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Abstract. We study the combinatorial structure of concurrent pro-
grams with non-deterministic choice and a fork-join style of coordination.
As a first step we establish a link between these concurrent programs and
a class of combinatorial structures. Based on this combinatorial interpre-
tation, we develop and experiment algorithms aimed at the statistical
exploration of the state-space of programs. The first algorithm is a uni-
form random sampler of bounded executions, providing a suitable default
exploration strategy. The second algorithm is a random sampler of exe-
cution prefixes that allows to control the exploration with respect to the
uniform distribution. The fundamental characteristic of these algorithms
is that they work on the control graph of the programs and not directly
on their state-space, thus providing a way to tackle the state explosion
problem.

Keywords: Concurrency · Non-Determinism · Fork-Join Processes ·
Loops · Combinatorics · Uniform Random Generation

1 Introduction

Analyzing the state-space of concurrent programs is a notoriously difficult task,
if only because of the infamous state explosion problem. Several techniques have
been developed to “fight” this explosion: symbolic encoding of the state-space,
partial order reductions, exploiting symmetries, etc. An alternative approach
is to adopt a probabilistic point of view, for example by developing statistical
analysis techniques such as [14]. The basic idea is to generate random executions
from program descriptions, sacrificing exhaustiveness for the sake of tractabil-
ity. However, there is an important difference between generating an arbitrary
execution and generating a random execution according to a known (typically
the uniform) distribution. Only the latter allows to estimate the coverage of the
state-space of a given analysis.

As a preliminary, we have to find suitable combinatorial interpretations for
the fundamental constructions of concurrent programs. In this paper, we study

? This research was partially supported by the ANR MetACOnc project ANR-15-
CE40-0014.



2 Antoine Genitrini, Martin Pépin, and Frédéric Peschanski

a class of programs that uses a fork-join model of synchronization, together with
loops and a choice construct for non-determinism. This is a simple formalism
but it is non-trivial in terms of the concurrency features it provides. Most im-
portantly, the underlying combinatorial interpretation is already quite involved.
In previous work we studied the combinatorial interpretation of three fundamen-
tal aspects of concurrency: parallelism (as interleaving) interpreted as (strictly)
increasing labelled structures [8], non-determinism as partial labelling [7] and
synchronization as non-strict labelling [9]. In this paper, we integrate these vari-
ous interpretations into a single unified combinatorial specification based on the
symbolic method of [2]. The main interest of this specification of process behav-
iors is that we can then obtain, in a systematic way, the generating function for
the possible executions of a given program. Because we only study finite objects,
the executions are considered of bounded length. At the theoretical level, this is
often a suitable starting point for the study of a quantitative problem in analytic
combinatorics (cf. e.g. [8]). At a more practical level, the combinatorial speci-
fication is also a good source of algorithmic investigations, which is our main
concern in the present paper.

The first problem we study is that of counting the number of executions
(of bounded length) of the programs. This is the problem one has to tackle to
precisely quantify the so-called state “explosion”, and it is also an important
building block of our algorithmic toolbox. Unfortunately, counting executions of
concurrent programs is in fact hard in the general case. We show in [9] that even
for simple programs only allowing barrier synchronization, counting executions
is a ]P -complete problem1. Fork-join parallelism enables a good balance between
tractability and expressivity by enforcing some structure in the state-space. A
second problem is caused by non-determinism because for each non-deterministic
choice we have to select a unique branch of execution. Moreover, choices can be
nested so that the number of possibilities can grow exponentially. Relying on an
efficient encoding of the state-space as generating functions, we manage to count
executions without expanding the choices. Of course counting executions has no
direct practical application, but it is an essential requirement for two comple-
mentary and more interesting analysis techniques. First, we develop an efficient
algorithm to generate executions of a given process uniformly at random, for
a given bounded execution length. Without prior knowledge of the state-space,
the uniform distribution yields the best coverage, with the best diversity of out-
puts. The second algorithm generates random prefixes, which allows the user to
introduce some bias in the statistical exploration strategy, e.g. towards regions
of interest of the state-space, while still giving a good coverage and most impor-
tantly still giving control over the distribution. A fundamental characteristics of
these algorithms is that they work on the syntactic representation of the program
and do not require the explicit construction of the state-space, hence enabling
the analysis of systems of a rather large size.

1 A function f is in ]P if there is a polynomial-time non-deterministic Turing ma-
chine M such that for any instance x, f(x) is the number of executions of M that
accept x as input [23].
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The outline of the paper is as follows. In Section 2 we present the program
class of non-deterministic fork-join programs, as well as its combinatorial inter-
pretation. In Section 3 we present in details the two random sampling algorithms
discussed above. Finally, Section 4 provides a preliminary experimental study of
the algorithms2.

Related work Our study combines viewpoints and techniques from concur-
rency theory and combinatorics. A similar line of work exists for the so-called
“true concurrency” model (by opposition to the interleaving semantics that
we use in our study) based on the trace monoid using heaps combinatorics
(see [18,1]). To our knowledge these only address the parallelism issue and not
non-determinism per se. In [3], the authors cover the problem of the uniform
random generation of words in a class of synchronised automata. This approach
is able to cover a slightly more expressive set of programs but this comes at the
cost of the construction of a product (synchronizing) automaton of exponential
size in the worst case. Another approach, investigated in the context of Monte-
Carlo model-checking, is based on the combinatorics of lassos, which relates to
the verification of some temporal-logic properties over potentially infinite execu-
tions. In [15], the authors of this method highlight the importance of uniformity.
Later [21] gives a uniform random sampler of lassos, however relying on the
costly explicit construction of the whole state-space, hence unpractical for even
small processes. Finally [10] studies the random generation of executions in a
model similar to the one we cover by extending the framework of Boltzmann
sampling. Although Boltzmann samplers are usually fast, they turn out to be
impractical in this context because of the heavy symbolic computations imposed
by the interplay between parallelism and synchronisation.

