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Social interactions involving coordination between individuals are subject to an “evolutionary trap.” Once a suboptimal strategy

has evolved, mutants playing an alternative strategy are counterselected because they fail to coordinate with the majority. This

creates a detrimental situation from which evolution cannot escape, preventing the evolution of ef�cient collective behaviors.

Here, we study this problem using evolutionary robotics simulations. We �rst con�rm the existence of an evolutionary trap in a

simple setting. We then, however, reveal that evolution can solve this problem in a more realistic setting where individuals need to

coordinate with one another. In this setting, simulated robots evolve an ability to adapt plastically their behavior to one another,

as this improves the ef�ciency of their interaction. This ability has an unintended evolutionary consequence: a genetic mutation

affecting one individual’s behavior also indirectly alters their partner’s behavior because the two individuals in�uence one another.

As a consequence of this indirect genetic effect, pairs of partners can virtually change strategy together with a single mutation,

and the evolutionary barrier between alternative strategies disappears. This �nding reveals a general principle that could play a

role in nature to smoothen the transition to ef�cient collective behaviors in all games with multiple equilibriums.

KEY WORDS: Collective action, evolution of cooperation, evolutionary robotics, evolutionary game theory, equilibrium selection,

plasticity.

The success of a collective action often hinges on the coordinated
decisions of several individuals. For instance, carrying out a col-
lective hunt implies that all individuals hunt at the same time,
agree on a common prey, and pursue the prey in a coordinated
manner. Thus, collective efficiency does not depend solely on the
skills of a single individual but emerges from the ability of the
group to act together (Alvard and Nolin 2002; Alvard 2003; Drea
and Carter 2009). This raises the question of how natural selection,
which acts on individuals, can shape such collective behaviors.

This problem can be formalized with a specific class of games
called “coordination games.” To understand, let us consider a sit-
uation in which two hunters must coordinate to capture a prey, but

� J.-B.A. and N.B. contributed equally to this work.

have to make a choice between a prey with a high nutritive value
and a prey with a low nutritive value. The strategy of choosing the
most nutritious prey is evolutionarily stable. If everyone chooses
this prey, one’s best response is to choose this prey as well. But
choosing the poorly nutritious prey is also evolutionarily stable. If
everyone chooses the poorly nutritious prey, there is nothing bet-
ter one can do than choose the same. The existence of this second,
suboptimal, evolutionarily stable strategy (ESS) raises a problem
because evolution can hardly move from one ESS to another. If
all hunters initially target the low-value prey, mutants preferring
the high-value prey are counterselected by frequency-dependent
selection because they fail to coordinate with the majority. Hence,
individuals are trapped in a suboptimal ESS and collective effi-
ciency is not maximized.
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All collective actions where individuals need to coordinate
with one another, and where they can do so in either an effi-
cient or an inefficient way, entail such an “evolutionary trap.”
Inefficient coordinated behaviors evolve that cannot later be
improved by natural selection because individual selection has
no way of improving collective efficiency in a coordination
game.

Evolutionary game theoreticians and evolutionary biologists
have explored two hypotheses that can explain how this problem
can be solved in nature. The first hypothesis is based on stochastic
effects (Foster and Young 1990; Kandori et al. 1993; Young 1993;
see also Nowak et al. 2004 in a different setting). In a finite popu-
lation fixed in a particular ESS, counterselected mutants can rise
in frequency due to genetic drift, and eventually destabilize the
existing ESS, thereby moving the population away from the evolu-
tionary trap, toward another, generally superior, ESS. The second
hypothesis is based on group selection (Boyd and Richerson 1990,
2002; Richerson and Boyd 2005; Boyd and Richerson 2009). Due
to chance, different groups of individuals may initially evolve dif-
ferent ESSes of the same game. If these groups compete with one
another, the groups that happen to play the most efficient ESS will
eventually prevail, allowing this strategy to spread in the entire
population. In sum, according to available theories, coordination
games suffer from an evolutionary trap problem, and collective
efficiency in these games can ensue either from demographic
stochasticity or from group selection, but not from plain individual
selection.

