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Abstract Here we show that a major muscle specific isoform of the murine LINC complex

protein SUN1 is required for efficient muscle regeneration. The nucleoplasmic domain of the

isoform specifically binds to and inhibits Drosha, a key component of the microprocessor complex

required for miRNA synthesis. Comparison of the miRNA profiles between wildtype and SUN1 null

myotubes identified a cluster of miRNAs encoded by a non-translated retrotransposon-like one

antisense (Rtl1as) transcript that are decreased in the WT myoblasts due to SUN1 inhibition of

Drosha. One of these miRNAs miR-127 inhibits the translation of the Rtl1 sense transcript, that

encodes the retrotransposon-like one protein (RTL1), which is also required for muscle regeneration

and is expressed in regenerating/dystrophic muscle. The LINC complex may therefore regulate

gene expression during muscle regeneration by controlling miRNA processing. This provides new

insights into the molecular pathology underlying muscular dystrophies and how the LINC complex

may regulate mechanosignaling.

DOI: https://doi.org/10.7554/eLife.49485.001

Introduction
In recent years the nuclear envelope (NE) and lamina have attracted much interest due to the identi-

fication of a significant number of diseases that are associated with mutations in component proteins

of the NE and especially the A-type lamins (Burke and Stewart, 2014). The NE is comprised of the

inner (INM) and outer (ONM) nuclear membranes, traversed by the nuclear pore complexes. Under-

lying the NE is nuclear lamina. The lamina is a network of intermediate filament proteins comprised

of the A-type and B-type lamins that polymerize to form a meshwork of filaments primarily associ-

ated with and underlies the INM (Aebi et al., 1986; Turgay et al., 2017). The nuclear lamina main-

tains nuclear shape, provides resistance to mechanical stress, organizes chromatin and acts as a

scaffold to localize some 80 integral proteins to the nuclear membranes (Burke and Stewart, 2013;

Burke and Stewart, 2014; Schirmer et al., 2003). Among the proteins that depend to some extent

on the lamins for their localization, are those of the LINC complex (LInkers of Nucleoskeleton and

Cytoskeleton), a protein complex that tethers the interphase nucleus to the cytoplasmic cytoskeleton

(Horn, 2014). In doing so, the LINC complex provides a direct physical connection between the cell

membrane/extracellular matrix to the nuclear envelope and nucleoplasm. With this connectivity it

has been proposed that this makes the nucleus a potential mechanosensor (Alam et al., 2016;

Kirby and Lammerding, 2018).
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In mammalian cells, the LINC complex is comprised of the SUN and KASH domain proteins. The

SUNs 1 and 2, (Sad1p, UNC-84) are evolutionarily conserved genes sharing a common C-terminal

SUN domain. Both SUN proteins localize to the inner nuclear membrane (INM). Their N-termini pro-

trude into the nucleoplasm underlying the INM, where the N terminal nucleoplasmic region of SUN1

interacts with pre-Lamin A (Lmna) and nuclear pore complexes (Mattioli et al., 2011; Liu et al.,

2007). The C-termini of the SUN proteins extend into the perinuclear space between the INM and

ONM where they bind to the C-termini of KASH domains of the KASH (Klarsicht, ANC-1, Syne

Homology) family of proteins comprising Nesprins (Nesp) 1–4, KASH5 and LRMP (Sosa et al., 2012;

Crisp et al., 2006; Haque et al., 2006).

In mammals six KASH proteins have been identified. The bulk of the KASH proteins extend into

the perinuclear cytoplasm where they interact directly or indirectly with the different cytoskeletal

networks. Nesprins/KASH 1, 2, 4 and 5 interact with the microtubular network, through interactions

with the microtubular motor proteins kinesin and dynein. Nesprins/KASH 1 and 2 also interact with

the actin microfilament network via calponin homology domains at their N-termini. Nesprin/KASH 3

interacts with the intermediate filament network via plectin. However, it is unclear if LRMP interacts

with any of the cytoskeletal networks (Horn, 2014).

The LINC complex regulates nuclear positioning within cells, as well as nuclear migration during

muscle and neuronal development. (Malone et al., 1999; Starr et al., 2001). In mice, SUN1 is

required for nuclear positioning in myotube formation, during retinal and neuronal development and

in the outer hair cells of the cochlea (Lei et al., 2009; Mattioli et al., 2011; Yu et al., 2011;

Zhang et al., 2009; Horn et al., 2013b). During gametogenesis SUN1, together with KASH5, is also

required for the attachment of telomeres to the INM that is essential to bouquet formation of the

chromosomes during the first meiotic prophase (Horn et al., 2013a). SUN1 is also required for Piwi

interacting RNAs (piRNAs) synthesis in the germline (Chi et al., 2009).

Besides these cellular functions, the lamins, members of the LINC complex and in other NE pro-

teins, such as emerin are of clinical importance in that mutations result in a range of congenital dis-

eases (Worman, 2012). Mutations in the LMNA gene result in the laminopathies, consisting of two

broad classes of disease (Burke and Stewart, 2014). One class affects striated muscle resulting in

muscle wasting, dystrophies and cardiomyopathy, such as Autosomal Dominant Emery-Dreifuss mus-

cular dystrophy (AD-EDMD). The other class alter white fat distribution (lipodystrophy), craniofacial

and skeletal development (mandibuloacral dysplasia), as well as causing Hutchison-Gilford Progeria,

a premature ageing disease that is associated with defects in vascular integrity (Worman et al.,

2010). Mutations and some variants in the genes encoding other NE proteins, including Emerin,

Man1, Lap2a, LBR, Torsin and the KASH and SUN domain proteins, particularly SUN1 and Nesprin/

KASH1 have all been associated with a variety of congenital musculoskeletal diseases. The majority

of the mutations affect the various types of muscle, including skeletal, cardiac and smooth, suggest-

ing the existence of an integrated network of proteins centred on the nuclear envelope/lamina that

are important for muscle homeostasis (Meinke et al., 2014; Li et al., 2014; Puckelwartz et al.,

2009; Puckelwartz et al., 2010; Zhou et al., 2017; Baumann et al., 2017; Chen et al., 2012).

Given the increasingly recognized importance of the LINC complex in cellular functions and in dis-

ease, surprisingly little is known about which proteins/factors, apart from pre-laminA, and nuclear

pore complex components interact with the nucleoplasmic domains of the SUN proteins. Since var-

iants in the SUN proteins have been associated with muscular dystrophies (Meinke et al., 2014), we

sought to identify what other nuclear factors interact with the nucleoplasmic domain of SUN1 in skel-

etal muscle. Here we show that specific SUN1 isoforms are selectively expressed in human and

murine skeletal muscle and that isoform expression changes with muscle differentiation. In vivo,

adult mice lacking SUN1 show retarded muscle regeneration. In myoblasts undergoing myotube for-

mation, the nucleoplasmic domain of the predominant SUN1 isoform uniquely binds to the RNase III

enzyme Drosha, that initiates microRNA (miRNA) biogenesis (Roberts, 2015). Drosha and Pasha

(DGCR8) are the core proteins of the Microprocessor complex which regulates miRNA biogenesis in

the nucleus (Han et al., 2004). They are present as a large molecular weight complex that includes

additional accessory proteins in the complex, and increasingly these accessory proteins are being

found to regulate the expression and maturation of specific miRNA precursors in a cell specific and

developmental context (Creugny et al., 2018).

In differentiated myotubes, loss of SUN1 alters the expression levels of a range of miRNAs,

including a miRNA cluster derived from the maternally expressed antisense retrotransposon-like 1,
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Rtl1as, a non-coding RNA transcript. Rtl1as is the complementary antisense transcript to the pater-

nally expressed imprinted retrotransposon-like one gene Rtl1 encoding a protein of unknown func-

tion. Previous results revealed that over-expression of Rtl1, is associated with muscle hypertrophy, as

well as placental growth defects and hepatocarcinoma (Byrne et al., 2010; Ito et al., 2015;

Riordan et al., 2013; Sekita et al., 2008). Here we show that both Sun1, and Rtl1, are required for

efficient muscle regeneration in adult mice and that SUN1’s interaction with Drosha may regulate

RTL1 levels by controlling the synthesis of a key miRNA modulating RTL1 translation. These findings

identify a pathway by which the LINC complex may regulate protein expression necessary for effi-

cient muscle regeneration by acting as a microprocessor regulatory component.