If compared to [7], which discusses non-determinism without synchroniza-
tion, we adopt in the present paper a more direct and simpler encoding of non-
deterministic choices, which significantly improves both the theoretical and prac-
tical developments. The algorithms presented in the paper are in consequence
much more efficient in practice, while covering a more expressive language.

2 Non-deterministic fork-join programs with loops

We introduce in this section a simple class of concurrent programs featuring
a fork-join programming style with non-deterministic choices and loops. The
interest is twofold. First it showcases non-determinism in interaction with a
non-trivial programming model, which gives insights about its quantitative and
algorithmic aspects. Second the language supports a simple model of iteration,
for which we give a combinatorial interpretation. In terms of expressivity, this
is an important step forward compared to our previous work (see [8,7,5] for
instance). Throughout the paper we will refer to this class as the class of non-
deterministic fork-join programs.

2 An implementation of our algorithms and all the scripts used for the experiments
can be found on the companion repository at https://gitlab.com/ParComb/libnfj.

https://gitlab.com/ParComb/libnfj
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2.1 Syntax

Definition 1 (Non-deterministic fork-join programs). Given a set of sym-
bols A representing the “atomic actions” of the language, the class of non-
deterministic fork-join programs (over this set A), denoted NFJ, is defined as
follows:

P,Q ::= P ‖ Q (parallel composition (or fork))
| P ;Q (sequential composition (or join))
| P + Q (non-deterministic choice)
| P ? (loop)
| a ∈ A (atomic action)
| 0 (empty program, noop).

Informally, the first two constructions form the fork-join “core” of the lan-
guage: P ‖ Q expresses the fact that P is run in parallel with Q and P ;Q means
that P must terminate before Q starts. In a; (b ‖ (c; d)); e, the program starts
by firing a, then it forks two processes b and c; d which run in parallel and when
they terminate e is run, which is called a “join”. The third construction P +Q
expresses a choice: either P or Q is executed but not both. This can model an
“internal” choice of the system such as a random event, a system failure etc, or an
“external” choice, that is a choice depending on a user input3. Finally, the con-
struction P ? expresses loops that can have any (finite) number of iterations. For
instance (a; (b ‖ c))? can be unrolled at runtime to 0 (zero iteration), a; (b ‖ c)
(one iterations), a; (b ‖ c); a; (b ‖ c) (two iterations), etc.

It is important to mention now that the nature of the atomic actions will
remain abstract in the present work, we treat them as black boxes and will
consider that the different occurrences of an action across a term are distinct.
These are sometimes referred to as events in the literature. Our focus is set
on the order in which these actions can be fired and scheduled by the different
operators of the language. In all our examples we use a different lowercase roman
letters as a unique identifiers to help distinguishing between each action.

This simple model is expressive enough to write simple programs in the fork-
join style. Moreover, the four combinators present in the grammar above can
be modelled and well-understood using the tools from analytic combinatorics,
which is at the core of our random sampling procedures in Section 3.

2.2 Semantics

We give NFJ an operational semantics in the style of [17]. We define a “reduc-

tion” relation P
a→ P ′ between two programs and an atomic action, it reads

“program P reduces to P ′ by firing action a”. The idea behind the rules is
explained just below.

3 Since we do not interpret the action symbols, no distinction is possible in the provided
semantics between a choice being triggered internally or externally.
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P
a→ P ′

P ‖ Q a→ P ′ ‖ Q
(Lpar)

Q
a→ Q′

P ‖ Q a→ P ‖ Q′
(Rpar)

P
a→ P ′

P ;Q
a→ P ′;Q

(Lseq)

nullable(P ) Q
a→ Q′

P ;Q
a→ Q′

(Rseq)
P

a→ P ′

P + Q
a→ P ′

(Lchoice)
Q

a→ Q′

P + Q
a→ Q′

(Rchoice)

a
a→ 0

(act)
P

a→ P ′

P ? a→ P ′;P ?
(loop)

The nullable predicate, defined just below, tells whether a program can ter-
minate without firing any action.

nullable(P ‖ Q) = nullable(P ) ∧ nullable(Q)

nullable(P ;Q) = nullable(P ) ∧ nullable(Q)

nullable(P + Q) = nullable(P ) ∨ nullable(Q)

nullable(0) = >
nullable(a) = ⊥
nullable(P ?) = >

The rules for the parallel composition (Lpar and Rpar) express the interleav-
ing semantics of the language: if an action can be fired in any of P or Q, then it
can be fired in P ‖ Q and the term is rewritten. By iterating these two rules, we
can obtain any interleaving of an execution of P and an execution of Q. Sequen-
tial composition is more asymmetric. The Lseq rule is similar to Lpar but Rseq
captures the synchronisation: an execution can be fired on the right-hand-side
only if the left-hand-side is ready to terminate (expressed by nullable(P )), in
which case it is erased. The choice rules Lchoice and Rchoice allow actions to
be fired from both sides but once we have made the choice of the branch, it
is made definitive by erasing the other branch. Finally the loop P ? can be un-
rolled any number of times, which is expressed by giving P ? the same semantics
as 0 + (P ;P ?). The fact that nullableP ? holds expresses that the loop can be
unrolled zero times, and thus behave as the 0 program.

We call “execution step” a proof-tree built from the above rules (and not
simply its conclusion) and we define an execution as a sequence of such steps
leading to a nullable term.

Definition 2 (Execution). An execution of an NFJ program P0 is a sequence

of steps of the form P0
a1⇒ P1

a2⇒ P2 . . .
an⇒ Pn, such that nullable(Pn) holds, and

where for all i, Pi−1
ai⇒ Pi is a proof-tree ending on the conclusion Pi−1

ai→ Pi.
We refer to the set of all possible executions of a program as its state-space.