However, so far, coordination games have been formally stud-
ied in models that were highly stylized, in particular with regard
to the mechanistic underpinning of behavior, and these simpli-
fications may have important consequences. In this paper, we
describe simulations of a coordination game using evolutionary
robotics (Nolfi and Floreano 2000; Doncieux et al. 2015). As
compared to classic evolutionary game-theoretical approaches,
evolutionary robotics provides a more realistic modeling of indi-
viduals and their environment (Mitri et al. 2013; Trianni 2014),
capturing in particular the practical problems raised by coordina-
tion (Bernard et al. 2016).

In this setting, we show that the evolutionary trap actually
disappears altogether. Simulated robots evolve a behavioral so-
lution to coordinate with one another that generates indirect ge-
netic effects (Wolf et al. 1998), hereby changing “the rules of
the game.” Through their own behavior, robots transform a co-
ordination game with multiple ESSes and an evolutionary trap
problem into a simple individual optimization problem with a
single, maximally efficient, ESS. In this transformed game, col-
lective efficiency is reached by plain individual selection, with
no need for genetic drift or group selection. We posit that many
collective optimization problems may be solved in similar ways
in nature.

Table 1. Possible outcome of a two-player coordination game.

The game features two hunters. Each player may choose to hunt

either a “boar,” or a “stag.” This payoff matrix has two equilibri-

ums, a suboptimal one (both players hunt the boar) and an optimal

one (both players hunt the stag).

Boar Stag

Boar 125 0
Stag 0 250

Results
We simulate a collective hunt in which two players must coor-
dinate and attack together the same prey to gain a benefit. The
two-dimensional environment contains two types of prey, poorly
nutritious prey called “boars” (worth 125 payoff units for each in-
dividual hunter), and highly nutritious prey called “stags” (worth
250 units for each hunter). Hunting alone is possible, but it pro-
vides 0 payoff unit (cf. payoff matrix in Table 1). This game
features two strict Nash equilibriums (and thus two ESSes): to
hunt either boars or stags, with the latter equilibrium providing
a higher payoff. In technical terms, hunting stags is called the
“payoff-dominant” equilibrium.

The simulated robots we use as players are each driven by a
multilayer perceptron (Rumelhart et al. 1986) that maps sensory
inputs to motor outputs, with neural weights subject to artifi-
cial evolution. Each robot is endowed with proximity sensors all
around its body. These sensors are capable, within a limited range,
of discriminating between boars, stags, the other robot, and walls.
So as to maintain the prey density constant, a captured boar (or
stag) is removed from the environment and relocated to a new
position (see Methods section).

In our simulations, we use an evolutionary algorithm often
used in evolutionary robotics called ”elitist” selection (see Meth-
ods section). This algorithm reduces the effects of genetic drift
while maintaining a small population size and therefore a reason-
able computational cost. It consists in keeping, in each generation,
the bestk individuals from the previous generation while intro-
ducingk new mutants generated at random from these individuals.
With k = 1, this elitist algorithm actually consists in modeling a
succession of replacements of a resident by a mutant (provided
the mutant has higher fitness), as in standard evolutionary model-
ing (Eshel 1983; Geritz et al. 1998). Here, we consider an elitist
algorithm withk = 10 in order to capture the possible effects of
genetic diversity.

SELECTION CANNOT GENERATE COLLECTIVE

EFFICIENCY IN A SIMPLE SETTING

The first question we address is whether the evolutionary transi-
tion from the least efficient to the most efficient ESS can occur.
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Figure 1. Mean proportion of prey hunted. Repartition of the

prey hunted by the best individual in each replicate, at the last

generation of evolution (generation 6000). We differentiated be-

tween the type of prey hunted (boar or stag). Rewards were 125

for a boar and 250 for a stag (Table 1).

