S. S. Hur, Y. Zhao, Y. S. Li, E. Botvinick, and S. Chien, Live cells exert 3-dimensional traction forces on their substrata, Cell. Mol. Bioeng, vol.2, pp.425-436, 2009.

M. S. Hall, R. Long, C. Y. Hui, and M. Wu, Mapping three-dimensional stress and strain fields within a soft hydrogel using a fluorescence microscope, Biophys. J, vol.102, pp.2241-2250, 2012.

W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin et al., Measurement of mechanical tractions exerted by cells in three-dimensional matrices, Nat. Methods, vol.7, pp.969-971, 2010.

S. A. Maskarinec, C. Franck, D. A. Tirrell, and G. Ravichandran, Quantifying cellular traction forces in three dimensions, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.22108-22113, 2009.

R. Göstl, J. M. Clough, and R. P. Sijbesma, Optical sensing of stress in polymers, Mechanochemistry in, pp.53-70, 2017.

M. Zaghdoudi, P. Albouy, Z. Tourki, A. Vieyres, and P. Sotta, Relation between stress and segmental orientation during mechanical cycling of a natural rubber-based compound, J. Polym. Sci. B, vol.53, pp.943-950, 2015.

B. M. Rosen and V. Percec, A reaction to stress, Nature, vol.446, pp.381-382, 2007.

C. Weder, Polymers react to stress, Nature, vol.459, pp.45-46, 2009.

R. Göstl and R. Sijbesma, ?-extended anthracenes as sensitive probes for mechanical stress, Chem. Sci, vol.7, pp.370-375, 2016.

Y. Song, K. Lee, W. Hong, S. Cho, H. Yu et al., Fluorescence sensing of microcracks based on cycloreversion of a dimeric anthracene moiety, J. Mater. Chem, vol.22, pp.1380-1386, 2012.

Y. Chen, A. J. Spiering, S. Karthikeyan, G. W. Peters, E. W. Meijer et al., Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain, Nat. Chem, vol.4, pp.559-562, 2012.

Y. Chen, H. Zhang, X. Fang, Y. Lin, Y. Xu et al., Mechanical activation of mechanophore enhanced by strong hydrogen bonding interactions, ACS Macro Lett, vol.3, pp.141-145, 2014.

D. A. Davis, A. Hamilton, J. Yang, L. D. Cremar, D. Van-gough et al., Force-induced activation of covalent bonds in mechanoresponsive polymeric materials, Nature, vol.459, pp.68-72, 2009.

G. R. Gossweiler, G. B. Hewage, G. Soriano, Q. Wang, G. W. Welshofer et al., Mechanochemical activation of covalent bonds in polymers with full and repeatable macroscopic shape recovery, ACS Macro Lett, vol.3, pp.216-219, 2014.

K. Imato, T. Kanehara, T. Ohishi, M. Nishihara, H. Yajima et al., Mechanochromic dynamic covalent elastomers: Quantitative stress evaluation and autonomous recovery, ACS Macro Lett, vol.4, pp.1307-1311, 2015.

M. Li, Q. Zhang, and S. Zhu, Photo-inactive divinyl spiropyran mechanophore cross-linker for real-time stress sensing, Polymer, vol.99, pp.521-528, 2016.

G. O'bryan, B. M. Wong, and J. R. Mcelhanon, Stress sensing in polycaprolactone films via an embedded photochromic compound, ACS Appl. Mater. Interfaces, vol.2, pp.1594-1600, 2010.

T. Wang, N. Zhang, J. Dai, Z. Li, W. Bai et al., Novel reversible mechanochromic elastomer with high sensitivity: Bond scission and bending-induced multicolor switching, ACS Appl. Mater. Interfaces, vol.9, pp.11874-11881, 2017.

E. Ducrot, Y. Chen, M. Bulters, R. P. Sijbesma, and C. Creton, Toughening elastomers with sacrificial bonds and watching them break, Science, vol.344, pp.186-189, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01516045

J. M. Clough, C. Creton, S. L. Craig, and R. P. Sijbesma, Covalent bond scission in the mullins effect of a filled elastomer: Real-time visualization with mechanoluminescence, Adv. Funct. Mater, vol.26, pp.9063-9074, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01445990

G. R. Gossweiler, T. B. Kouznetsova, and S. L. Craig, Force-rate characterization of two spiropyran-based molecular force probes, J. Am. Chem. Soc, vol.137, pp.6148-6151, 2015.

B. A. Beiermann, D. A. Davis, S. L. Kramer, J. S. Moore, N. R. Sottos et al., Environmental effects on mechanochemical activation of spiropyran in linear PMMA, J. Mater. Chem, vol.21, pp.8443-8447, 2011.

