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Abstract. Our aim in this article is to study properties of a generalized dy-

namical system modeling brain lactate kinetics, with N neuron compartments

and A astrocyte compartments. In particular, we prove the uniqueness of the
stationary point and its asymptotic stability. Furthermore, we check that the

system is positive and cooperative.

1. Introduction. The system of ODE’s

dx

dt
= J − T (

x

k + x
− y

k′ + y
), T, k, k′, J > 0,

ε
dy

dt
= F (L− y)− T (

y

k′ + y
− x

k + x
), ε, F, L > 0,

(1)

where ε is a small parameter, was proposed and studied as a model for brain lactate
kinetics (see [3, 6, 7, 8]). In this context, x = x(t) and y = y(t) correspond to
the lactate concentrations in an interstitial (i.e., extra-cellular) domain and in a
capillary domain, respectively. Furthermore, the nonlinear term T ( x

k+x −
y

k′+y )

stands for a co-transport through the brain-blood boundary (see [5]). Finally, J
and F are forcing and input terms, respectively, assumed frozen. The model has
a unique stationary point which is asymptotically stable. Recently, in [10, 4], a
PDE’s system obtained by adding diffusion of lactate was introduced. The authors
proved existence and uniqueneness of nonnegative solutions and obtained linear
stability results. A more general ODE’s model for brain lactate kinetics, where the
intracellular compartment splits into neuron and astrocyte, was considered in [6, 7].
It displays
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dx

dt
= J0 + T1(− x

k + x
+

u

kn + u
) + T2(− x

k + x
+

v

ka + v
)− T (

x

k + x
− y

k′ + y
)

du

dt
= J1 − T1(− x

k + x
+

u

kn + u
)

dv

dt
= J2 − T2(− x

k + x
+

v

ka + v
)− Ta(

v

ka + v
− y

k′ + y
)

ε
dy

dt
= F (L− y) + T (

x

k + x
− y

k′ + y
) + Ta(

v

ka + v
− y

k′ + y
)

(2)
where all the constants are nonnegative. It also includes transports through cell
membranes and a direct transport from capillary to intracellular astrocyte. It was
proved in [6, 7] that this 4-dimensional system displays a unique stationary point but
its nature was left open. The stability of the unique stationary point is an important
issue as it relates with therapeutic protocols developped in the references [6, 7].
Another important issue is the boundedness of the lactate concentrations related
with the viability domain (cf. [6, 7]). We can in fact consider a natural extension
of this system into a more general N + A+ 2 system. For this generalized system,
we prove both uniqueness and asymptotic stability of the stationary point. In this
article we do not consider fast-slow limits and absorb ε in the parameters.

2. Extension to N neuron compartments and A astrocyte compartments.

2.1. Introduction of the system and its positivity. Let us consider a dynami-
cal system equipped with forcing terms Ji > 0, i = 0, 1, . . . , N +A, and input F > 0
and all parameters C,Cn, Da, Ea > 0 with n ∈ {1, . . . , N}, a ∈ {1, . . . , A} :

dx

dt
= J0 +

N∑
n=1

Cn(
un

kn + un
− x

k + x
) +

A∑
a=1

Da(
va

kN+a + va
− x

k + x
)

−C(
x

k + x
− y

k′ + y
)

du1

dt
= J1 − C1(

u1

kn1 + u1
− x

k + x
)

...
duN
dt

= JN − CN (
uN

knN + uN
− x

k + x
)

dv1

dt
= JN+1 −D1(

v1

ka1 + v1
− x

k + x
)− E1(

v1

ka1 + v1
− y

k′ + y
)

...
dvA
dt

= JN+A −DA(
vA

kaA + vA
− x

k + x
)− EA(

vA
kaA + vA

− y

k′ + y
)

dy

dt
= F (L− y) + C(

x

k + x
− y

k′ + y
) +

A∑
a=1

Ea(
va

kaa + va
− y

k′ + y
).