Remark 1 (on equality). We purposely based our notion of execution on the

proof-trees rather than simply on the relation P
a→ P ′ to capture the choices

hidden inside these steps. For instance there are two distinct executions depicted
by a??

a⇒ (0; a? ; a??)
a⇒ (0; a? ; a??). One corresponds to the case where the



6 Antoine Genitrini, Martin Pépin, and Frédéric Peschanski

outer loop is only unrolled once (i.e. the (loop) rule is applied once) but the inner
loop twice. The other corresponds to the case where the outer loop is unrolled
twice and the two occurrences of the inner loop once. The reason behind this
choice is that we focus on the control-flow of programs here rather than the
actual content of the atomic actions.

We will take the following program as a running example for the rest of
the paper: P0 = ((a+ (b ‖ c))? ‖ (d+ 0))

?
; (e+ (f ‖ g)). This program has one

length-1 execution, with the following proof tree:

nullable(((a+ (b ‖ c))? ‖ (d+ 0))
?
)

e
e→ 0

(act)

e+ (f ‖ g)
e→ 0

(Lchoice)

P0
e→ 0

(Rseq)

There are also four length-2 executions, as follows4:

– P0
f⇒ (0 ‖ g)

g⇒ 0 ‖ 0

– P0
g⇒ (f ‖ 0)

f⇒ 0 ‖ 0

– P0
a⇒ ((0; (a+ (b ‖ c))?) ‖ (d+ 0)); ((a+ (b ‖ c))? ‖ (d+ 0))

?
; (e+ (f ‖ g))

e⇒ 0

– P0
d⇒ ((a+ (b ‖ c))? ‖ 0); ((a+ (b ‖ c))? ‖ (d+ 0))

?
; (e+ (f ‖ g))

e⇒ 0.

2.3 Combinatorial interpretation

We now give an interpretation of the executions of an NFJ program as combi-
natorial objects, which will open us the toolbox of analytic combinatorics for
the rest of the paper. We model the set of the executions of a program as a
combinatorial class using the formalism from [12], which we recall here. A com-
binatorial class is a potentially infinite set of objects where each object has been
given a (finite) size and in which there is only a finite number of objects of each
size. In our case, the combinatorial class of interest is the set of finite executions
of a given program and the size of an execution is its length i.e. its number of
reduction steps.

The combinatorial class S(P ) modelling the executions of P is inductively
defined in Table 1. The explanations for the combinatorial constructions are
given bellow.

The empty program 0 and the atomic action a have only one execution, of
length 0 and 1 respectively. This is modelled combinatorially by the neutral
class E : the class containing only one element of size 0, and the atom class Z:
the class with only one element of size 1.

4 In general, the notation P
a⇒ P ′ is ambiguous since there may be several different

proof-trees with the same conclusion P
a→ P ′. An example of this is given in Re-

mark 1. For the sake of simplicity and in order to keep the notations light, in the
examples given here, each step P

a⇒ P ′ identifies only one possible proof-tree.
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Table 1. Recursive rules for the computation of the generating function of executions
of an NFJ program.

Construction Specification

P S(P )

0 E
a Z
P ‖ Q S(P ) ? S(Q)
P ;Q S(P )× S(Q)
P + Q when nullable(P ) ∧ nullable(Q) S(P ) + (S(Q) \ E)
P + Q otherwise S(P ) + S(Q)
P ? when nullable(P ) Seq(S(P ) \ E)
P ? otherwise Seq(S(P ))

The first interesting case is the parallel composition: the executions of P ‖ Q
are made of any interleaving of one execution of P and one execution of Q. For
instance if P = a+ (b; c) and Q = d? , then P admits for instance an execution
firing b and then c (denoted by bc for short) and Q admits an execution firing
two ds (denoted by dd for short). Then all the 6 possible interleavings of these
executions are executions of P ‖ Q: bcdd, bdcd, bddc, dbcd, dbdc and ddbc (again,
we only denote the executions by their firing sequences for conciseness). The
labelled product5of combinatorics expresses exactly this and is denoted using
the ? symbol. The executions of P ;Q are given by an execution of P followed
by an execution of Q. So for instance, using the same example programs P
and Q as above, bcdd is an execution of (P ;Q) but not dbcd. So they can be
seen as a pair of an execution of P and an execution of Q which is naturally
modelled using the Cartesian product. The set of executions of P + Q is the
union of the executions of P and Q. Moreover this union is “almost” disjoint in
the sense that the only execution that these programs may have in common is
the empty execution, hence the two cases in the definition. Combinatorially, the
fact that nullable(P ) holds corresponds to the fact that the class of its executions
contains one object of size 0: the empty execution. It is in fact important that
we can express this in terms of disjoint unions because they fit in the framework
of analytic combinatorics whereas arbitrary unions are more difficult to handle6.

Finally, the executions of P ? are sequences of executions of P or, equivalently,
sequences of non-empty executions of P . This second formulation leads to a
non-ambiguous specification as the unique class P ′ satisfying P ′ = E +P+×P ′,
where P+ denotes the non-empty executions of P . This implicitly defined class P ′

5 The word “labelled” is not particularly relevant in our setup. It refers to the fact that
another way to represent the interleaving of two executions is to put an integer label
on each step of both execution carrying the position of each step in the interleaving.

6 Grammar descriptions involving non-disjoint unions are referred to as “ambiguous”
and lack most of the benefits, if not all, of the symbolic method, essentially because
some objects may be counted multiple times when applying the method.
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Table 2. The rules of the symbolic method for computing a generating function from a
combinatorial specification. In the case of the labelled product A?B, the corresponding
operation on the series is called the coloured product } and is defined in [6] by A(z) }
B(z) =

∑
n>0

∑n
k=0

(
n
k

)
akbn−kz

n.

