: two distinct genetic diseases, J. Exp. Med, vol.202, pp.1617-1621, 2005.

S. Boisson-dupuis, Inherited and acquired immunodeficiencies underlying tuberculosis in childhood, Immunol. Rev, vol.264, pp.103-120, 2015.

S. Boisson-dupuis, Tuberculosis and impaired IL-23-dependent IFNgamma immunity in humans homozygous for a common TYK2 missense variant, Sci Immunol, vol.3, p.8714, 2018.

G. Kerner, Homozygosity for TYK2 P1104A underlies tuberculosis in about 1% of patients in a cohort of European ancestry, Proc. Natl Acad. Sci. USA, vol.116, pp.10430-10434, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02353025

Q. B. Vincent, Microdeletion on chromosome 8p23.1 in a familial form of severe Buruli ulcer, PLoS Negl. Trop. Dis, vol.12, p.6429, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01804969

F. R. Zhang, Genomewide association study of leprosy, N. Engl. J. Med, vol.361, pp.2609-2618, 2009.

F. Zhang, Identification of two new loci at IL23R and RAB32 that influence susceptibility to leprosy, Nat. Genet, vol.43, pp.1247-1251, 2011.

H. Liu, Discovery of six new susceptibility loci and analysis of pleiotropic effects in leprosy, Nat. Genet, vol.47, pp.267-271, 2015.

L. Abel, Genetics of human susceptibility to active and latent tuberculosis: present knowledge and future perspectives, Lancet Infect. Dis, vol.18, pp.64-75, 2018.

Y. Stienstra, Susceptibility to Buruli ulcer is associated with the SLC11A1 (NRAMP1) D543N polymorphism, Genes Immun, vol.7, pp.185-189, 2006.

C. Capela, Genetic variation in autophagy-related genes influences the risk and phenotype of Buruli ulcer, PLoS Negl. Trop. Dis, vol.10, p.4671, 2016.

S. Bibert, Susceptibility to Mycobacterium ulcerans disease (Buruli ulcer) is associated with IFNG and iNOS gene polymorphisms. Front Microbiol, vol.8, p.1903, 2017.

A. Alcais, L. Quintana-murci, D. S. Thaler, E. Schurr, L. Abel et al., Life-threatening infectious diseases of childhood: single-gene inborn errors of immunity?, Ann. N. Y Acad. Sci, vol.1214, pp.18-33, 2010.

M. T. Mira, Susceptibility to leprosy is associated with PARK2 and PACRG, Nature, vol.427, pp.636-640, 2004.

H. Qi, Discovery of susceptibility loci associated with tuberculosis in Han Chinese, Hum. Mol. Genet, vol.26, pp.4752-4763, 2017.

J. Morales, A standardized framework for representation of ancestry data in genomics studies, with application to the NHGRI-EBI GWAS Catalog

, Genome Biol, vol.19, p.21, 2018.

C. Coudereau, Stable and local reservoirs of Mycobacterium ulcerans Inferred from the nonrandom distribution of bacterial genotypes, Benin. Emerg. Infect. Dis, vol.26, pp.491-503, 2020.

K. Vandelannoote, Multiple introductions and recent spread of the emerging human pathogen Mycobacterium ulcerans across Africa, Genome Biol. Evol, vol.9, pp.414-426, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01463433

G. and T. Consortium, The genotype-tissue expression (GTEx) project, Nat. Genet, vol.45, pp.580-585, 2013.

S. Kim-hellmuth, Genetic regulatory effects modified by immune activation contribute to autoimmune disease associations, Nat. Commun, vol.8, p.266, 2017.

B. Dong, Phospholipid scramblase 1 potentiates the antiviral activity of interferon, J. Virol, vol.78, pp.8983-8993, 2004.

U. Sivagnanam, S. K. Palanirajan, and S. N. Gummadi, The role of human phospholipid scramblases in apoptosis: An overview, Biochim Biophys. Acta Mol. Cell Res, vol.1864, pp.2261-2271, 2017.

A. Sambarey, Meta-analysis of host response networks identifies a common core in tuberculosis, NPJ Syst. Biol. Appl, vol.3, p.4, 2017.

N. Mizushima, Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate, J. Cell Sci, vol.116, pp.1679-1688, 2003.

K. G. Lassen, Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense, Proc. Natl Acad. Sci. USA, vol.111, pp.7741-7746, 2014.

K. G. Lassen and R. J. Xavier, Mechanisms and function of autophagy in intestinal disease, Autophagy, vol.14, pp.216-220, 2018.

J. Hampe, A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1, Nat. Genet, vol.39, pp.207-211, 2007.

E. E. Kenny, A genome-wide scan of Ashkenazi Jewish Crohn's disease suggests novel susceptibility loci, PLoS Genet, vol.8, p.1002559, 2012.

J. D. Rioux, Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis, Nat. Genet, vol.39, pp.596-604, 2007.

K. Cadwell, Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis, Nat. Rev. Immunol, vol.16, pp.661-675, 2016.

A. M. Marchiando, A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection, Cell Host Microbe, vol.14, pp.216-224, 2013.