(3)

For N = A = 1, this system coincides with the 4-dimensional system consid-
ered in ([6, 7]). It can be considered as a model of brain lactate kinetics with
co-transports (intracellular-extracellular) through the N neuron membranes and
(intracellular-extracellular) through the astrocytes membranes and direct crossing
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(intracellular-capillary) from astrocyte to capillary. Variable x stands for the extra-
cellular concentration. Variables un, n = 1, . . . , N stand for the intracellular concen-
tration inside neurons. Variables va, a = 1, . . . , A represent the intracellular concen-
tration in astrocytes. Variable y represents the concentration in capillary. For con-
venience, we denote as W the set of variables W = (x, un, va, y) ∈ Rd, d = N+A+2.

Recall that an autonomous continuous dynamical system associated with a vector
field:

dWi

dt
= fi(W ), i = 1, . . . , d (4)

is said to be positive if and only if: ∀i ∈ 1, . . . , d

Ẇi = fi(W1 ≥ 0, . . . ,Wi = 0, . . . ,Wd ≥ 0) ≥ 0 (5)

It is easy to check that the vector field defined by system (3) is positive. The
geometrical meaning of this property is that the flow of the vector field can be
restricted to the convex set Ω = Rd

+.

2.2. Uniqueness of the stationary point.

Theorem 2.1. The system (3) displays a unique stationary point denoted as s∗.

Proof. The equations for finding a stationary point yield:

0 = J0 +
N∑

n=1
Cn( un

knn+un
− x

x+k ) +
A∑

a=1
Da( va

kaa+va
− x

x+k )− C( x
k+x −

y
k′+y )

0 = J1 − C1( u1

kn1+u1
− x

x+k )
...

0 = Jn − Cn( un

knn+un
− x

x+k )
...

0 = JN − CN ( uN

knN+uN
− x

x+k )

0 = JN+1 −D1( v1
ka1+v1

− x
x+k )− E1( v1

ka1+v1
− y

k′+y )
...

0 = JN+a −Da( va
kaa+va

− x
x+k )− Ea( va

kaa+va
− y

k′+y )
...

0 = JN+A −DA( va
kaA+vA

− x
x+k )− EA( vA

kaA+vA
− y

k′+y )

0 = F (L− y) + C( x
k+x −

y
k′+y ) +

A∑
a=1

Ea( va
kaa+va

− y
k′+y )

(6)

Consider the following change of variable:

X =
x

k + x
, Y =

y

k′ + y
, Un =

un
knn + un

, Va =
va

kaa + va
(7)

for n ∈ {1, . . . , N} and a ∈ {1, . . . , A}. So we can write the system in a matrix
equation:

Ms = b (8)

where M ∈ Rd×d displays:
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M =



C1

. . .

CN

0
−C1

...
−CN

0

0
D1 + E1

. . .

DA + EA

−D1

...
−DA

−E1

...
−EA

−C1 . . . −CN −D1 . . . −DA

N∑
n=1

Cn +
A∑

a=1
Da + C −C

0 −E1 . . . −EA −C
A∑

a=1
Ea + C



s =



U1

...
UN

V1

...
VA
X
Y


∈ Rd b =



J1

...
JN
JN+1

...
JN+A

J0

F (L− y)


∈ Rd

After summing up the d equations, this yields:

y = y∗ = L+
J0 + J1 + · · ·+ JN+A

F
. (9)

So we have a unique solution for y. In this case we can reduce equation (8) into a
new matrix equation of dimension d− 1 denoted:

M ′s′ = b′ (10)

where

M ′ =



C1

. . .

CN

0
−C1

...
−CN

0
D1 + E1

. . .

DA + EA

−D1

...
−DA

−C1 . . . −CN −D1 . . . −DA

N∑
n=1

Cn +
A∑

a=1
Da + C



s′ =



U1

...
UN

V1

...
VA
X


∈ Rd−1 b′ =



J1

...
JN

JN+1 + E1
y∗

k′+y∗

...