Results

Differentially spliced isoforms of Sun1 are expressed in skeletal muscle
and muscle cells in vitro
The Sun1 gene is expressed as tissue specific differentially spliced isoforms derived by alternate

splicing of the 5’ exons. These are translated into different SUN1 nucleoplasmic isoforms each with a

conserved perinuclear (C-terminal) Sun domain (Göb et al., 2011; Liu et al., 2007). We analysed

Sun1 cDNA sequences from eight murine tissues (Figure 1A). Smaller splice variants were abundant

in the CNS (brain), heart, skeletal muscle, and, to a lesser extent, testis. Larger variants were abun-

dant in the kidney, liver, lung, and spleen. We focused on which Sun1 isoforms were expressed in

adult skeletal muscle and found their expression changes during myogenesis. Sun1 cDNAs from skel-

etal muscle were sequenced, revealing that smaller transcripts are generated by alternate splicing

between exons 7 to 9 (Figure 1B). Sun1 exon splicing was evident during the in vitro differentiation

of C2C12 myoblasts into myotubes (Figure 1C). In proliferating C2C12 myoblasts, the full length

Sun1 was the most abundant isoform (in 67% of the clones sequenced). This isoform is then replaced

by the smaller Sun1 splice variants, D7 and D7, D9 (in which exons 7 and 9 were deleted with exon

eight being retained) and D7–9, (in which all 3 exons 7–9 were deleted) as the myoblasts fused to

form myotubes.

To determine if these isoforms were conserved between humans and mice, we cloned human

SUN1 sequences from human fetal- and adult muscle cDNAs obtained from Clontech. We identified

the human SUN1 D6 as representing the major isoform expressed in human muscle (data not shown).

By aligning the mouse SUN1 and human SUN1 D6 amino acid residues, we found many highly con-

served residues, except those encoded by exons 7, 8 and 9, in the mouse Sun1 (Figure 1—figure

supplement 1). Human SUN1 D6 is therefore equivalent to the murine Sun1 D7–9 and Sun1 D7, D9

confirming sequence conservation between the muscle isoforms in both species.

An antibody was raised to the peptide sequence at the junction of exons 6–8 to specifically rec-

ognise mouse Sun1 D7 and Sun1 D7,D9 isoforms as previously described (Calvi et al., 2015), hereaf-

ter referred to as Sun1 D7 antibody. SUN1 isoforms with a molecular weight of approximately 75

kDa were detected in skeletal muscle extracts by Western blot analysis using this antibody, which

were not detected in muscle from Sun1–/– mice (Figure 1D).

Sun1 is required for efficient muscle regeneration
Sun1 null (Sun1–/–) mice are normal at birth, with postnatal growth and development being indistin-

guishable from that of wild-type (WT) littermates, except that both males and females are sterile,

deaf, and have reduced Purkinje cell numbers in the cerebellum (Chi et al., 2009; Ding et al., 2007;

Horn et al., 2013a; Wang et al., 2015). Sequence variants in Sun1 have been associated with dys-

trophic muscle, however there is no report of Sun1 null mice exhibiting muscle defects

(Meinke et al., 2014) To determine whether Sun1 has a role in muscle regeneration we autografted/

transplanted specific hind-limb muscle groups to determine their regenerative capability with and

without Sun1. We chose to use the whole muscle engraftment technique, a highly reproducible and

well characterized model for regeneration, as surgical removal of a specific muscle completely severs

it from its neuronal and vascular connections, resulting in complete and rapid degeneration of the

specific muscle group. If the severed muscle is immediately re-grafted into the same site or onto a

different recipient muscle, the grafted muscle regenerates through a well-described and defined

series of steps in which the rate of regeneration is quantified (Roberts and McGeachie, 1992;

Loo et al. eLife 2019;8:e49485. DOI: https://doi.org/10.7554/eLife.49485 3 of 25

Research article Cell Biology

https://doi.org/10.7554/eLife.49485


Shavlakadze et al., 2010; White et al., 2000). The advantage of this procedure over the more con-

ventional cardiotoxin injection method is that this procedure allows for the detection of both muscle

autonomous and host environmental effects on the regeneration process.

We excised the entire Extensor Digitorum Longus (EDL) muscle (from either Sun1–/– or WT

donors, and grafted it onto the Tibialis Anterior (TA) muscle in 2–3 month old mice (Roberts and

McGeachie, 1992; Shavlakadze et al., 2010). The EDL grafts were allowed to regenerate for 9 days

and then recovered for analysis. In Figure 2A, a cross section of the WT EDL graft with the neigh-

bouring recipient TA muscle is presented. Muscle regeneration progresses from the periphery

towards the centre of the graft. During regeneration, inflammatory cells (neutrophils, macrophages)

are recruited to the graft, necrotic muscle cells are phagocytosed, the extracellular matrix is reorgan-

ized, while activated satellite cells proliferate and fuse to form new myofibers to replace the necrotic

ones. In WT donor grafts, at day nine post-engraftment, the graft had regenerated new myofibers

with little remaining necrotic muscle at the core (Figure 2; images A, B and E). In the magnified

image E, examples of regenerated myofibers with centrally positioned nuclei (marked *) and necrotic
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Figure 1. Tissue specific Splice Isoforms of Sun1. (A) Sun1 cDNAs encoding the nucleoplasmic domain were amplified by RT-PCR from murine tissues;

brain (br), heart (he), kidney (ki), liver (li), lung (lu), hind-limb muscle (mu), spleen (sp), and testis (te). The outermost lanes are the 100 bp DNA markers.

(B) A diagram shows four different Sun1 cDNAs expressed in muscle due to alternative splicing between exons 7 to 9 (n = 34 clones sequenced). (C)

Amplified Sun1 cDNAs from C2C12 myoblasts and differentiated myotubes showing major differences in expression of the spliced variants. These

cDNAs were cloned and sequenced (n = 34 clones) with the Sun1 isoform percentages being presented in the chart, together with the full-length

transcript. (D) Western blot showing the Sun1 D7 antibody specifically recognizes ~75 kD SUN1 protein in skeletal muscle lysates and is not detected in

Sun1–/– muscle.

DOI: https://doi.org/10.7554/eLife.49485.002

The following figure supplement is available for figure 1:

Figure supplement 1. Amino acid sequence alignment of mouse SUN1 and human SUN1D6.

DOI: https://doi.org/10.7554/eLife.49485.003
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Figure 2. Loss of SUN1 retards muscle regeneration. (A) Haematoxylin and eosin (H and E) stained images of EDL grafts at day nine post

engraftment. In the WT grafts (A and B) and Sun1–/– grafts (C and D) the central necrotic muscles are demarcated by a white oval, with the boundary of

the EDL graft and TA muscle being marked with a white line. Scale bar, 100 mm. (E) Magnified view of necrotic muscle fibers (#), with regenerating

myofibers (*) clustered around the necrotic muscle and clusters of regenerated muscle fibers (*) in the WT EDL graft. (F) Myogenesis had initiated at the

Figure 2 continued on next page
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ones (marked #) are highlighted. In contrast in the Sun1–/– donor grafts (Figure 2; images C, D and

F), necrotic muscle fibres persisted and occupied more than half the central region of the graft.

Although myogenesis had initiated at the graft periphery, the persistence of necrotic muscle fibers

revealed that myogenesis was defective (Figure 2F). The total numbers of regenerated myofibers

and necrotic myofibers were quantified in each graft and expressed as percentage of muscle regen-

eration (Figure 2G) with regeneration being significantly retarded (p<0.05) in the Sun1–/– grafts at

D9 after transplantation.