P. K. Martin, Autophagy proteins suppress protective type I interferon signalling in response to the murine gut microbiota, Nat. Microbiol, vol.3, pp.1131-1141, 2018.

L. B. Barreiro and L. Quintana-murci, From evolutionary genetics to human immunology: how selection shapes host defence genes, Nat. Rev. Genet, vol.11, pp.17-30, 2010.

Y. Y. Teo, K. S. Small, and D. P. Kwiatkowski, Methodological challenges of genome-wide association analysis in Africa, Nat. Rev. Genet, vol.11, pp.149-160, 2010.

N. A. Rosenberg, L. Huang, E. M. Jewett, Z. A. Szpiech, I. Jankovic et al., Genome-wide association studies in diverse populations, Nat. Rev. Genet, vol.11, pp.356-366, 2010.

E. Peprah, H. Xu, F. Tekola-ayele, and C. D. Royal, Genome-wide association studies in Africans and African Americans: expanding the framework of the genomics of human traits and disease, Public Health Genomics, vol.18, pp.40-51, 2015.

R. Bieri, M. Bolz, M. T. Ruf, and G. Pluschke, Interferon-gamma is a crucial activator of early host immune defense against Mycobacterium ulcerans infection in mice, PLoS Negl. Trop. Dis, vol.10, p.4450, 2016.

R. C. Johnson, G. E. Sopoh, Y. Barogui, A. Dossou, L. Fourn et al., Surveillance system for Buruli ulcer in Benin: results after four years, Sante, vol.18, pp.9-13, 2008.

T. Wagner, M. E. Benbow, T. O. Brenden, J. Qi, and R. C. Johnson, Buruli ulcer disease prevalence in Benin, West Africa: associations with land use/ cover and the identification of disease clusters, Int J. Health Geogr, vol.7, p.25, 2008.

Y. Stienstra, Analysis of an IS2404-based nested PCR for diagnosis of Buruli ulcer disease in regions of Ghana where the disease is endemic, J. Clin. Microbiol, vol.41, pp.794-797, 2003.

D. Zingue, A. Bouam, R. Tian, D. Drancourt, and M. , Buruli Ulcer, a prototype for ecosystem-related infection, caused by Mycobacterium ulcerans, Clin. Microbiol. Rev, vol.31, pp.45-62, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01791637

M. Eddyani, Diagnostic accuracy of clinical and microbiological signs in patients with skin lesions resembling Buruli ulcer in an endemic region, Clin. Infect. Dis, vol.67, pp.827-834, 2018.

O. Delaneau, J. Marchini, and J. F. Zagury, A linear complexity phasing method for thousands of genomes, Nat. Methods, vol.9, pp.179-181, 2011.

B. Howie, C. Fuchsberger, M. Stephens, J. Marchini, and G. R. Abecasis, Fast and accurate genotype imputation in genome-wide association studies through pre-phasing, Nat. Genet, vol.44, pp.955-959, 2012.

G. Project-consortium, A global reference for human genetic variation, Nature, vol.526, pp.68-74, 2015.

E. M. Van-leeuwen, Population-specific genotype imputations using minimac or IMPUTE2, Nat. Protoc, vol.10, pp.1285-1296, 2015.

M. Takahashi, F. Matsuda, N. Margetic, and M. Lathrop, Automated identification of single nucleotide polymorphisms from sequencing data, J. Bioinform Comput Biol, vol.1, pp.253-265, 2003.

P. H. Sudmant, An integrated map of structural variation in 2,504 human genomes, Nature, vol.526, pp.75-81, 2015.

C. C. Chang, C. C. Chow, L. C. Tellier, S. Vattikuti, S. M. Purcell et al., Second-generation PLINK: rising to the challenge of larger and richer datasets, Gigascience, vol.4, p.7, 2015.

X. Zhou and M. Stephens, Genome-wide efficient mixed-model analysis for association studies, Nat. Genet, vol.44, pp.821-824, 2012.

D. R. Cox, Regression models and life-tables, J. R. Stat. Soc. Ser. B (Methodol.), vol.34, pp.187-220, 1972.

T. Therneau and . Coxme, Mixed Effects Cox Models, 2012.

J. Marchini, B. Howie, S. Myers, G. Mcvean, and P. Donnelly, A new multipoint method for genome-wide association studies by imputation of genotypes, Nat. Genet, vol.39, pp.906-913, 2007.

Y. S. Aulchenko, M. V. Struchalin, and C. M. Van-duijn, ProbABEL package for genome-wide association analysis of imputed data, BMC Bioinforma, vol.11, p.134, 2010.

E. Patin, Genome-wide association study identifies variants associated with progression of liver fibrosis from HCV infection, Gastroenterology, vol.143, p.1212, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02353071

T. Thye, Genome-wide association analyses identifies a susceptibility locus for tuberculosis on chromosome 18q11.2, Nat. Genet, vol.42, pp.739-741, 2010.

W. J. Gauderman, Sample size requirements for matched case-control studies of gene-environment interaction, Stat. Med, vol.21, pp.35-50, 2002.

A. Buniello, The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019, Nucleic Acids Res, vol.47, pp.1005-1012, 2019.