JN+A + EA
y∗

k′+y∗

J0 + Cy∗


∈ Rd−1

We can write a block decomposition of the matrix M ′ as follows:
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M ′ =

(
M1 M2

M3 M4

)
so

M1 =



C1

. . .

CN

0

0

D1 + E1

. . .

DA + EA


∈ R(d−2)×(d−2)

M2 =
(
−C1 . . . −CN −D1 · · · −DA

)T ∈ R(d−2)×1

M3 =
(
−C1 . . . −CN −D1 · · · −DA

)
∈ R1×(d−2)

M4 =

N∑
n=1

Cn +

A∑
a=1

Da + C ∈ R

As M1 is an invertible square matrix, we can write:

det(M ′) = det

(
M1 M2

M3 M4

)
= det(M1) det(M4 −M3M1

−1M2).

The determinant of M1 writes det(M1) =
N∏

n=1
Cn

A∏
a=1

(Da + Ea) > 0 .

Direct computation of the Matrix (M4 −M3M1
−1M2), which is a real number,

yields:

det(M4 −M3M1
−1M2) =

N∑
n=1

Cn +

A∑
a=1

Da + C − (

N∑
n=1

Cn +

A∑
a=1

Da
2

(Da + Ea)
)

=

A∑
a=1

Da + C −
A∑

a=1

Da
2

(Da + Ea)

=

A∑
a=1

Da(1− Da
2

Da + Ea
) + C

=

A∑
a=1

DaEa

Da + Ea
+ C > 0.

Computation yields det(M ′) 6= 0 and the equation (10) displays a unique solution s′

which is as s′ = M ′−1b′. With the change of variable (7), there is a unique solution
for system (6) denoted as s′′:

s′′ = (x∗, u∗1, · · · , u∗N , v∗1 , · · · , v∗A).

This proves the uniqueness of the stationary point s∗ = (s′′, y∗) of system (3).
In the next subsection, we discuss the positivity of this stationary point.
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2.3. Conditions for the positivity of the stationary point. The stationary
point s∗ = (s′′, y∗) does not belong necessarily to Rd

+ as it was observed already
for the 2-dimensional system in [6, 3]. Following the notations of equation (1), the
stationary point belongs to R2

+ if and only if:

T > J [1 +
1

k′
(L+

J

F
)]. (11)

Similar explicit conditions can be given for the 4-dimensional system as shown in
[6, 7]. In any dimension d, even if these conditions are not easily obtained explicitly,
they read, with vector e = (1, 1, ..1), 0 ≤M ′−1b′ ≤ e.

3. Asymptotic stability of the stationary point, cooperative dynamics
and boundedness. It is useful to introduce some more notations and definitions.

Definition 3.1. Let A and B be two d× d matrices, we denote:
A� B ⇐⇒ aij > bij for all i,j ∈ {1, . . . , n},
A > B ⇐⇒ aij ≥ bij for all i,j ∈ {1, . . . , n} and A 6= B,
A ≥ B ⇐⇒ aij ≥ bij for all i,j ∈ {1, . . . , n}.

Definition 3.2. Given a d × d matrix, the spectral radius of A, denoted by ρ(A)
is: ρ(A):=max{|λ| : λ ∈ σ(A)} where σ(A) is the set of all eigenvalues (spectrum)
of the matrix A.

Definition 3.3. Given a d× d matrix, the spectral abscissa of A denoted by µ(A)
is: µ(A):=max{Re(λ) : λ ∈ σ(A)}

Definition 3.4. A Matrix A is said to be reducible when there exists a permutation
matrix P such that

PTAP =

(
X Y
0 Z

)
where X and Z are both square matrices.

In other terms, a matrix A is irreducible if and only if it is not equivalent to a
block upper triangular matrix by permutations of row and columns.