First, we let 30 independent populations of simulated robots
pre-evolve for 3000 generations with only one boar and one stag,
and modified payoff values: hunting stags temporarily yields no
reward. We thus ensure that these 30 populations all evolve the
boar-hunting equilibrium, with all individuals always targeting
boars and avoiding stags.

Second, each of these 30 populations of evolved boar hunters
is used as the seed for another 6000 generations of evolution, with

the regular rewards for each prey reinstated (Table 1). In spite
of its collective superiority, stag hunting never evolves within
the next 6000 generations for any of 30 independent replicates
(Figure 1). In every replicate, the mean proportion of stags hunted
remains at 0 throughout the 6000 generations. Hence, individuals
are genuinely trapped in the suboptimal equilibrium. That is,
collective efficiency cannot ensue from plain individual selection.

GENETIC DRIFT ALLOWS TRANSITION TO THE

EFFICIENT EQUILIBRIUM

The elitist selection algorithm used in our simulations has the ad-
vantage of significantly reducing the effects of genetic drift while
maintaining a reasonable computational cost. It is therefore only
natural to observe that the transition from one equilibrium to an-
other does not occur in our simulations, because this transition
requires the intervention of demographic stochasticity (Foster and
Young 1990; Kandori et al. 1993; Young 1993). In order to find
out whether demographic stochasticity allows this transition to
take place in our setting, we carry out the same simulations with
a different selection algorithm. We consider a population of 20
individuals in which individuals simply reproduce in proportion
to their fitness according to a Wright–Fisher model (also called
a “fitness-proportionate” algorithm in evolutionary robotics). We
initialize 12 replicates with a genotype pre-evolved under the eli-
tist algorithm and playing the boar-hunting strategy, and let them
evolve for 12, 000 generations under the fitness-proportionate al-
gorithm. Among these 12 replicates, we observe that the frequency
of stag hunting increases above 50% in about half of the cases
(Figure 2A), but we observe that they mostly play a mixed strategy
(they hunt the stag with a probability< 1) and that their perfor-
mance is reduced as compared to the initial genotype (Figure 2B),

Figure 2. Evolution of the type of prey hunted and average reward under the �tness-proportionate algorithm (i.e. with strong genetic

drift). (A) Proportion of each type of prey hunted in every replicate throughout evolution. (B) Average reward of the best individual in

each of the 12 replicates.
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which can be understood as a consequence of the fact that genetic
drift leads to the fixation of deleterious mutations.

In accordance with theoretical predictions, therefore,
demographic stochasticity makes it possible to escape from an
evolutionary trap and reach a more efficient equilibrium. It may
also be noted that the stochastic transition away from the trap
would be even easier in a genetically structured population, in
which individuals would interact with relatives, because this
would increase the probability that two mutants play together
and successfully coordinate on the stag (Skyrms 2004), but we
have not tested this possibility.

We will now show, however, that in practice genetic drift is
not necessary to get out of an evolutionary trap because there is
often no evolutionary trap at all. For this, in the remaining of the
article, we exclusively use the elitist selection algorithm in which
genetic drift is low and the transition to stag hunting impossible
in the simple setting.

COLLECTIVE EFFICIENCY CAN BE ACHIEVED BY

SELECTION, IN A MORE COMPLEX SETTING

In practice, predators are unlikely to live in a world with a single
prey of each kind. In a realistic environment, hunters must agree
on a specific“ individual” prey to hunt (Alvard and Nolin 2002;
Alvard 2003; Drea and Carter 2009), and not just on the“ type”
of prey.

To investigate the consequences of this complication, we fol-
low the same procedure as before. We pre-evolve 30 independent
populations of pure boar hunters, using modified payoff values,
with the stags never bringing any reward, but this time in an envi-
ronment with several (9) identical boars and several (9) identical
stags present.