Specification Gen. Function
A A(z)

E 1
Z z
A \ B (only when B ⊂ A) A(z)−B(z)
A+ B A(z) +B(z)
A ? B A(z) }B(z)
A× B A(z) ·B(z)

Seq(A) (1−A(z))−1

is denoted Seq(P+) and is called the sequence of P+. Once again we must
distinguish whether nullable(P ) holds or not in the definition of P+ to avoid
ambiguities and thus double-counting.

The S function described above maps each program to a combinatorial
specification of its executions. As an example, for our example program we
have S(P0) = Seq(Seq(Z + (Z ? Z)) ? (Z + E) \ E) × (Z + (Z ? Z)). Such a
specification is often the starting point of the study of a problem in analytic
combinatorics, because it has many outcomes, and one of the most important
of them is that it gives a systematic way to compute the generating function of
the combinatorial class. We recall that the generating function of a class C is
the formal power series given by C(z) =

∑
n>0 cnz

n where cn is the number of
elements of size n in C.

The generating function of the executions of a program, i.e. of the class S(P ),
constitutes a summary of the counting information of its state space. Moreover,
this encoding as a power series gives a convenient formalism to compute the
number of executions of length n, for bounded n. The symbolic method from [12]
gives an automatic translation from the specification of a class to its generating
function, which we recall in Table 2.

We now illustrate the power of the analytic combinatorics tools, by show-
ing how a few manipulations on polynomials can lead to interesting algorith-
mic applications and precise quantitative results. Further resource on this topic
can be found in the book [12]. We study the generating function φ of the ex-
ample program P0 given above, which we recall here for convenience: P0 =
[(a+ (b ‖ c))? ‖ (d+ 0)]

?
; [e+(f ‖ g)]. Let φ(z) =

∑
n>0 pnz

n denote the expan-
sion in power series of the generating function of S(P0) and recall that the n-th
coefficient pn is the number of executions of P0 of length n. By applying the
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rules from Table 2 to S(P0) we obtain that:

φ(z) = [(1− z − 2z2)
−1

} (z + 1)]
−1
· [z + 2z2]

=
(2z + 1)(2z − 1)

2
(z + 1)

2
z

1− 4z − 4z2 + 6z3 + 8z4

The second line of the above formula is obtained by applying the calculus

rule7 z }A(z) = z d(zA(z))
dz . From this formula we derive two applications. First,

from the denominator of this rational expression we deduce that for all n > 6 we
have pn− 4pn−1− 4pn−2 + 6pn−3 + 8pn−4 = 0. The obtained recurrence formula
can be used to compute the number of executions of length n of P0 in linear time.
On the analytic side, φ being a rational function, we can do a partial fraction
decomposition to obtain φ as a sum of four terms of the form Ci(1 − zρ−1i )
(plus a polynomial). Each of these terms expands as

∑
n>0 Ciρ

−n
i zn, hence the

number of executions of P0 of length n satisfies pn = C · ρ−n · (1 + o(1)) for
some constants C and ρ and with an exponentially small error term hidden in
the o(1). In this case we have ρ ≈ 0.221987, C ≈ 0.146871 and the error term is
of the order of 0.327950n. Table 3 compares the values of pn and of the proposed
approximation for a few values of n. One can see that already for small values
of n, the relative error of this approximation is rather low.

Table 3. Value of pn, of its approximation C · ρ−n and of the relative error |pn − C ·
ρ−n|/pn for small values of n.

n 6 7 8 9 10 11 12

pn 1226 5528 24904 112196 505424 2276832 10256616
approx 1227 5529 24907 112199 505429 2276839 10256626
rel. err. 0.000816 0.000181 0.00012 2.67e-05 9.89e-06 3.07e-06 9.75e-07

20 30 50

1739330569856 5985551205783341568 70883995824212596666294027026432
1739330570089 5985551205783353055 70883995824212596666294055205537

1.34e-10 1.92e-15 3.98e-25

3 Statistical analysis algorithms

In this section, we study the problem of exploring the state-space of a given pro-
cess through random generation. We describe first a uniform random sampler

7 This is the only “non-standard” computation rule we use in this example. All the
rest is usual polynomial manipulations. General rules for computing A(z)}B(z) are
beyond the scope of this article.
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of executions of given length, and second a uniform random sampler of execu-
tion prefixes. Our approach relies on the counting information contained in the
generating functions, as defined previously.

3.1 Preprocessing: the generating function of executions

As explained in the previous section, the symbolic method gives a systematic
way of computing the generating function of the class of the executions of a
program P from its specification S(P ) using the rules from Table 2. A straight-
forward application of this method leads to Algorithm 1 for computing the first
terms of the series.

Algorithm 1 Computation of the generating function of the executions of
an NFJ program up to degree n

Input: An NFJ program P and a positive integer n.
Output: The first n+ 1 terms of the generating function of P

function gfun(P, n)
if P = 0 then return 1
else if P = a then return z
else if P = Q ‖ R then return gfun (Q,n) } gfun (R,n) mod zn+1

else if P = Q;R then return gfun (Q,n) · gfun (R,n) mod zn+1

else if P = Q+ R then
q(z)← gfun (Q,n), r(z)← gfun (R,n)
if q(0) = r(0) = 1 then return q(z) + r(z)− 1 else return q(z) + r(z)

else if P = Q? then
q(z)← gfun (Q,n)
return (1− (q(z)− q(0)))−1 mod zn+1

The coloured product } used in the parallel composition case can be im-
plemented using the formula A(z) } B(z) = Lap(Bor(A) · Bor(B)) where Bor
and Lap are respectively the combinatorial Borel and Laplace transforms (see [6]
for insights on the coloured product). This approach has the advantage of ben-
efiting from the efficient polynomial multiplication algorithms from the litera-
ture at the cost of three linear transformations. To be implemented efficiently,
the coefficients of the result of the Borel transform should share n! as a com-
mon denominator so that it is only stored once and we keep working with inte-
ger coefficients. The computation of (1−A(z))