Definition 3.5. The graph of a d × d matrix A denoted by G(A) is the directed
graph on d nodes {N1, N2, . . . , Nd}, in which there is a directed edge leading from
Ni to Nj if and only if aij 6= 0.

The graph G(A) is said strongly connected if for each pair of nodes (Ni, Nj),
there is a sequence of directed edges leading from Ni to Nj , where i, j ∈ {1, . . . , d}.

Recall that A is an irreducible matrix if and only if its graph is strongly connected
(cf. [9]).

We compute the Jacobian matrix of the vector field (3):
JF =


−(
N∑
n=1

Cn +
A∑

a=1
Da + C)

k

(x + k)2
C1

kn1

(u1 + kn1)2
. . . CN

knN

(uN + knN)2
D1

ka1
(v1 + ka1)2

. . . DA
kaA

(vA + kaA)2
C

k′

(y + k′)2

C1
k

(x + k)2
−C1

kn1

(u1 + kn1)2
... . . .

CN
k

(x + k)2
−CN

knN

(uN + knN)2

D1
k

(x + k)2
−(D1 + E1)

ka1
(v1 + ka1)2

E1
k′

(y + k′)2
... . . . ...

DA
k

(x + k)2
−(DA + EA)

kaA
(vA + kaA)2

EA
k′

(y + k′)2

C
k

(x + k)2
E1

ka1
(v1 + ka1)2

. . . EA
kaA

(vA + kaA)2
−F − (C +

A∑
a=1

Ea)
k′

(y + k′)2


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Denote J0 the Jacobian matrix JF for the input F = 0. All off-diagonal elements
of the matrix JF (and of J0) are nonnegative. Following [12], such matrices are
called Metzler matrices.

Let us recall the theorem due to Hal.L. Smith which applies to the Metzler
matrices:

Theorem 3.6 (Smith[12]). Let A ∈ Rd×d be a Metzler matrix, then µ(A) is an
eigenvalue of A and there is a corresponding eigenvector v > 0. Moreover Re(λ) <
µ(A) for all other eigenvalue of A.

In addition, if A is irreducible then:
i): µ(A) is an algebraically simple eigenvalue of A;
ii): v � 0 and any eigenvector w > 0 of A is a positive multiple of v;
iii): If B is a matrix satisfying B > A, then µ(B) > µ(A).

We now prove the following theorem:

Theorem 3.7. The stationary point of system (3) is asymptotically stable.

Proof. As we can see, there are no zero elements at the first row and the first column
in matrix JF (and J0). This means that in the graph associated to the matrix, there
is a sequence of directed edges leading from Ni to Nj for all i, j ∈ (1, 2..., d). Hence,
G(JF ) is strongly connected, so JF (and J0) is an irreducible matrix. Note that the
strictly positive vector w ∈ Rd:

w =
( (x+ k)2

k
,

(u1 + kn1)2

kn1
, · · · , (uN + knN )2

knN
,

(v1 + ka1)2

ka1
, · · ·

· · · , (vA + kaA)2

kaA
,

(y + k′)2

k′

)T (12)

solves J0w = 0.
By (ii) in theorem (3.6), the vector w is necessarily proportional to the positive

eigenvector v which corresponds to the spectral abscissa. Hence, we obtain that
µ(J0) = 0.

By (iii) in theorem (3.6), µ(JF ) < µ(J0) = 0.
This shows that all the real parts of eigenvalues of the Jacobian matrix JF are

negative, which means that the stationary point of system (3) is asymptotically
stable.

Recall now the following

Definition 3.8. A continuous dynamical system defined on the convex set Ω = Rd
+

by the equations:
dXi

dt
= fi(X), i = 1, ..., d (13)

is said to be cooperative if the Jacobian matrix
∂fi
∂Xj

(X, t) is a Metzler matrix.