The persistent presence of necrotic myofibers in the Sun1–/– grafts probably impedes new myo-

fiber synthesis, as previously demonstrated in other muscle grafts (Shavlakadze et al., 2010). We

performed reciprocal grafting (WT EDL into Sun1–/– host ‘ko/wt’ and Sun1–/– EDL into WT host ‘wt/

ko’) to further address the potential role(s) of SUN1 in necrotic muscle clearance and myogenesis.

However, there was no difference in the number of regenerated myofibers at day nine post-grafting

(Figure 2—figure supplement 1). On average, normal regeneration results in the formation of

between 400–600 myofibers per graft (Shavlakadze et al., 2010). Three WT grafts that had fewer

new myofibers, also had necrotic myofibers that were not efficiently cleared in the Sun1–/– host (ko/

wt). For Sun1–/– grafts transplanted into WT hosts (wt/ko), necrotic myofibers in the grafts were

cleared by day nine with the formation of new myofibers. Figure 2H and I show the myofiber size

distribution in these grafts, with Sun1–/– myofiber size distribution being smaller than WT myofibers

in both the autografts and transplants into a different host. These findings suggest that Sun1 may

have distinct roles in both the host environment and the muscle graft itself during regeneration,

although it’s loss in the regenerating muscle results in myofibers with a smaller diameter.

SUN1D7 isoform expression and localization was analysed in these regenerating muscle fibres

both in vivo and in vitro in myoblast cultures established from WT and Sun1–/– mice. The SUN1 D7

antibody strongly stained the NEs of newly formed WT myofibers within the EDL graft, and to a

much lesser extent the peripheral nuclei of the host TA muscle (Figure 2J,L and M). Interstitial cells

in the WT graft did not express SUN1 D7. SUN1 was not detectable in the myofiber nuclei in the

Sun1–/– grafts (arrowheads) using the SUN1 D7 antibody (Figure 2N,P and Q). Laminin two staining

defined the myofiber boundary and DAPI marked the centrally located nuclei in these newly formed

myofibers.

The Sun1 D7 antibody localized SUN1 to the LaminB1 positive nuclear envelopes (NE) of WT

nuclei in myotubes differentiated in culture (Figure 2—figure supplement 2B upper panels), with

Sun1–/– myofibers not showing any antibody localization to the NEs confirming its specificity (Fig-

ure 2—figure supplement 2B lower panels). Intriguingly however, in vitro, the loss of SUN1 during

myotube differentiation did not overtly impede the differentiation of myoblasts into myotubes (Fig-

ure 2—figure supplement 2C).

Figure 2 continued

Sun1–/– /– periphery (*), however the core area was occupied with necrotic muscle fibers. (G) Comparison of muscle regeneration between WT (n = 7)

and Sun1–/– (n = 5) mice. The numbers are expressed as a percentage of newly regenerated myofibers over total muscle numbers in the graft, with

mean ± SEM and *p<0.05. Percentage of regeneration is included (in parenthesis) in the H and E images. (H and I) The cross sectional area (CSA) of the

regenerated myofibers in both autografts and reciprocal grafts were quantified and presented in CSA distribution curves. (J) SUN1 D7 and - D7, D9

isoforms localize to the NE of regenerating EDL myofibers in vivo. Images (red immunostaining) of (top panel) SUN1 D7 at the nuclear envelope (NE) of

WT muscle fibers; (K) laminin 2 (green) staining defines the boundary of individual myofibers and (L) with DAPI staining to mark the nuclei. (M) Sun1 D7

and - D7, D9 isoforms (red immunostaining) are expressed in regenerated muscle myofibers NEs (defined by the green laminin staining), with the

isoforms being absent in surrounding non muscle cell nuclei (blue). (Q) In the Sun1–/– grafts the Sun1 D7 antibody did not stain the NE of regenerated

muscle myofibers (as defined by the green laminin staining and yellow arrowheads), (bottom panel). The red cytoplasmic signal in myofibers is non-

specific probably due to cross-reactivity by the polyclonal antibodies. Scale bar, 200 mm.

DOI: https://doi.org/10.7554/eLife.49485.004

The following figure supplements are available for figure 2:

Figure supplement 1. Number of regenerated myofibers in reciprocal graft transplants; WT EDL into Sun1–/– host (ko/wt) and Sun1–/– EDL into WT

host (wt/ko) reveals no significant differences.

DOI: https://doi.org/10.7554/eLife.49485.005

Figure supplement 2. Sun1 expression in differentiating myoblast cultures.

DOI: https://doi.org/10.7554/eLife.49485.006
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The Sun1 D7,D9 isoform interacts with the microprocessor components
Drosha and Pasha (DGCR8)
The N-terminus of SUN1 protrudes into the nucleoplasm where it potentially could interact with

nucleoplasmic proteins. Apart from pre-laminA and nuclear pore complexes (Mattioli et al., 2011;

Liu et al., 2007), no other protein has yet been reported to interact with SUN1’s nucleoplasmic

domain. We used the Sun1 D7,D9 isoform as a bait in a yeast two hybrid screen to identify nuclear

proteins potentially binding to the nucleoplasmic domain of SUN1 and was performed using the

Myriad ProNet system (Supplementary file 1). The RNase III protein Drosha was repeatedly isolated

from two different libraries in the screen. The SUN1–Drosha protein-protein interaction was vali-

dated by both immunofluorescence analysis and co-immunoprecipitation (Figure 3A and B). Immu-

nostaining of differentiated myotubes with anti-Drosha antibodies showed enrichment at the NE,

together with SUN1 (Figure 3A top panel), while Drosha was not enriched at the NE in Sun1–/– myo-

tubes suggesting that Drosha is recruited to the nuclear periphery/NE in the presence of SUN1D7,D9

isoform. To validate this protein-protein interaction, the Sun1 D7 antibody was used to co-precipi-

tate SUN1-Drosha protein complexes from myotube lysates (Figure 3B). This interaction was spe-

cific, as Drosha did not co-precipitate with the other SUN1 isoform, D7–9, and HA epitope

antibodies.

FLAG-tagged SUN1 D7, D9 and GFP-tagged Drosha cDNAs were simultaneously expressed in

NIH3T3 cells and showed co-enrichment at the NE by immunofluorescence analysis (Figure 3C).

FLAG-tagged SUN1 D7,D9 localised to the NE, while anti-GFP antibodies localized the GFP-tagged

Drosha, at both the NE and in the nucleoplasm, with Drosha concentrating at the NE. Drosha

expression on its own was present throughout the nucleoplasm (Figure 3C middle panel).

As Drosha and the RNA binding protein, Pasha (DGCR8), are part of the microprocessor protein

complex (Denli et al., 2004), we performed a co-precipitation analysis of Pasha and Drosha with

mouse SUN1 D7,D9 or human SUN1D6 (Figure 3D). FLAG/HA-Pasha, full length Drosha or the N-ter-

minal Drosha fragment, mouse MYC-SUN1 D7,D9 or human SUN1D6-FLAG/MYC were transiently

expressed in HEK293 cells. Anti-FLAG antibodies co-precipitated both full length Drosha-GFP and

mouse MYC-SUN1 D7, D9 proteins with FLAG/HA-Pasha (Figure 3D lane 1). Similarly, anti-MYC anti-

bodies co-precipitated FLAG/HA-Pasha, and Drosha with human SUN1 D6-FLAG/MYC protein

(Figure 3D lanes 2 and 3). The diagram shows the N- terminal Drosha segments (truncated frag-

ments identified by Y2H) as the SUN1 binding domain, and is partially overlapping with the Pasha

binding domain (Han et al., 2004). Together these findings indicate that the nucleoplasmic domain

of the SUN1 muscle specific isoform D7,D9 interacts with the Drosha/Pasha microprocessor complex,

enriching Drosha localization at the nuclear periphery/NE (Figure 3A).