−1
can be carried out efficiently

using Newton iteration (see [22] for instance). The idea is to iterate the for-
mula Si+1(z)← Si(z)+Si(z)·(A(s)·Si(z)−(Si(z)−1)), starting from S0(z) = 1.
It has been shown that only dlog2(n+ 1)e iterations are necessary for the coef-

ficients of Si(z) to be equal to those of (1−A(z))
−1

up to degree n. Moreover
the total cost of this procedure in terms of integer multiplication is of the same
order of magnitude as that of the multiplication of two polynomials of degree n.
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Theorem 1. Let P be an NFJ program and let |P | denote its syntactic size
(i.e. the number of constructors ‖, +, ;, ? and atomic actions) in its defini-
tion). Algorithm 1 can be implemented to compute the first n coefficients of the
generating function of the executions of P in O(|P |M(n)) operations on big in-
tegers where M(n) is the complexity of the multiplication of two polynomials
of degree n. Moreover, these coefficients are bounded by n! and hence have at
most n log2(n) bits.

Proof. The proof of Theorem 1 follows from the above discussion: each construc-
tor incurs one polynomial operation among addition, multiplication, coloured
product and inversion and all of them can be carried out in O(M(n)).

To give a rough idea of the performance that can be achieved by Algorithm 1:
we computed the generating function of P0 up to degree n = 10000 — and thus
its number of executions of length k for all k 6 10000 — in less that 4s on a
standard PC. A detailed benchmark of Algorithm 1 is given in Section 4.1.

3.2 Random sampling of executions

Another consequence of having a combinatorial specification of the state-space
at our disposal is that we can apply well-known random sampling methods from
the combinatorics toolbox. Our random sampling procedure for program exe-
cutions is based on the so-called “recursive-method” from [13]. It operates in a
similar fashion to the symbolic method, that is by induction on the specifica-
tion by combining the random samplers of the sub-structures with simple rules
depending on the grammar construction. For the sake of clarity we represent
executions as sequences of atomic actions. This encoding does not contain all
the information that defines an execution, typically it does not reflect in which
iteration of a loop an atomic action is fired for instance. However it makes the
presentation clearer and the algorithm can be easily adapted to a more faithful
encoding. Our uniform random sampler of executions is described in Algorithm 2
and the detailed explanations about the different constructions are given below.

Choice The simplest rule of the recursive method is that of the disjoint union
used at line 4 of Algorithm 2. If qn and rn denote the number of length-n
executions of Q and R, then a uniform random length-n execution of P = Q+R
is a uniform length-n execution of Q with probability qn/(qn+rn) and a uniform
length-n execution of R otherwise. One way to draw the Bernoulli variable is to
draw a uniform random big integer x in J0; qn+rnJ and to return true if and only
if x < qn. As an example, consider the programs Q = (a+ (b ‖ c)) and R = d? .
We count that Q has two executions of length two: bc and cb and R has only
one: dd. Hence, to sample a length-2 execution in (Q+R), one must perform a
recursive call on Q with probability 2/3 and on R with probability 1/3.

Parallel composition The other rules build on top of the disjoint union case. For
instance, the set of length-n executions of P = Q ‖ R can be seen asQ0?Rn+Q1?
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Algorithm 2 Uniform random sampler of executions of given length

Input: A program P and an integer n such that P has length n executions.
Output: A list of atomic actions representing an execution
1: function UnifExec(P, n)
2: if n = 0 then return the empty execution
3: else if P = a then return a
4: else if P = Q+R then
5: if Bernoulli ( qn

qn+rn
) then return UnifExec (Q,n)

6: else return UnifExec (R,n)

7: else if P = Q ‖ R then
8: draw k ∈ J0;nK with probability

(
n
k

)
qkrn−k/pn

9: return shuffle (UnifExec (Q, k), UnifExec (R,n− k))
10: else if P = Q;R then
11: draw k ∈ J0;nK with probability qkrn−k/pn
12: return concat (UnifExec (Q, k), UnifExec (R,n− k))
13: else if P = Q? then
14: draw k ∈ J1;nK with probability qkpn−k/pn
15: return concat (UnifExec (Q, k), UnifExec (P, n− k))

The lower case letters pn, qk, rn−k etc. indicate the number of executions of length n, k,
n− k of programs P , Q and R.

Rn−1 + · · ·+Qn ?R0 where Qk (resp. Rk) denotes the set of length-k executions
of Q (resp. R). By generalising the previous rule to disjoint unions of (n + 1)
terms, and using the fact that the number of elements of Qk?Rn−k is qkrn−k

(
n
k

)
,

one can select in which one of these terms to sample by drawing a random
variable which is k with probability qkrn−k

(
n
k

)
/pn. Then it remains to sample

a uniform element of Qk, a uniform element of Rn−k and a uniform shuffling
of their labellings among the

(
n
k

)
possibilities. This is described at line 7 of

Algorithm 2. We do not detail the implementation of the shuffling function here,
an optimal algorithm in terms of random bits consumption, can be found in [5].
As an example, consider the same programs as above: Q = (a+(b ‖ c)) and R =
d? . The number of length-3 executions of (Q ‖ R) is 1·1·

(
3
1

)
+2·1·

(
3
1

)
= 9 using the

decomposition Q1 ? R2 +Q2 ? R1. Say k = 1 is selected (with probability 1/3),
then the recursive calls to (Q, 1) and (R, 2) necessarily return a and dd and
the shuffle procedure must choose a shuffling uniformly between add, dad
and dda.