B. A. Beiermann, S. L. Kramer, P. A. May, J. S. Moore, S. R. White et al., The effect of polymer chain alignment and relaxation on force-induced chemical reactions in an elastomer, Adv. Funct. Mater, vol.24, pp.1529-1537, 2014.

M. E. Grady, B. A. Beiermann, J. S. Moore, and N. R. Sottos, Shockwave loading of mechanochemically active polymer coatings, ACS Appl. Mater. Interfaces, vol.6, pp.5350-5355, 2014.

S. Jiang, L. Zhang, T. Xie, Y. Lin, H. Zhang et al., Mechanoresponsive PS-PnBA-PS triblock copolymers via covalently embedding mechanophore, ACS Macro Lett, vol.2, pp.705-709, 2013.

A. N. Celestine, B. A. Beiermann, P. A. May, J. S. Moore, N. R. Sottos et al., Fracture-induced activation in mechanophore-linked, rubber toughened PMMA, Polymer, vol.55, pp.4164-4171, 2014.

Z. Xia, V. D. Alphonse, D. B. Trigg, T. P. Harrigan, J. M. Paulson et al., Seeing' strain in soft materials, Molecules, vol.24, p.542, 2019.

E. Ducrot and C. Creton, Characterizing large strain elasticity of brittle elastomeric networks by embedding them in a soft extensible matrix, Adv. Funct. Mater, vol.26, pp.2482-2492, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01443797

P. Millereau, E. Ducrot, J. M. Clough, M. E. Wiseman, H. R. Brown et al., Mechanics of elastomeric molecular composites, Proc. Natl. Acad. Sci. U.S.A, vol.115, pp.9110-9115, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02074609

J. P. Gong, Why are double network hydrogels so tough?, Soft Matter, vol.6, pp.2583-2590, 2010.

T. Matsuda, T. Nakajima, Y. Fukuda, W. Hong, T. Sakai et al., Yielding criteria of double network hydrogels, Macromolecules, vol.49, pp.1865-1872, 2016.

S. Govindjee and J. Simo, Transition from micromechanics to computationally efficient phenomenology: Carbon black-filled rubbers incorporating mullins effect, J. Mech. Phys. Solids, vol.40, pp.213-233, 1992.

J. Schanda, UNDERSTANDING THE CIE SYSTEM Colorimetric fundamentals, pp.25-76, 2007.

R. S. Rivlin and A. G. Thomas, Rupture of rubber. I. Characteristic energy for tearing, J. Polym. Sci, vol.10, pp.291-318, 1953.

H. W. Greensmith, Rupture of rubber. X. The change in stored energy on making a small cut in a test piece held in simple extension, J. Appl. Polym. Sci, vol.7, pp.993-1002, 1963.

N. Otsu, A threshold selection method from Gray-Level histograms, IEEE Trans. Syst. Man Cybern, vol.9, pp.62-66, 1979.

C. Creton and M. Ciccotti, Fracture and adhesion of soft materials: A review, Rep. Prog. Phys, vol.79, p.46601, 2016.

X. Zhao, Multi-scale multi-mechanism design of tough hydrogels: Building dissipation into stretchy networks, Soft Matter, vol.10, pp.672-687, 2014.

R. W. Ogden, Large deformation isotropic elasticity: On the correlation of theory and experiment for incompressible rubberlike solids, Proc. R. Soc. Lond. A Math. Phys. Sci, vol.326, pp.565-584, 1972.

S. S. Sheiko and A. V. Dobrynin, Architectural code for rubber elasticity: From supersoft to superfirm materials, Macromolecules, vol.52, pp.7531-7546, 2019.

G. A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineering, 2000.

S. R. Lavoie, P. Millereau, C. Creton, R. Long, and T. Tang, A continuum model for progressive damage in tough multinetwork elastomers, J. Mech. Phys. Solids, vol.125, pp.523-549, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02074568

M. Bacca, C. Creton, and R. M. Mcmeeking, A model for the Mullins effect in multinetwork elastomers, J. Appl. Mech, vol.84, p.121009, 2017.

R. Sijbesma, H. R. Brown, H. Y. Zhang, Y. C. C-;-c, and C. J. , The samples were synthesized by Y.C. The mechanical testing and optical analysis were done by Y.C. and C.J.Y. The FEM simulations were carried out by Y.Q. and designed by Y.Q. and R.L. The data were analyzed by all authors, and the paper was written mainly by, Acknowledgments: We gratefully acknowledge helpful discussions with

Y. Chen, C. J. Yeh, and Y. Qi, From force-responsive molecules to quantifying and mapping stresses in soft materials, p.5093
URL : https://hal.archives-ouvertes.fr/hal-02648546

, Sci Adv REFERENCES

, This article cites 40 articles, 3 of which you can access for free