Rtl1as encoded miRNAs are increased in Sun1–/– myotubes
Since the muscle enriched SUN1 isoform binds to Drosha, we then analysed whether the loss of

SUN1 alters muscle miRNA profiles. We also investigated whether SUN1’s interaction with Drosha

would affect the processing of primary miRNAs (pri-miRNAs) to precursor miRNAs (pre-miRNA)

(Lee et al., 2003; Tomari and Zamore, 2005).

The loss of SUN1 in the Sun1–/– myotubes did not alter either Drosha or Lamin A protein levels

(Figure 4A). We then compared the mature miRNA expression profiles between Sun1–/– and WT

myotubes by microarray analysis (performed by Exiqon). Nine miRNAs were identified that differed

significantly in their expression levels between WT and Sun1–/– with some showing increased and

others decreased levels of expression in the Sun1–/– myotubes (Figure 4B). Of these nine miRNAs,

we chose to focus on three that significantly increased in the Sun1–/– myotubes, miRNAs, �127–3 p,

�434–3 p, �431–3 p, as they are all encoded as a cluster within the Rtl1 antisense transcript (Rtl1as)

(Figure 4C panel one and lower diagram).

We focused on these miRNAs as the Rtl1/Rtl1as region is a genomically imprinted locus that pre-

viously has been implicated in regulating skeletal muscle growth and therefore they would be of

functional relevance to understanding muscle growth and regeneration (Davis et al., 2005). Overex-

pression of the paternally expressed RTL1 locus (or PEG11), which encodes a neo-functionalized ret-

rotransposon protein of unknown function, results in increased muscle mass (skeletal muscle

hypertrophy). However the levels of RTL1 protein are regulated post-transcriptionally by the miRNAs

encoded by the complementary maternally expressed Rtl1as (PEG11as) transcript that acts as a
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Figure 3. Sun1 interacts with Drosha. (A) Confocal images of Drosha and SUN1 isoforms (12.10F antibody recognizing all SUN1 isoforms) localized to

the NE of WT myotube nuclei, but not in the Sun1–/– myotubes. (B) Immuno-precipitation of SUN1 isoforms from C2C12 myotubes with two SUN1

antibodies (D7 and D7–9). SUN1 immuno-precipitates were detected with an anti-SUN domain antibody. Drosha was co-precipitated with SUN1 D7, but

not with the Sun1 D7–9 isoform or anti-HA control antibodies. (C) Transient transfection of tagged cDNAs of Drosha and SUN1 D7 isoform in NIH3T3

cells, reveals enriched GFP tagged Drosha to the NE in nuclei co-expressing FLAG tagged SUN1 D7, D9 (top panel). Drosha expression in the absence

of SUN1 D7,D9 localized throughout the nucleoplasm (bottom panel). (D) Transient transfection of tagged cDNAs in HEK293 cells for co-immuno-

precipitation analysis. The Drosha schematic diagram shows the proline rich-, arginine/serine rich domains, the catalytic domains (RIIID) and RNA

binding domain. The Pasha- and Sun1 binding domains partially overlap.

DOI: https://doi.org/10.7554/eLife.49485.007
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Figure 4. Effect of Sun1 loss on DROSHA expression and on the regenerating myofibre miRNA profile. (A) Equal Drosha and Lamin A protein levels

were present in the nuclear fractions from Sun1–/– and WT myotube cultures. WT and Sun1–/– primary myoblasts were differentiated into myotubes and

then processed into cytoplasmic and nuclear fractions. Sun1 D7 antibody was the control for the WT lysate, Lamin A antibody was the positive control

for the nuclear fraction. (B) Table lists the miRNAs that show significant fold differences in expression levels between WT and Sun1–/– myotubes. The

p-values are based on the t-test. The top five miRNAs pass the Bonferroni correction for multiple testing (0.000161). Average expression (LMR) are

shown for both groups, including the difference (dLMR) and the conversion into fold change. (C) The four miRNAs are all encoded by the Rtl1as

transcript (see underlying schematic of the Rtl1as transcript and the position of the miRNAs). These miRNAs were expressed at significantly higher

levels in Sun1–/– myotube cultures compared to WT cultures (4C Right panel). The relative abundance of each miRNA is also shown – (miR-127–3p>miR-

434–3 p>miR-433–3p>miR431-3 p) and was determined by the CT values (qRT-PCR).
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The following figure supplement is available for figure 4:
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repressor for RTL1. The four Rtl1as encoded miRNAs expression levels are of significance, as these,

especially miR-127–3 p, suppress Rtl1 translation by RISC-mediated cleavage of the Rtl1 mRNA

(Hagan et al., 2009; Ito et al., 2015; Lin et al., 2003; Sekita et al., 2008). Mutations in the Dlk1-

Dio3 region, within which the Rtl1 locus is localized, appear to disrupt the expression of Rtl1s, result-

ing in increased RTL1 protein levels. These in turn lead to muscle hypertrophy in both Callipyge

sheep and in transgenic mice engineered to overexpress Rtl1 (Davis et al., 2004; Xu et al., 2015).

Previous studies showed that Rtl1as RNA transcripts are processed into these miRNAs, as well as

a 4th member of the cluster miR-433, by the microprocessor complex (Davis et al., 2005). We vali-

dated the miRNA levels by quantitative PCR analysis of myotube cDNAs and found that the Rtl1as

miRNAs were all increased, albeit to differing extents in the Sun1–/– myotubes, with miR-127–3 p

being processed at the highest levels and miR-431–3 p at the lowest (Figure 4C).

RTL1 protein levels in primary myoblast cultures were undetectable, in comparison to the expres-

sion levels in fetal leg muscle (Figure 4—figure supplement 1). This therefore precludes any analysis

of RTL1 functions in primary myoblast/myotube cultures.

Sun1 regulates Rtl1as processing and Rtl1 expression during muscle
regeneration
Adult muscle autografts were then analysed to determine whether SUN1 loss affected Rtl1as and

Rtl1 expression during regeneration. We examined the Drosha-mediated cleavage products of

Rtl1as in these muscle grafts, specifically those of miR-127, miR-433 and miR-431 sequences by the

RLM-RACE protocol (Figure 5). The miR-127, miR-433 and miR-431 RNAs were ligated to a common

RNA adaptor, reverse transcribed into cDNA and cloned. DNA sequencing revealed that Drosha

cleaved the 3’ strand of these three pri-miRNAs (marked by the blue asterisk), as previously reported

(Davis et al., 2005). Unexpectedly, a larger cDNA of miR-127 (marked by the red asterisk) showed

that Drosha cleaved the 5’ strand of miR-127 but the 3’ strand remained intact (summarized in

Figure 5E). This aberrant pri-miR-127 product was present at 2-fold higher levels in WT grafts com-

pared to Sun1–/– grafts (Figure 5B). Under normal circumstances, Drosha processing would produce

the 2 nucleotide 30 overhang of a pre-miRNA necessary for interaction with exportin-5 to exit the

nucleus (Wu et al., 2018). Misprocessing of pri-miR-127 would lead to less mature miR-127, as seen

in relatively lower levels of pre-miR-127 in WT when compared to Sun1–/– muscle (Figure 5C). We

then addressed if SUN1 interaction with Drosha directly affected the processing of pri-miR-127 in

vitro. Drosha, PASHA and SUN1 proteins were ectopically expressed and then immunoprecipitated

from HEK293 cells. These proteins were incubated with pri-miR-127 RNA transcribed in vitro. As

expected, Drosha RNase activity cleaved the pri-miR-127 to pre-miR-127 (Figure 5D lane 3). How-

ever, in the presence of SUN1 protein, Drosha activity was impaired in that pri-miR-127 was proc-

essed largely into intermediate miR-127 RNA forms (Figure 5D lane 4).