Sequential composition The case of the sequential composition is similar (see
line 10 of Algorithm 2). We use the same kind of decomposition, using the
Cartesian product × in place of the labelled product ?. This has the consequence
of removing the binomial coefficient in the formula for the generation of the k
random variable. Once k is selected, we generate an execution ofQk, an execution
of Rn−k and we concatenate the two.

Loop Finally, the case of the loop is a slight adaptation of the case of the se-
quential composition using the fact that the executions of Q? are the executions
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of (0 + Q;Q?). However, care must be taken to avoid issues related to double-
counting. More specifically, when sampling an execution of (Q;Q?) we must
not choose an execution of length 0 for the left-hand-side Q. This is related to
the same reason we had to specify the executions of Q? as all the sequences of
non-empty executions of Q. This is presented at line 13 of Algorithm 2, note
that k > 0. As an example, for sampling a length-3 execution in (a+ (b; c))

?
,

one may select k = 1 with probability 2/3, which yields abc or aaa depending
on the recursive call to (Q? , 2) or k = 2, with probability 1/3, which yields bca.

Generation of random variables We did not give details on how to generate the
random variable k for the parallel, sequential and loop case. Molinero showed
in [20,19] that good performance can be achieved by using the so-called bous-
trophedonic order. For instance, in the case of the sequential composition P =
(Q;R), the idea is to generate a random integer x in the interval J0; pnJ and to
find the minimum number ` such that the sum of ` terms q0rn + qnr0 + q1rn−1 +
qn−1r1 + q2rn−2 + · · · (taken in this particular order) is greater than x. Then k
is such that the last term of this sum is qkrn−k.

Theorem 2. Using the boustrophedonic order, the complexity of the random
generation of an execution of length n in P in terms of arithmetic operations on
big integers is O(n ·min(ln(n), h(P ))) where h(P ) refers to the height of P i.e.
its maximum number of nested operators.

Contrary to the classical context of random generation in the context of ana-
lytic combinatorics (like in [13,19,20]), the grammar enumerating the executions
is not a constant but rather a parameter of the problem. Hence its size cannot
be considered constant and the complexity analysis needs to be carefully crafted
to take this variable into account.

Proof. The O(n ln(n)) bound follows from Theorem 11 of [20]. We obtain the
other bound by refining the result of Theorem 12 from the same source. The
combinatorial classes we are considering are built from the ?,×,+ and Seq(·)
operators without recursion, they hence fall under the scope of iterative classes
for which Molinero proved a linear complexity in n. However the proof given
in [20] does not give an explicit bound for the multiplicative constants, which
actually depends on the size of the grammar and which we cannot consider
constant in our context. Let C(P, n) denote the cost of UnifExec(P, n) in terms
of arithmetic operations on big integers. We show that C(P, n) 6 αnh(P ) by
induction for some constant α to be specified later.

– The base cases have a constant cost.
– The case of the choice only incurs a constant number c of arithmetic op-

erations in addition to the cost of the recursive calls. Hence C(Q + R,n)
is bounded by c + αmax(C(Q,n), C(R,n)) 6 c + αnmax(h(Q), h(R)) =
c + αn(h(Q + R) − 1) by induction. Thus, if α > c, then C(Q + R,n) 6
αnh(Q+R).
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– The parallel composition case incurs a number of arithmetic operations of
the form c′min(k, n − k) where k is the random variable generated us-
ing the boustrophedonic order technique. Hence C(Q ‖ R,n) is bounded
by c′min(k, n−k)+C(Q, k)+C(R,n−k) and by induction by c′min(k, n−
k) +αkh(Q) +α(n− k)h(R) 6 αnh(Q ‖ R) + c′min(k, n− k)−αn. The last
term on the right is bounded by 0 if α > c′.

– Sequential composition is treated using the same argument as for parallel
composition.

– Finally, the loop must be handled by reasoning “globally” on the total num-
ber of unrollings. Say the loop Q? is unrolled r times. Then its cost C(Q? , n)

is bounded by
∑r

i=1 c
′min(ki, ki+1+ · · ·+kr)+

∑r+1
i=1 C(Q, ki). The first sum

is bounded by c′n and the second is bounded by induction by
∑r+1

i=1 αkih(Q)
which simplified to αnh(Q). Hence, reusing the bound α > c′ and the fact
that h(Q?) = 1 + h(Q), we get C(Q? , n) 6 αnh(Q?) which terminates the
proof.

3.3 Execution prefixes

The uniform sampler of executions described above provides one way of ex-
ploring the state space of a program, but it does not offer much flexibility. In
this subsection we develop, as a complementary tool, a uniform random sam-
pler of execution prefixes of given length. Note that this is different from using
the previous algorithm until a length threshold n because this would not yield
uniform prefixes. An execution prefix is a sequence of evaluation steps as in
Definition 2 but unlike an execution, its resulting program Pn does not nec-
essarily satisfy nullable(Pn). We see this algorithm as an elementary building
block for statistical exploration of the state-space, enabling a variety of differ-
ent exploration strategies, possibly biased towards some areas of interest in the
state-space of the program but in a controlled manner.

The idea here is to apply our previous algorithm to a new program pref (P )
defined inductively using Table 4. Note that pref (P ) (as well as its specifica-
tion) can be implemented in linear space by using pointers to refer to the sub-
structures of P .

Proposition 1. Let P be an NFJ program. The executions of the pref (P ) are
in one-to-one correspondence with the prefixes of executions of P .

Proof. The way execution prefixes are defined, the transformation is direct. We
only discuss the cases where a E must be removed. In the case of the sequential
composition, a prefix of execution of P ;Q is either a prefix of P or a complete
execution of P followed by a non-empty prefix of Q. It is important to only
consider non-empty prefixes in order to avoid counting the complete executions
of P twice. In the case of the choice P + Q, we always subtract E from 〈Q〉 to
avoid double-counting the empty prefix because all programs have it. Finally the
case of the loop is a generalisation of the sequence: a prefix of P ? is made of any
number of non-empty complete executions of P followed by a non-empty prefix
of P .
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Table 4. In the second column: the pref () transformation, mapping a program P to a
program whose executions are in correspondence with the prefixes of executions of P .
In the third column: the combinatorial specification of the prefixes of P .