We then let each of these 30 populations evolve for another
6000 generations with regular payoff values (Table 1) in the same
environment with several boars and stags present (see Methods
section).

In this setting, we observe that the transition from boar hunt-
ing to stag hunting does occur in 12 replicates out of 30 (Figures 3
and 5). This significantly differs from the previous results obtained
in a simpler environment (One-tailed Mann–WhitneyU test on
the number of replicates where the transition happenedP-value
< 0.0001). Environmental complexity promotes the evolution-
ary transition toward the payoff dominant equilibrium in 40% of
the replicates.

Taking a closer look at these 12 “successful” replicates re-
veals a particular kind of coordination strategy for collective hunt-
ing. Because the environment is more complex, individuals need
to react to each other’s behavior to stay together and converge
on the same prey. To this end they evolve a behavioral strategy,
which we refer to as the “turning” strategy, whereby they con-
stantly turn around one another. This strategy ensures that they

Figure 3. Evolution of the type of prey hunted. Proportion of

each type of prey hunted in every replicate throughout evolution

in the “complex environment” setting. Rewards were 125 for a

boar and 250 for a stag (Table 1).

keep their partner in their line of sight and move toward a prey at
the same time. Due to their proximity, an individual who gets on
a prey is likely to be joined quickly by their partner (Figure 4; a
video of this strategy is also available in Supporting Information).

This behavioral strategy has an evolutionary implication. Be-
cause hunters react to each other’s behavior, a mutation affecting
the behavior of one individual can also modify the behavior of
her partner. A mutant attracted to stags rather than boars may thus
succeed in hunting by transforming, albeit temporarily, her partner
into a stag hunter as well. As a result, the evolutionary transition
away from the suboptimal trap is facilitated in comparison with
the simple environment.

DIVISION OF LABOR FURTHER FACILITATES

COLLECTIVE OPTIMIZATION

The turning strategy obtained so far results from both hunters
demonstrating identical behaviors, whether related to moving to-
gether or selecting a prey. While this similarity in behavior makes
it possible for hunters to coordinate toward hunting the same
prey, both individuals spend a significant amount of time turning
around one another. This results in a tedious process of target-
ing a particular prey. The question is open as to the existence of
more efficient coordination patterns, in particular with respect to
assuming complementary behavioral strategies.

We posit that one possible limitation is the lack of expres-
sivity of our choice of control function, a limitation that may not
exist in nature. Although multilayered perceptrons are theoret-
ically universal approximators, this is hardly the case in prac-
tice (Cybenko 1989). In particular, the ability to switch from one
behavioral pattern to a completely different one may be required
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Figure 4. Example of the turning strategy. Example of a simu-

lation where both individuals adopted a “turning” strategy. The

path of the agents during this simulation is represented in red and

blue, starting from their initial positions (represented by black

dots). Each disc represents a prey in the environment. Boars are

represented in green and stags in purple. When a prey was killed

cooperatively, a red cross (respectively blue) is shown on the prey

if the red agent (respectively blue) arrived at this prey �rst.

for breaking behavioral symmetry between two individuals, but
may be hindered by the limitation of the controller used thus far
(see Ferrante et al. 2015 and Waibel et al. 2009).

To explore the possible benefits of more complex decision-
making capabilities, we enable each robot with the possibility to
choose from two controllers, depending on the context at hand. To
do so, we introduce a new evolutionary operator: the “network du-
plication” operator. Loosely inspired by gene duplication (Hughes
2002), a newly created individual may be subject to the complete
duplication of its artificial neural network. Conversely, an indi-
vidual with two networks may have one deleted. In this setup, any
individual may possess either one or two network(s). Initially, af-
ter a duplication event, an individual has two identical networks
(like two genes after a genetic duplication). But, just like dupli-
cated genes in different loci in the genome, these two networks
each have a different “place” in the individual’s “genome.” The
individual thus has a “network 1” and a “network 2” (even if they
are identical). And these two networks then evolve independently
of each other, under the effect of mutation and selection. Impor-
tantly, whenever two individuals who possess two networks each
interact with one another, we ensure that each of them expresses
a different copy of their own networks (see Methods section).