As anticipated, Rtl1 transcript levels were significantly increased in the post-natal muscle (D24)

from miR-127 null mice compared to their WT littermates (Figure 5—figure supplement 1). These

results therefore suggest that the interaction of SUN1 with the microprocessor complex leads to

increased levels of aberrantly processed miR-127 pre-miRNA in muscle. These would then not be

exported from nucleus for further processing into mature miRNAs by the DICER complex. The net

effect would be to result in increased levels of RTL1 protein levels (Ito et al., 2015). In contrast, loss

of SUN1 results in the more efficient processing of the miR-127 pri-miRNA to a mature functioning

miRNA.

In the WT and Sun1–/– grafts, the expression of Rtl1, as well as muscle regeneration markers

including neonatal- and embryonic myosin heavy chains, and Pax7 were analysed at three time

points post grafting (Figure 6A–D). Rtl1 transcript levels were significantly higher in WT grafts than

in the Sun1–/– grafts at D5. These then decreased as regeneration proceeded that was largely com-

pleted at D14 (Figure 6A). At D5, the levels of Rtl1 correlated with increased expression levels of

regeneration markers indicates regeneration was evident in these grafts (Schiaffino et al., 2015;

Figure 4 continued

Figure supplement 1. RTL1 protein was undetectable in WT primary myoblasts derived from hindlimb muscle, Rtl1 null derived primary myoblasts were

a negative control (Left panel).
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Figure 5. RLM-RACE analysis of Rtl1as DROSHA processed products in muscle grafts. (A) RLM-RACE was performed on muscle graft samples from D5

of regeneration to identify Drosha mediated cleavage of Rtl1as RNA. PCR bands were cloned and sequenced to map Drosha cleavage sites. Sequences

of pre-miRNAs in the hairpin configuration and the mature miRNA sequences are highlighted in red, mapped Drosha cleavage sites are marked by

asterisks. (B) Quantitation from D5 grafts of WT and Sun1–/– muscle grafts showing aberrant pre-miR-127 levels are reduced in the Sun1–/– muscle. (C)

Figure 5 continued on next page
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Seale et al., 2000). We also analysed the expression of 2 other genes in the same gene Dlk1-Dio3

cluster as Rtl1, specifically Dlk11 and Meg3 (Hagan et al., 2009) in these grafts as Dkl11 has also

been implicated in regulating muscle regeneration (Figure 6—figure supplement 1). Although their

expression increased in the muscle grafts as they regenerated, their levels did not differ between

Sun1–/– and WT grafts at the three time points sampled.

Rtl1 and Rtl1as are expressed in regenerating mdx muscle and in
biopsy samples from patients with EDMD and AD-EDMD
We then determined whether our findings from the regenerating muscle grafts were of relevance to

the most prevalent form of muscular dystrophy Duchenne’s (DMD). The mdx mouse is a model for

human DMD, and has ongoing endogenous necrosis of myofibers with associated inflammation,

fibrosis and muscle regeneration (Partridge, 2013; Radley et al., 2008). In the hind-limb muscles of

young adult (D24) mdx mice, Rtl1, Rtl1as and its encoded miR-127 were significantly increased in

mdx as compared to WT littermates (Figure 6E). Anti-Rtl1 staining revealed that RTL1 protein was

present in the cytoplasm of the regenerated mdx myofibers which were the smaller myofibers with

central nuclei. Cytoplasmic Rtl1 staining was undetected in the larger mdx myofibers with peripheral

nuclei (Figure 6F). These results indicate that the induction of Rtl1 and Rtl1as expression in newly

synthesized myofibers may be a general feature of muscle regeneration.

Rtl1 is required for efficient muscle regeneration
Since Rtl1 expression increases in newly formed myofibers, we examined whether loss of Rtl1 would

affect regeneration. We determined the requirement for Rtl1 during regeneration by autografting

EDL muscle from Rtl1D mice (Figure 7) that is in muscle from mice carrying a paternally inherited

Rtl1 deletion (Ito et al., 2015). In the Rtl1D grafts, regeneration was delayed to at least D9 post

grafting. In the majority of Rtl1D grafts, where there was poor clearance of necrotic muscle, fewer

regenerated Rtl1D myofibers were observed compared to WT muscle myofibers. The central graft

region was occupied by non-muscle interstitial cell types, indicating defective muscle regeneration in

the absence of Rtl1. Expression of RTL1 protein was evident in the WT regenerating myofibers iden-

tified by peripheral laminin 2- expression and central nuclei localization (Figure 7C).

In AD-EDMD muscular dystrophy patients, miR-127 expression is increased (Sylvius et al., 2011).

We examined miR-127 levels in muscle biopsies from six laminopathy patients and four control sam-

ples. In the LMNA mutants, miR-127 levels were consistently increased in all six patients relative to

the controls (Figure 7—figure supplement 1). However, no reliable trend was observed in the

expression levels of RTL1 among the patient samples (data not shown), probably due to variations in

the numbers of dystrophic muscle fibers between the individual biopsy samples. The histopathologic

description of these muscle biopsies and their origins is summarized in supplementary file 2.

Discussion
Interest in the nuclear lamina and NE has significantly increased over the past few years, primarily

because numerous congenital diseases (the lamin or nuclear envelopathies) have been identified

which are caused by mutations in many of the NE and lamina associated proteins (Worman et al.,

Figure 5 continued

Total RNA from WT and Sun1–/– muscle (5 ug) were resolved with 6% TBE-urea gel for detection of pre-miR-127. (D) Drosha, Pasha and SUN1 D7, D9

proteins were immunoprecipitated from HEK293 cells and incubated with primary miR-127 RNA in vitro. Background non-specific breakdown of primary

miR-127 RNA by contaminating RNase from the HEK293 lysate (lanes 1 and 2). Drosha/Pasha cleaved the pri miR-127 to pre miR-127 (lane 3). In the

presence of SUN1, Drosha cleaved pri miR-127 into intermediate miR-127 RNA and pre miR-127 (lane 4). (E) Schematic of pri miR-127 and Drosha

processing into pre miR-127; the expected product of microprocessor cleavage in nucleus. Pre miR-127 is then exported out of nucleus into cytoplasm

for further processing into mature miRNA by Dicer. Sun1 recruits Drosha to the NE and this might disrupts Drosha activity resulting in aberrant

processing of pri-miR-127. Aberrant pre-miR-127 might not be exported out in the nucleus resulting in a reduction of mature functional miR-127 RNA.

DOI: https://doi.org/10.7554/eLife.49485.010

The following figure supplement is available for figure 5:

Figure supplement 1. Rtl1 expression levels were quantified by RT-qPCR in miR-127 D and WT hind-limb muscle from D24 mice.

DOI: https://doi.org/10.7554/eLife.49485.011
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Figure 6. Effects of Sun1 loss on Rtl1 and other muscle specific gene expression levels during regeneration. (A) Rtl1 expression increases in

regenerating WT myofibers but at lower levels in Sun1–/– grafts. Both the grafted muscle (left hind-limb) and control muscle (right hind-limb) were

harvested at three time-points (Days 5, 9 and 14 post-grafting) for qRT-PCR. The relative expression levels in the muscle grafts over control muscle in

each sample with (n) representing sample size is presented at each time-point. WT grafts showed significantly higher Rtl1 expression compared to

Figure 6 continued on next page
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2010). The majority of these diseases affect muscle (skeletal, vascular and cardiac), with most being

caused by mutations in the LMNA gene (Burke and Stewart, 2006). In addition, mutations/varia-

tions in other NE proteins such as Emerin, Lap2 and the LINC complex protein Nesprin1 (SYNE1)

may also result in muscle disease (Burke and Stewart, 2014). However, to date no mutations in

SUN1 have been linked to any disease, although some variants have been identified which are asso-

ciated with muscular dystrophy (Meinke et al., 2014). Sun1–/– mice, apart from being infertile and

deaf show overtly normal postnatal growth and longevity, with no cardiac or skeletal muscle issues

being reported (Chen et al., 2012). Intriguingly, loss of some NE proteins such as SUN1 or LAP2a

can significantly ammeliorate muscle degeneration caused by Lmna mutations, revealing a functional

integration of these different NE proteins (Chen et al., 2012; Cohen et al., 2013).