Program Prefix program Specification of the prefixes
P pref (P ) 〈P 〉

0 0 E
a 0 + a E + Z
P ‖ Q (pref (P ) ‖ pref (Q)) 〈P 〉 ? 〈Q〉
P ;Q pref (P ) + (P ; pref (Q)) 〈P 〉+ S(P )× (〈Q〉 \ E)
P + Q pref (P ) + pref (Q) 〈P 〉+ (〈Q〉 \ E)
P ? P ? ; pref (P ) E + S(P ?)× (〈P 〉 \ E)

As an example, using the notations P0 = P1; (e + (f ‖ g)), where P1 =
(P2 ‖ (d+ 0))

?
and P2 = (a+ (b ‖ c))? , the specification of the prefixes of ex-

ample program P0 is given by:

〈P0〉 = 〈P1〉+ S(P1)× ((E + Z + (E + Z) ? (E + Z) \ E) \ E)

〈P1〉 = E + S(P1)× (〈P2〉 ? (E + Z + E \ E) \ E)

〈P2〉 = E + S(P2)× ((E + Z + (E + Z) ? (E + Z) \ E) \ E)

where S(P1) and S(P2) are not given but can be obtained as sub-terms of the
specification S(P0) of the executions of P0 given earlier.

Theorem 3. To sample uniformly a prefix of length n in P we sample uni-
formly a full execution in pref (P ). This has the same complexity as sampling an
execution of n up to a multiplicative constant.

The latter theorem is a consequence of Proposition 1. The complexity bound
is obtained by showing that the height of pref (P ) is at most twice the height
of P . Another possibility of equal complexity would be to express directly the
specification of the prefixes of P without actually constructing the intermediate
program. This specification is denoted 〈P 〉 and is given in the third column of
Table 4.

4 Experimental study

In order to assess experimentally the efficiency of our method, in this section
we put into use the algorithms presented in the paper and demonstrate that
they can handle systems with a significantly large state space. We generated
a few NFJ programs at random using a Boltzmann random generator. In its
basic form, the Boltzmann sampler would generate a high number of loops and
a large number of sub-terms of the form P + 0 in the programs which we believe
is not realistic so we tuned it using [4] so that the number of both types of
nodes represent only 10% of the size of the program in expectation. We rely
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on the FLINT library (Fast Library for number theory [16]) to carry all the
computations on polynomials except for the coloured product and the inversion,
which we implemented ourselves in order to achieve the complexity exhibited
in the previous section. The former was not provided natively by the library
and the latter was feasible using FLINT’s primitives but slow compared to the
dedicated algorithm based on Newton iteration.

Note that besides the choice of the algorithms, we did not optimize our code
for efficiency nor ran extensive tests on a big dataset, hence the numbers we give
should be taken as a rough estimate of the performance of our algorithms. For
the sake of reproducibility, the source code of our experiments is available on
the companion repository8.

4.1 Preprocessing phase

First, Table 5 gives the runtime of the preprocessing phase (Algorithm 1) that
computes the generating functions of all the sub-terms of a program up to a
given degree n. We measured this for programs of different sizes and for different
values of n. Every measure was performed 7 times and we reported the median
of these 7 values. The time reported is the CPU time as measured by C’s clock
function. The state-space column indicates the number of executions of length
at most n obtained by evaluating the polynomial with z = 1. The figure on the
right displays more data and focuses on the relation between the runtime of the
preprocessing (on the y axis, in seconds) and the size of the state-space (the x
axis is the log2 of the number of executions). Each line corresponds to a program
and each point corresponds to a different value of n for this program. Using a
log-scale on both axis, this figure gives experimental “evidence” of a polynomial
relation between the two. Besides the shape of the curves, the take-away here is
that the preprocessing phase can be carried out for systems with a state-space
of size ≈ 218000 in a time of the order of one minute.

4.2 Random generation

We then measure the runtime of the random generator of executions and exe-
cution prefixes for the same programs. Every measure was performed 100 times
and for each one we report the median of these values as well as the interquar-
tile range (IQR)9, which gives an idea of the dispersion of the measures. We use
these metrics rather than the mean and the variance to reduce the importance
of extreme values and give a precise idea of what runtime the user should expect
when running our sampler. A summary of the results is available in Table 6.

8 All the benchmarks were run on a standard laptop with an Intel Core i7-8665U and
32G of RAM running Ubuntu 19.10 with kernel version 5.3.0-46-generic. We used
FLINT version 2.5.2 and GMP version 6.1.2.

9 The interquartile range of a set of measures is the difference between the third and
the first quartiles. Compared with the value of the median, it gives a rough estimate
of the dispersion of the measures.
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Table 5. On the left: runtime of the counting algorithm and size of the state-space
(executions of length at most n) for programs of different sizes. On the right: plot of
this runtime as a function of the log2 of the size of the state-space.

|P | n # exec° runtime

100 500 1.740825 · 21119 0.010s
100 1000 1.073991 · 22235 0.037s
100 3000 1.385924 · 26691 0.605s
500 500 1.058776 · 21927 0.076s
500 1000 1.081276 · 23832 0.462s
500 3000 1.341591 · 211423 6.428s
1000 500 1.473353 · 22330 0.159s
1000 1000 1.044525 · 24712 0.874s
1000 3000 1.092147 · 214181 13.488s
2000 100 1.981851 · 2410 0.012s
2000 200 1.800651 · 2926 0.049s
2000 500 1.768618 · 22380 0.330s
2000 1000 1.215440 · 24746 1.870s
5000 500 1.607519 · 22923 0.897s
5000 1000 1.469086 · 26016 5.434s
5000 3000 1.226718 · 218116 75.649s
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Interestingly, the number of executions and the numbers of execution prefixes
are rather close. We have clues about the reasons behind this phenomenon which
relate to the analytical properties of the generating functions of executions and
prefixes. We will investigate this in the future but this is way beyond the scope
of this article. As the numbers show, both random sampling procedures take a
few milliseconds, even for rather large state-spaces. Here, the two state-space
columns refer respectively to the number of executions and the number of pre-
fixes of length exactly n. This is the cardinal of the set in which we sample a
uniform element.