Figure 5. Number of stag-hunting replicates Number of replicates

(out of a total of 30) where cooperative stag hunting accounted for

the majority of hunts (i.e. more than 50% of the prey hunted were

stags hunted cooperatively) in the “simple environment,” “com-

plex environment,” and “complex environment with asymmetry”

settings. The simple environment and complex environment set-

tings are the same as previously shown (Figure 3). In the complex

environment with asymmetry, duplication of the neural network

could occur.

That is, we assume that one individual expresses his “network 1”
while the other expresses his “network 2” and this regardless of
whether these two networks are identical or very different from
one another.

We use the same simulation procedure as before: 30 popu-
lations are pre-evolved independently where only boar hunting
yields a reward, and this time we introduce network duplication.
We observe a significant difference with respect to previous sim-
ulations, as in all 30 replicates, we observe the evolution of asym-
metrical hunting behaviors in the form of a “leader–follower”
division of labor.

Results are also significantly different than in both previous
treatments when the original payoff matrix is reinstated (Table 1).
The transition to stag hunting occurs in 22 replicates out of 30
(Figure 5), as compared to 0 in the simple environment, and 12
in the complex environment without network duplication (one-
tailed Mann–WhitneyU test on the number of replicates where
the transition happened:P-value< 0.0001 andP-value= 0.015,
respectively). As in the pre-evolution runs, the “leader” guides the
pair toward a given prey, always arriving first, while the “follower”
keeps the leader in its line of sight at all times and joins her
afterward on the prey (Figure 6; a video of this strategy is also
available in Supporting Information).

This cognitive division of labor stems directly from the dupli-
cation of the neural controller: once duplicated, one version of the
network always ends up encoding for the leader behavior, while

EVOLUTION LETTERS 2020 5
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Figure 6. Example of the leader–follower strategy. Example of

a simulation where both individuals adopted a leader–follower

strategy. The path of the agents during this simulation is repre-

sented in red and blue, starting from their initial positions (repre-

sented by black dots). Each disc represents a prey in the environ-

ment. Boars are represented in green and stags in purple. When

a prey was killed cooperatively, a red cross (respectively blue) is

shown on the prey if the red agent (respectively blue) arrived on

this prey �rst.

the other encodes for the follower behavior, just like duplicated
genes of the same family encode slightly different functions.

The division of labor has two consequences. First, it im-
proves hunting efficiency. In the turning strategy, the symmetry
of decision-making sometimes hinders the ability to reach a con-
sensus. Even though turning promotes coordination, individuals
often still fail to converge on the same prey. In comparison, per-
formance is significantly higher in the leader–follower strategy
(Figure 7, one-tailed Mann–WhitneyU test on the mean reward
at last generation,P-value< 0.001): the frequency of coordination
failures is reduced thanks to a clear separation of roles.

Second, the division of labor has an evolutionary conse-
quence. In the leader–follower strategy, just as in the turning
strategy, hunters react to each other’s behavior and are there-
fore also prone to react to mutants’ behavior. But, in contrast to
the turning strategy, this response is asymmetrical and, therefore,
more precise. Any mutation affecting the leader’s behavior also
changes completely the behavior of the follower. That is, a mu-
tation in a single individual automatically affects two individuals
at the same time. As a consequence, the adaptive valley between
boar hunting and stag hunting disappears or, put differently, boar
hunting ceases to be an equilibrium. Any increase in the probabil-

Figure 7. Average reward of the turning strategy and the leader–

follower strategy. Average reward of the best individual in each of

the 30 replicates under the symmetrical (turning) or asymmetrical

coordination strategy (leader–follower). Rewards were 125 for a

boar and 250 for a stag (Table 1).