The primary function of the LINC complexes is to couple the nucleus and nuclear envelope to the

cytoskeleton. This coupling is important for nuclear positioning, cytoskeletal organization, cell polari-

zation, and cell migration (Lee and Burke, 2017). It also appears that mechanical forces can be

transmitted from the extracellular matrix via cell adhesion complexes and the cytoskeleton to the

nucleus, resulting in force induced changes to nuclear shape, structure, gene expression, and chro-

matin composition. In finding that the LINC complex affects these parameters, it has been proposed

that the nucleus/NE/LINC complex may function as mechanosensor, in which physical stimuli are

converted to changes in gene expression. However how the LINC complex may convert mechanical

forces into changes in gene expression is still poorly understood (Alam et al., 2016; Kirby and Lam-

merding, 2018).

Here we report that loss of SUN1 delays adult skeletal muscle regeneration, and results in smaller

myofiber diameters compared to WT muscle regeneration. Our transplantation experiments sug-

gested that SUN1 isoforms have multiple and possibly distinct functions in muscle regeneration.

Some specific SUN1 isoforms may have a role in the inflammatory clearance of necrotic myofibers, a

key step in regeneration, as necrotic fibres were not as efficiently cleared in Sun1–/– grafts compared

to WT grafts. The SUN1D7 isoform which is specifically enriched in differentiating myoblasts may

intrinsically regulate myotube growth in vivo as indicated by the smaller cross sectional area of

Sun1–/– myofibers. To determine how SUN1 may influence muscle regeneration we searched for

potential myoblast/myotube nucleoplasmic interaction partners with the predominant muscle iso-

form D7 of SUN1 as bait. Of the ~20 candidates that potentially interact with this SUN1 isoform

(Supplementary file 1), we focused on the key component of the Microprocessor complex, the

RNase III ribonuclease Drosha that initiates microRNA processing in the nucleus.

We find that the recruitement of Drosha to the nuclear envelope is specifically dependent on the

SUN1D7 isoform in muscle and in transfected fibroblasts (Figure 3). With the loss of SUN1 this

reduces Drosha recruitment to the NE resulting in the expression levels of at least nine miRNAs

being changed (Figure 4B). Clearly the issue is how does recruitment by the SUN1D7 isoform of

Drosha to the NE, specifically alter the expression of a subset of miRNAs, whereas other miRNAs

implicated in regulating myoblast proliferation, differentiation and survival (Chen et al., 2006;

Cheung et al., 2012; Hirai et al., 2010) were apparently not changed according to our microarray

analysis (data not shown).

Within the past few years it has become apparent that the production and levels of mature miR-

NA’s produced by the Microprocessor complex is not a linear process primarily driven by the rate of

transcription. The kinetics of processing can vary between different pri-miRNAs, even within the

Figure 6 continued

Sun1–/– grafts at D5. (B–D) High expression levels of Mhy8, Mhy3 and Pax7 were noted in these grafts at D5 indicating effective regeneration. (E) Rtl1,

Rtl1as and miR-127 showed significantly increased levels in the hind-limb muscle of mdx mice compared to WT littermates at D24 (postnatal). Statistical

analysis with unpaired t test; two-tailed p values *p<0.05 and **p<0.005. (F) Confocal image analysis with the anti-Rtl1 antibody revealed RTL1 protein

localizes to the cytoplasm of regenerating mdx myofibers that have a centrally located nucleus (left panel). Fiber location was determined by co-

staining with an anti laminin2 antibody and DAPI (right panel).

DOI: https://doi.org/10.7554/eLife.49485.012

The following figure supplement is available for figure 6:

Figure supplement 1. The Dlk1 and Meg3 imprinted genes in autografts of WT and Sun1–/– mice were quantified by RT-qPCR and did not show any

significant differences.

DOI: https://doi.org/10.7554/eLife.49485.013
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Figure 7. Loss of Rtl1 impairs muscle regeneration. (A) H and E images of Rtl1 D and WT EDL autografts at D9 post grafting. (B) The Rtl1 D EDL grafts

have fewer regenerated myofibers (p=0.0017) and the central region of the graft is occupied by non-muscle cells, while myogenesis was almost

completed in the WT graft. (C) RTL1 protein expression was present in regenerating myofibers (*) as shown by co-staining of anti-RTL1, anti-laminin2

antibody and DAPI. Necrotic muscles are marked with # (C left panel).

Figure 7 continued on next page
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same cluster/polycistronic transcript, with this variation being due to specific sequences upstream of

the miRNA and/or within the hairpin loop. In addition, extrinsic cofactors for example DEAD box hel-

icases such as DDX5 and DDX17 promote processing of individual pri-miRNAs in specific cell types

or developmental stages (Siomi and Siomi, 2010; Mori et al., 2014). Other cofactors suppress

cleavage of individual pri-miRNAs, including NF90- NF45 (Sakamoto et al., 2009), Lin28B

(Piskounova et al., 2011), QKI-5 (Wang et al., 2013), and MeCP2 (Cheng et al., 2014). To these

microprocessor co-factors, SUN1, and in particular the muscle enriched D7 isoform may now be

added as a regulator of miRNA synthesis. In particular, we find that in the presence of SUN1 proc-

essing of the Rtl1as cluster varied between the different miRNAs encoded in the transcript. We

focused on the Rtl1as cluster of miRNAs, in particular pri-miR-127, as previously these have been

implicated in regulating muscle hypertrophy. The processing of pri-miRNA into pre-miRNA proceeds

by the coordinated 5’ strand and 3’ strand cutting by Drosha RIIIDb and RIIIDa domains respectively

(Han et al., 2004). RLM-RACE PCR identified the uncoordinated cutting of 5’ and 3’ strands of pri-

miR-127, with the 3’ strand being left intact in the presence of SUN1. SUN1 binding to Drosha/

microprocessor may interfere with Drosha RIIIDa domain in a subtle manner as we did not detect

any processing abnormalities with the other two pri-miR-433 and pri-miR-431, that are encoded in

the same cluster.

This finding expands SUN1’s role in controlling the synthesis of small regulatory RNAs, as a previ-

ous report indicated a perhaps, indirect, dependency for Piwi interacting RNA (piRNAs) synthesis,

another class of small regulatory RNAs found in the germline (Chi et al., 2009).

Among the Rtl1as encoded miRNAs, the biogenesis of miR-127 was the most efficient compared

to the other three miRNAs as shown in the Q-PCR of these miRNAs in the myotubes (Figure 4C).

This is supported with the in vitro Drosha processing assay where intermediate miR-127 RNAs accu-

mulated in the presence of SUN1 (Figure 5C). (Slezak-Prochazka et al., 2010; Choudhury et al.,

2013; Finnegan and Pasquinelli, 2013; Ratnadiwakara et al., 2018).

We postulate the miRNA profile in in vitro formed myotubes would be different from that of the

muscle grafts given the former are pure myotube cultures, while the latter are a complex tissue

where muscle fibres are combined with other cell types. Nevertheless, we established the processing

of pri-miR-127 (and hence Drosha activity) was sub-optimal in the muscle grafts, and therefore

inferred the SUN1-Drosha interaction is physiologically relevant during muscle regeneration. Future

studies of pri-miRNAs and their processing into mature miRNAs (of those miRNA listed in

Figure 4B) should reveal SUN1’s mechanistic control of Drosha activity.