4.3 Prefix covering

This subsection presents an experimentation that highlights the importance of
the uniform distribution for the purpose of state-space exploration. The setup
is the following: consider a given NFJ program and randomly sample prefixes of
given length n of this program using two different algorithms:

– our random sampler which is globally uniform among all prefixes of length n;
– a “naive” sampler that repeatedly generates one execution step uniformly

among the legal steps, until we get a length n prefix. This strategy is called
locally uniform or isotropic.

The question is: in average, how many random prefixes must be generated
in order to discover a given proportion of the possible prefixes? This question
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Table 6. Median and interquartile range (IQR) of the runtime of the executions and
prefixes samplers for various program sizes and object lengths.

|P | n # exec° UnifExec IQR # prefixes UnifPrefix IQR

100 500 1.370 · 21119 0.129ms 4µs 1.841 · 21128 0.147ms 3µs
100 1000 1.690 · 22234 0.276ms 10µs 1.124 · 22244 0.307ms 18µs
100 3000 1.090 · 26691 1.076ms 43µs 1.439 · 26700 1.371ms 359µs
500 500 1.969 · 21926 0.218ms 5µs 1.022 · 21997 0.281ms 12µs
500 1000 1.004 · 23832 0.563ms 21µs 1.404 · 23901 0.688ms 33µs
500 3000 1.245 · 211423 3.718ms 203µs 1.466 · 211492 4.005ms 274µs
1000 500 1.420 · 22330 0.301ms 10µs 1.556 · 22411 0.352ms 19µs
1000 1000 1.005 · 24712 0.777ms 28µs 1.293 · 24790 0.871ms 46µs
1000 3000 1.051 · 214181 4.829ms 481µs 1.127 · 214259 5.307ms 569µs
2000 500 1.704 · 22380 0.308ms 14µs 1.839 · 22484 0.416ms 10µs
2000 1000 1.169 · 24746 1.021ms 51µs 1.482 · 24856 1.225ms 86µs
2000 3000 1.634 · 214120 7.291ms 1.2ms 1.921 · 214256 7.245ms 238µs
5000 500 1.589 · 22923 0.309ms 7µs 1.933 · 23168 0.348ms 14µs
5000 1000 1.448 · 26016 0.898ms 43µs 1.340 · 26231 1.027ms 41µs
5000 3000 1.208 · 218116 18.526ms 1.5ms 1.034 · 218324 21.478ms 1.2ms

actually falls under the scope of the Coupon Collector Problem, which is treated
in depth in [11]. Table 7 gives numerical answers for both exploration strategies
for a random NFJ program of size 25 and for a target coverage of 20% of the
possible prefixes.

Expectedly the uniform strategy is faster but what is interesting to see is
that the speedup compared to the isotropic method grows extremely fast. The
more the state-space grows, the more the uniform approach is unavoidable.

Unfortunately, the formula given in [11] for the isotropic case involves the
costly computation of power-sets which makes it impractical to give values for
larger programs and prefix length. However, these small-size results already es-
tablish a clear difference between the two methods. It would be interesting to
have theoretical bounds to quantify this explosion or to investigate more efficient
ways to compute these values but this falls out of the scope of this article.

Table 7. Expected number of prefixes to be sampled to discover 20% of the prefixes
of a random program of size 25 with either the isotropic or the uniform method.

Prefix length 1 2 3 4 5
# prefixes 11 18 30 60 128

Isotropic 2.1 4.45 11.17 35.09 1.28 · 1014

Uniform 2.1 3.18 6.57 13.26 27.69

Gain 0% 40% 70% 165% 4.61 · 1014%
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11. Flajolet, P., Gardy, D., Thimonier, L.: Birthday Paradox, Coupon Collectors,
Caching Algorithms and Self-Organizing Search. D. A. Math. 39(3), 207–229
(1992)

12. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press
(2009)

13. Flajolet, P., Zimmermann, P., Cutsem, B.V.: A calculus for the random generation
of combinatorial structures (1993)

14. Gaudel, M., Denise, A., Gouraud, S., Lassaigne, R., Oudinet, J., Peyronnet, S.:
Coverage-biased random exploration of models. Electr. Notes Theor. Comput. Sci.
220(1), 3–14 (2008)

15. Grosu, R., Smolka, S.A.: Monte carlo model checking. In: 11th International Con-
ference TACAS. pp. 271–286 (2005)

16. Hart, W., Johansson, F., Pancratz, S.: FLINT: Fast Library for Number Theory
(2013), version 2.5.2, http://flintlib.org

17. Koomen, C.J.: Calculus of Communicating Systems, pp. 11–26. Springer US,
Boston, MA (1991)

18. Krob, D., Mairesse, J., Michos, I.: On the average parallelism in trace monoids. In:
19th Annual STACS. pp. 477–488 (2002)

19. Mart́ınez, C., Molinero, X.: An experimental study of unranking algorithms. In:
Ribeiro, C.C., Martins, S.L. (eds.) Experimental and Efficient Algorithms. pp.
326–340. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

20. Molinero, X.: Ordered generation of classes of combinatorial structures. Ph.D. the-
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