Figure 8. Probability to prefer stags over boars in mutants gen-

erated randomly from a pure boar-hunter genotype. Among the

105 mutants generated, we display only the 192 mutants whose

probability to hunt stags is greater than 1% (see Methods section).

ity of hunting a stag rather than a boar, when playing the role of
a leader, is directly favored by individual selection, and pure stag
hunting therefore becomes the only evolutionary equilibrium.

In fact, behavioral coordination between players (whether
leader–follower or turner) facilitates the evolutionary transition
also for another slightly different reason. In a robotic setting like
this one, stag hunters must appear by random changes in the con-
nection weights of boar hunters’ neural networks, and multiple
such changes separate a pure and well-optimized boar hunter
from a pure and well-optimized stag hunter. As a result, mutants
playing the stag-hunt strategy are extremely rare in a population
of pure boar hunters. This is confirmed in supplementary simu-
lations (see Figure 8, and Methods section), where we analyzed
the behavior of 105 mutants generated randomly from a pure and
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well-optimized “boar hunter” genotype. This analysis showed
that, at best, the random mutants merely had a probabilistic
tendency to target the stag. That is, they played a “mixed” rather
than a pure strategy. In the absence of a coordination mechanism,
these intermediate mutants are strongly counterselected as their
mixed strategy generates many coordination failures (if two
players both play stag with probabilityP, they fail to coordinate
with probability 2P(1 Š P)). Hence, these intermediate mutants
cannot bring about the transition to stag hunting. On the contrary,
if players are able to coordinate with one another, they can avoid
all coordination failures. For example, in the case of a leader–
follower, if the leader plays the mixed strategy that consists in
choosing the stag with probabilityP then the two individuals will
successfully hunt stag with probabilityP and boar with the com-
plementary probability. That is, they never fail to coordinate. As a
result, intermediate strategies can provide a possible evolutionary
pathway between pure boar hunting and pure stag hunting.

Discussion
Collective actions often require several individuals to make co-
ordinated choices. As a result, their efficiency, or lack of effi-
ciency, is a collective property, not a property of any particular
individual. This raises an evolutionary difficulty because natural
selection acts on individual, not collective, properties. Collective
actions are thus subject to an “evolutionary trap” problem. Once
a relatively successful but still perfectible collective organization
has evolved, any single mutant playing a better strategy will be
counterselected due to her lack of coordination with others. For
collective efficiency to be reached by evolution, several individu-
als would all somehow have to “mutate collectively,” but genetic
mutations do not occur in several organisms at the same time.

In this paper, we studied this problem in artificial robotics
simulations. We simulated the life and the long-term evolution of
a population of simple robots that played a 2× 2 coordination
game. Robots were hunters who could choose between two types
of prey that were either poorly nutritious or highly nutritious.
But they could only be successful if they converged together on
the same prey. Hence, they faced a coordination problem with
two ESSes—hunting poorly nutritious prey or hunting highly
nutritious prey, and an adaptive valley in between. Our aim was to
find out how the evolutionary trap problem materializes and how it
is solved—or not solved—in a model possessing a greater degree
of realism than conventional models of coordination games.

We first confirmed the existence of an evolutionary trap.
In a simple setting where the environment was constituted of
two individual prey only—one poorly nutritious and one highly
nutritious—if we initially forced the simulated robots to play
the suboptimal ESS (attacking the poorly nutritious prey), all
populations of robots remained stuck in this ESS “forever,” that

is, at least for the 6000 generations of our simulations. Individual
mutants who were targeting the better prey could not be favored
due to their singularity.