Rtl1as encoded miRNAs inhibit the post-transcriptional processing of the paternally expressed

Rtl1, which results in a decrease in Rtl1 transcripts and consequently RTL1 protein levels

(Davis et al., 2005; Xu et al., 2015; Ito et al., 2015). Under normal circumstances SUN1 D7,D9 inhi-

bition of Drosha processing activity would specifically lead to reduced levels of the four muscle spe-

cific Rtl1as encoded miRNAs, resulting in the production of appropriate levels of RTL1 protein. With

increased Rtl1as miRNA levels, Rtl1 transcript levels were reduced leading to lower RTL1 protein lev-

els (Ito et al., 2015). Such a miRNA dependent regulatory mechanism would be an important post-

transcriptional control mechanism, in establishing the appropriate levels of RTL1 protein expression

for effective muscle regeneration. Excessive RTL1 results in muscle hypertrophy as in adult callipyge

sheep, in transgenic mice over expressing Rtl1 and in mice lacking myostatin, a significant inhibitor

of muscle growth (Hitachi and Tsuchida, 2017). In contrast, loss of Rtl1, as we here demonstrate,

leads to impaired muscle regeneration.

Together these findings identify RTL1 as being important for muscle growth and regeneration in

both mice and sheep with the RTL1 expression levels (translation) being significantly regulated by

miRNAs, whose levels, in turn, are determined by interaction with SUN1D7 in regulating micropro-

cessor activity. This regulation may be conserved between human and mouse since SUN1 proteins

Figure 7 continued

DOI: https://doi.org/10.7554/eLife.49485.014

The following figure supplement is available for figure 7:

Figure supplement 1. miR-127–3 p levels were quantified in healthy human biopsy samples and patients diagnosed with different LMNA mutations.

DOI: https://doi.org/10.7554/eLife.49485.015
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from both species can bind to Drosha and we showed sequence conservation for the SUN1 D7 iso-

form. RTL1 protein was also detected in the regenerating myofibers of mdx muscle, as were tran-

scripts in muscle biopsies from patients diagnosed with Emery-Dreifuss Muscular Dystrophy (AD-

EDMD) caused by LMNA mutations, indicating that RTL1 expression may be a general requirement

of muscle regeneration. How RTL1 protein functions in regulating muscle regeneration is unclear, as

other, though conflicting studies, have suggested RTL1 is localized to the nucleus (Byrne et al.,

2010), whereas another study suggested localization to the cell membrane where it may function as

a protease (Riordan et al., 2013). In contrast, our immunostaining of RTL1 revealed that it may pri-

marily localize in the myofiber cytoplasm (Figures 6F and 7D), with our co-immunoprecipitation

studies indicating a possible interaction between RTL1 and ER protein (unpublished results).

Here we have identified a mechanism by which the LINC complex may mediate gene expression

by fine tuning, through the microprocessor complex, the levels of RTL1 expression during muscle

regeneration. Whether mechanical forces can directly affect the SUN1 D7,D9-Drosha interaction and

hence the expression of RTL1 remains to be determined. As Lamin A protein also interacts with the

nucleoplasmic domain of SUN1, its role in regulating SUN1 D7,D9-Drosha interactions and whether

these are affected by LMNA mutations also remains to be established as LMNA mutations can

increase the levels of SUN1 (Chen et al., 2012). If these potential effects do affect miRNA process-

ing this in turn would provide insight into how specific LMNA mutations may affect the molecular

pathology of tissue specific diseases, in this case muscle.

Besides Drosha, other protein candidates that bind SUN1D7,D9 (Supplement. file 1) were identi-

fied and which have yet to be verified for their role in muscle regeneration can be characterised.

Muscle regeneration is a complex process and here we have identified some of the distinct roles of

the SUN1 isoforms in muscle regeneration. We would anticipate some of these other identified inter-

action candidates and SUN1 isoforms to extend SUN1s functions.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation Source or reference Identifiers Additional information

Strain, strain
background
(M. musculus,
males and females)

SUN1+/- PMID:
19211677

RRID:
MGI:3838371

mixed strain,
(C57BL/6J � 129/J);
SUN1+ /- males and
females for breeding

Strain, strain
background
(M. musculus,
males and females)

miR-127 D PMID:
26138477

RRID:
MGI:5789800

C57BL/6J; miR-127 D

females mated with
WT C57BL/6 males
for breeding

Strain, strain
background
(M. musculus, males)

Rtl1D PMID:
26138477

RRID:
MGI:5789800

mixed strain,
(C57BL/6J � 129/J);
miR-127 D males mated
with WT 129Sv females
to get Rtl1D pups

Strain, strain
background
(M. musculus, males)

mdx Jackson Laboratory RRID:
IMSR_JAX:001801

mixed strain, (C57BL/6)

Biological sample
(M. musculus)

Primary myoblast cell
(Wildtype and
SUN1 -/-)

This paper Derived from WT
and SUN1 - /- littermates,
males

Cell line
(H. sapiens)

Hek-293 ATCC CRL-1573TM

Cell line
(M. musculus)

NIH/3T3 ATCC CRL-1658TM

Cell line
(M. musculus)

C2C12 ATCC CRL-1772TM

Continued on next page
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Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers Additional information

Transfected
construct (M. musculus)

pCMV6-
FLAG-SUN1 D7 D9

This paper Mammalian
expression construct

Transfected
construct (M. musculus)

pCMV6-
MYC-SUN1 D7 D9

This paper Mammalian
expression construct

Transfected construct
(H. sapiens)

pCMV6-
SUN1 D6
-MYC/FLAG

Origene RC226167 Mammalian
expression construct

Transfected construct
(H. sapiens)

pCMV6-
Drosha-GFP

This paper Mammalian
expression construct

Transfected construct
(H. sapiens)

pFLAG/HA-
DGCR8 (Pasha)

PMID: 15589161 RRID:
Addgene_10921

Recombinant
DNA reagent

pSPT18
-primary miR127

This paper In vitro transcription
of pri-miR127 for
Drosha cleavage
assay

Recombinant
DNA reagent

pSPT18-pre- miR127 This paper In vitro transcription,
with DIG-labelling
of probe

Antibody anti-Drosha
(rabbit polyclonal)

Abcam Cat# ab12286 IF(1:100),
WB (1:500)

Antibody anti-Lamin B
(goat polyclonal)

Santa Cruz
Biotechnology

Cat# sc-6217 IF(1:100)

Antibody anti-Lamin A/C
(rabbit polyclonal)

Cell Signaling
Technology

Cat# 2032 WB(1:500)

Antibody anti-MYC
(rabbit monoclonal)

Cell Signaling
Technology

Cat# 2278 WB(1:2000)

Antibody anti-FLAG
(rabbit monoclonal)

Cell Signaling
Technology

Cat# 14793 IF(1:100),
WB(1:2000)

Antibody anti-laminin 2
(rat monoclonal)

Enzo life sciences 4H8-2 IF(1:200)

Antibody anti-SUN1 12F10
(mouse monoclonal)

This paper RRID:
AB_2813863

this antibody recognises
all mouse SUN1 isoforms

Antibody anti-SUN1 D7
(rabbit polyclonal)

PMID: 26417726 Raised with
peptide RDRTLKPPHLGHC
by YenZym Antibodies

Antibody anti-SUN1
D7–9
(rabbit polyclonal)

This paper Raised with
peptide CGGDRTLKPRDLLVQ
by YenZym Antibodies

Antibody anti-SUN1
(rabbit polyclonal)

PMID: 19211677 this antibody recognises
all mouse SUN domain

Antibody anti-Rtl1
(rabbit polyclonal)

This paper RRID:
AB_2813865

antibody produced by
YenZym Antibodies

Antibody anti-GFP
14F5
(mouse monoclonal
supernatant)

This paper provided by Brian
Burke, A*STAR

Sun1–/– and miR-127–/– breeding and muscle grafting
Mice were maintained at the A*STAR Biological Resource Centre facility in accordance with the

guidelines of the IACUC committee. Experimental procedures were performed under the protocol

number IUCAC #181326. SUN1+/- mice were interbred to obtain SUN1–/–. Heterozygous mdx

females were interbred with wildtype males to obtain WT and mdx male pups. The miR-127 D

embryos were from Dr. M. Ito. C57BL/6J females carrying the miR-127 D allele were used to main-

tain the allele. Males carrying a maternally inherited miR-127 D allele were crossed with WT 129Sv
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females to obtain Rtl1 D null pups (Ito et al., 2015). Only male Sun1–/–, Rtl1D and WT littermates

were used for muscle grafting. All surgical procedures were performed under avertin anesthesia,

with every effort being made to minimize suffering.