In particular the d-dimensional system (3) is cooperative. Such a cooperative
system displays the so-called Kamke property (consequence of the fundamental
theorem of differential calculus):

Proposition 1. Given a continuous dynamical system defined on the convex set
Ω = Rd

+ by the equations:

dXi

dt
= fi(X), i = 1, ..., d (14)
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for any pair of points b ≥ a ∈ Ω, then f(b) ≥ f(a).

Proposition 2. Given a continuous dynamical system defined on the convex set
Ω = Rd

+ which displays the Kamke property and two points x0 and y0 in Ω so that
x0 ≤ y0, then if the solutions φt(x0) and φt(y0) (φt is the flow at time t of the
vector field) are defined then φt(x0) ≤ φt(y0).

Such tools are useful to discuss the other important issue of boundedness of the
lactate concentrations in relation with the viability domain (cf.[3, 6, 7, 8]).

Consider first the reduced 2-dimensional system. Assume that the condition
T > J [1 + 1

k′ (L + J
F )] is not fullfilled. The domain Ω is invariant by the positive

flow. Consider any initial point x0 in Ω and assume that the closure of its orbit
is contained in a compact set. Consider its ω limit set ω(x0). By the Poincaré-
Bendixson theorem it is either a stationary point, a periodic orbit or a polycyle
(union of stationary point connected by heteroclinic connexions). All these cases
are ruled out by the fact that the system does not display a stationary point inside
the domain Ω. This shows that there is no bounded orbit inside the domain.

Consider now the d-dimensional system which distinguishes the neuron and as-
trocyte compartments. Assume that the positivity conditions for the unique station-
ary point are fullfilled. Then in that case, the basin of attraction of the stationary
point provides a positive invariant set of non-empty interior of solutions which are
bounded and positive. Although it is not easy to proceed with explicit computations
and we focus on the case d = 4.

Theorem 3.9. There is a non-empty set of entries (J0, J1, J2, L, F ) so that the
system (2) displays a full open set of solutions which are positive and bounded.

Proof. It is enough to check that there are conditions on the entries so that the
system (2) displays a positive stationary point. This yields:

x∗ =

k
(
Ta(J0 + J1) + T2(J0 + J1 + J2) + (TT2 + TTa + T2Ta)

y∗

k′ + y∗
)

−Ta(J0 + J1)− T2(J0 + J1 + J2) + (TT2 + TTa + T2Ta)
k′

k′ + y∗

,

u∗ =

kn
(J1

T1
+
Ta(J0 + J1) + T2(J0 + J1 + J2)

TT2 + TTa + T2Ta
+

y∗

k′ + y∗
)

1−
(J1

T1
+
Ta(J0 + J1) + T2(J0 + J1 + J2)

TT2 + TTa + T2Ta
+

y∗

k′ + y∗
) ,

v∗ =

ka
(
TJ2 + T2(J0 + J1 + J2) + (TT2 + TTa + T2Ta)

y∗

k′ + y∗
)

−TJ2 − T2(J0 + J1 + J2) + (TT2 + TTa + T2Ta)
k′

k′ + y∗

,

y∗ = L+
J0 + J1 + J2

F
.

(15)

Note that, for instance in the limit where J = (J0, J1, J2) = O(η) is small, then
y∗ = L

k′+L +O(η) and we check that the other coordinates are also positive.
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4. Remarks and perspectives. 1- A natural question (for instance for the 4-
dimensional system) is whether the conditions on the non-existence of stationary
point inside the domain Ω implies that there is no bounded positive solutions.

2- There is a non-autonomous version of the Brain Lactate Dynamics for which
the entries J(t) and the forcing term F (t) are time dependent. Further studies on
the cooperative nature of these dynamics will be developed.

3- It should be interesting to analyse the reaction-diffusion PDE system obtained
by adding diffusion to the 4-dimensional system (2) from the viewpoint of cooper-
ative systems.
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