However, we then showed that this problem actually disap-
pears in a more realistic setting. In a richer environment consti-
tuted of several prey of each kind—several poorly nutritious prey
and several highly nutritious prey—individuals needed to actively
coordinate with their partner to converge on the same prey. To re-
solve this problem, they evolved behavioral tactics to keep track
of and follow their partner. In our simulations, we observed the
evolution of two such tactics. In the first series of simulations,
individuals constantly turned around one another, never moving
away from their partner, which increased the probability that they
both would eventually converge on a prey. In other simulations
where we authorized a behavioral asymmetry between partners,
individuals evolved a leader–follower strategy whereby a single
individual chose a prey, whereas the other simply followed her.

These coordination strategies evolved because they had im-
mediate individual benefits. They increased the probability for
individuals to hunt successfully. But they also had an unintended
evolutionary consequence. When individuals had the capacity to
coordinate with each other, a mutation affecting the behavior of
one individual also indirectly modified, phenotypically, the be-
havior of his/her partner, almost as if individuals had mutated
“collectively.” In quantitative genetics, such an effect is called an
“indirect genetic effect” (Wolf et al. 1998) because a gene affects
the phenotype of an individual in which it is not directly ex-
pressed. Indirect genetic effects are well known for changing the
evolutionary process in sometimes dramatic ways, by altering the
genotype-phenotype relationship. In the present case, behavioral
coordination tactics evolved to deal with the uncertainty of the
“normal” environment in which one’s partners only targeted sub-
optimal prey but the precise individual prey they were targeting
could vary, which required being able to follow them. However,
once evolved, coordination tactics also happened to work effi-
ciently when interacting with mutants who preferentially targeted
other types of prey. They led one to follow and coordinate with
mutants like they did with “normal” residents. Consequently, ge-
netic mutants that preferred targeting the most nutritious type of
prey were directly favored by individual selection because they
always had a resident who accepted to follow them since she
was indirectly influenced by their mutated gene. The suboptimal
coordination equilibrium was no longer an evolutionary trap. In
finding a solution to the “behavioral” coordination problem, indi-
viduals solved the “evolutionary” coordination problem as well.

Put another way, behavioral coordination strategies changed
the nature of the game. Individuals initially played a coordination
game in which two players needed to jointly evolve a compatible
preference. This raised a bootstrapping problem and made the
transition from one equilibrium to another unlikely. By evolving
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endogenously a coordination strategy, individuals turned this
game into a plain optimization game in which a single player
was simply selected to choose the best possible prey.

Beyond the particular setting considered in this paper, we
think these results reveal a general principle that could play a role
in all games with multiple equilibriums, that is, in all coordination
games, but also in repeated games such as the repeated prisoner’s
dilemma (see, for instance, Aumann and Shapley 1994; Boyd
2006). As a rule, there are many reasons why the behavior of one’s
partners will vary in all these games, making it necessary for one
to adapt plastically to this variability (Mcnamara et al. 2010). In
our simulations, for instance, individuals evolved a coordination
strategy to adapt to the precise location where their partner was
heading, but the same principle should hold in other settings as
well. Even though behavioral plasticity originally evolves merely
to deal with partners’ phenotypic variability, it also happens to
generate an adaptive response in front of mutants. These mutants
probably did not exist when behavioral plasticity evolved, but they
nevertheless happen to trigger the exact same response. And be-
cause this response was originally meant to maximize efficiency,
it is likely to do so with mutants, too, as our simulations illustrate.
Hence, there is a general reason why the plastic response of indi-
viduals to each other should often “change the rules of the game”
and smoothen the transition to efficient collective behaviors.