Whole muscle autografting and reciprocal grafting were performed to assess the regenerative

capacity of myofibers in 2–3 month old SUN1–/– and Rtl1 D mice. The Extensor Digitorum Longus

(EDL) muscle, with both tendons, was excised and transplanted onto the Tibialis Anterior (TA) mus-

cle. The EDL tendons were sutured to the TA, the skin closed and the wound left to heal

(Roberts and McGeachie, 1992) (Shavlakadze et al., 2010). At day nine post-surgery, mice were

euthanized. The TA and grafted EDL were excised, mounted in tragacanth gum (Sigma-Aldrich) on

cork pieces and snap frozen with isopentane (BDH-AnalaR) for cryosection. Muscle sections at 7 mm

thickness were mounted for histological and immunofluorescence analyses. Grafts were harvested at

5, 9 and 14 days post-surgery for gene expression analysis.

Immunofluorescence, histology and microscopy
Muscle sections were stained with H and E, and imaged using a Zeiss AxioImagerZ1 microscope and

ZEN2 software. Muscle graft analysis and myofiber quantification was performed with Fiji software.

For immunofluorescence staining, muscle sections were methanol fixed, permeabilized with 0.1% Tri-

ton X-100/PBS, and blocked with BSA/bovine serum. Incubation with primary antibodies was per-

formed at room temperature overnight in a humified chamber. The sections were washed and

incubated with secondary Alexa Fluor antibodies and DAPI staining. Imaging was performed using a

Zeiss LSM 510 scanning confocal system. Images were processed with LSM image browser software.

Primary myoblast cultures and preparation of protein lysates
Myoblasts from hindleg muscle were isolated as described (Grohmann et al., 2005). Myoblasts

were cultured on 0.1% gelatine coated coverslips, and differentiated into myotubes with low serum

medium, fixed with ice cold methanol for immuno-staining. Protein lysates were prepared by hypo-

tonic lysis of cells, and centrifuge at 2,000 rpm to pellet the nuclear fraction. The nuclear pellet was

resuspended in 1% Triton X-100 lysis buffer with freshly added Roche cOmplete Protease Inhibitor

Cocktail to extract nuclear proteins. C2C12 nuclear fraction lysate was used for SUN1 immunopre-

cipitation experiments.

Gene expression studies
For total RNA preparation, mouse tissues and cells were homogenised in Invitrogen TRIzol Reagent

and chloroform. After centrifugation, the supernatant was passed through Qiagen RNeasy Mini spin

columns to yield total RNA. For human samples, total RNA was prepared with Exiqon miRCURY

RNA isolation kit. For miRNA RT-qPCR, 200 ng of total RNA was reverse transcribed (RT) with Exi-

qon miRCURY LNA universal RT kit. qPCR were performed with Fast SYBR Green Master Mix and

Exiqon LNA primers. For mouse samples, cDNA was synthesized from 1 mg of total RNA with Multi-

Scribe reverse transcriptase and random hexamers (Invitrogen). Primer sequences are listed in

Supplementary file 3 Table 3. qPCR experiments were performed in triplicates, and relative expres-

sion was calculated by the ddCT method. Total RNA from WT and Sun1–/– myotubes (one day after

differentiation) were processed by Exiqon for miRNA microarray analysis. miRNA validation was per-

formed in triplicate. Statistical analysis by the unpaired t- test with two tailed p values. A P

value < 0.05 was considered significant.

Cloning of Sun1 isoforms, Y2H and transient transfection
Mouse Sun1 cDNAs encoding the N-terminal nucleoplasmic domain were reverse transcribed with

AccuScript RT and Sun1 primer (CTACTG GATGGGCTCTCCGTGGAC) from total RNA, and PCR

amplified (primer sequences in Supplementary file 3 Table 3). Human SUN1 cDNA was PCR ampli-

fied from human skeletal muscle and fetal muscle Clontech Marathon-Ready cDNAs. The nucleoplas-

mic domain of Sun1 D 7, D nine was used as bait to screen for potential interactors using the ProNet

Y2H system (Myriad Genetics, Inc). Different clones encoding Drosha protein domain spanning

amino acids 57–674 and 204–727 were screened from uterus/mammary gland- and brain libraries

respectively. Sun1 D 7, D nine and Drosha cDNAs were cloned into Origene pCMV6 vectors for

HEK293 transient transfection with Lipofectamine 2000. Pasha cDNA was from Addgene plasmid
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10921 (Landthaler et al., 2004). Cells were harvested the next day, lysed with 1% Triton X-100 lysis

buffer containing Roche Complete Protease Inhibitor Cocktail and sonicated. Transient transfection

of NIH3T3 was performed using Lipofectamine 3000 reagent.

Drosha cleavage assay
The primary miR-127 sequence was cloned in pSPT18 vector. For each assay, the clone was linear-

ized for in vitro transcription (Promega) to produce the primary (pri-) miR-127 RNA hairpin. Pasha,

Drosha and SUN1 proteins were immuno-precipitated from HEK293 cells and incubated with the pri

miR-127 RNA hairpin. This procedure was performed within 3 hr to ensure maximal Drosha activity.

RNA was resolved with Novex 6% TBE - urea gel, RNA was transblotted to Nylon membrane for

overnight hybridisation with DIG-labelled probe. The probe sequence is complementary to the pre

miR-127 sequence, and the hybridised probe on Nylon membrane was detected with anti-DIG AP

and CDP* (DIG Northern Starter Kit, Roche). The same procedure was performed for the detection

of pre-miR-127 in muscle, 5 ug of total RNA of muscle samples was resolved with 6% TBE - urea gel

as above.

Rlm-race
2–3 ug of total RNA from muscle grafts were ligated to 0.25 ug of GeneRacer RNA adaptor (CGAC

UGGAGCACGAGGACACUGACAUGGACUGAAGGAGUAGAAA) at 16˚C for 6 hr. The ligated RNA

was reverse transcribed with AccuScript RT and primer (GCGGGCCCTGGTGGACTCAGGAGC) to

amplify Rtl1as containing miR-127, miR-433 and miR-431. Subsequently two rounds of PCR was per-

formed to enrich for the miRNA sequences; the first PCR performed with the forward primer (Gen-

eRacer 50 Primer) which anneals to the adaptor sequence and reverse primer anneal to Rtl1as (CCCA

TGCCCCTGAAGTCGACTGGA), the second PCR was performed with nested primers (GeneRacer 50

Nested Primer and Rtl1as primer sequences are listed in Supplementary file 3 Table 3).

Antibodies
Murine sequence specific SUN1 and RTL1 antibodies were raised in rabbits and affinity purified by

YenZym Antibodies, CA. The immunogen was the RDRTLKPPHLGHC peptide for mouse SUN1D7

and His tagged fusion protein for mouse RTL1 aa89-315. Specificity of RTL1 antibodies were con-

firmed by Western blot with WT and Rtl1 D fetus and placental extracts (Ito et al., 2015). The SUN1

D seven antibody showed no cross-reactivity with other SUN1 isoforms (Calvi et al., 2015). SUN1

antibodies raised against the Sun domain was provided by Dr Ya-Hui Chi (National Health Research

Institutes, Taiwan), SUN1 monoclonal antibodies (12.10F) was raised against exon six sequences.

GFP monoclonal antibodies was provided by Dr Brian Burke (A*STAR, Singapore). Antibodies to

Drosha (Abcam ab12286); Lamin B1 (Santa Cruz Biotechnology); Lamin AC and MYC-tag (Cell signal-

ling technology); M2 FLAG and laminin2 (ENZO); Alexa Fluor-conjugated (Invitrogen) and HRP-con-

jugated (Dako) secondary antibodies.
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