Methods
SIMULATION SETUP

The environment is a 800 by 800 unit arena with four solid walls.
Each simulation is conducted with a pair of hunters (the robotic
agents) and a varying number of prey of two types, boars and
stags with respective rewards 125 and 250 (Table 1). The initial
positions of the prey are random and the prey cannot move. To
capture a prey, the two hunters have to stay in contact with it
for 800 time steps (out of a total of 20, 000 time steps for each
simulation). Both robots have to be in contact with the prey at
the end of the 800 time steps for the hunt to be considered suc-
cessful. Once captured, the prey is removed and replaced at a
random position in the arena. In the “simple” environment condi-
tion, there is always exactly one boar and one stag present in the
environment. In the “complex” environment condition, there is
always nine prey of each type. Robots (that is, hunters) begin the
simulation next to each other at the top of the arena and can then
move freely in the environment. To do so, they are equipped with
a set of sensors and two independent wheels connected by a fully
connected multilayer perceptron. Sensors comprise 12 proximity
sensors and a camera. Proximity sensors are evenly distributed
around the robot’s body, and each has a range of 40 units. A
proximity sensor is a ray toward a particular direction indicating
to the robot the distance of the first obstacle in this direction.

The camera is placed on the front of the robot, and its 90� field
of view is divided into 12 equally spaced rays. Each ray of the
camera indicates the type (that is, hunter, boar, or stag) and the
proximity of the nearest agent in its direction. Robots are individ-
ually controlled by a fully connected multilayer perceptron with a
single hidden layer. The inputs of the neural network are fed with
the sensory data of the robot. One input neuron is used for each
of the 12 proximity sensors, with maximal (respectively minimal)
neural activity when the agent is directly in contact with an ob-
stacle (resp. when there is no obstacle in the range of the sensor).
Three neurons are used for each of the 12 rays of the camera: two
neurons to encode the type of obstacle in a two-bit binary value
and one neuron to encode the proximity of the obstacle. Finally,
there is a bias neuron whose value is always equal to one. The total
number of input neurons is 49. The hidden layer contains eight
neurons, while the output layer contains two neurons. These two
output neurons control the speed of the left and right wheels; min-
imal (respectively maximal) activity results in maximal backward
(respectively forward) actuation. The activation function used to
compute outputs is a sigmoid function. Connection weights are
each encoded in a single gene (the total genome size is 410).

SIMULATING ARTIFICIAL EVOLUTION

In each of the 30 independent replicates, we let a population of
20 individuals evolve. Each individual is encoded as a genome,
where each gene codes for a connection weight of the multilayer
perceptron controller. Every gene in the genome is first initialized
with a random value sampled uniformly in [0, 1]. In each genera-
tion, the performance of every individual is evaluated by matching
her with five different random partners. In turn, the performance
of each pair of partners is evaluated through five independent tri-
als. Hence, the fitness of every individual is computed in each
generation as an average across 25 independent trials. We then
apply a (10+ 10) elitist selection algorithm (Goldberg 1989).
That is, generationt + 1 is composed of the 10 best individuals
of generationt plus 10 mutants generated from a single parent of
generationt. Mutations are sampled according to a Gaussian op-
erator, with a SD of 2× 10Š1 and a per-gene mutation probability
of 5 × 10Š3.

DUPLICATION AND COEVOLUTION OF NEURAL

NETWORKS

To study the effect of an asymmetry between hunters, we allow
the duplication of neural networks. Every individual initially has
a single neural network but duplication and deletion events can
occur randomly (at the same moment of the life cycle than muta-
tion). When duplication occurs, each gene is duplicated to create
a new genome encoding for a second neural network that can then
evolve independently of the first. When deletion occurs, one of
the two neural networks of the individual is deleted randomly.
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Duplication occurs with a probability 5× 10Š2 and deletion with
a probability 5× 10Š3 per generation.

ANALYSES OF BOARÐHUNTER MUTANTS WITH

RESPECT TO STAG HUNTING

We generate 100, 000 random mutants from a well-optimized
boar–hunter genotype (with the same mutation parameters than
in our evolutionary simulations), and assess each mutant’s hunting
preferences. From these 100, 000 mutants, we extract 192 mutants
that displayed aP > 0.01 of hunting the stag. Figure 8 shows
the distribution of the preferences of these 192 mutants. Most
mutants have only a small probability to hunt stags. In particular,
not a single pure stag hunter can be found among the 100, 000
mutants.
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