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MyoMiner: explore gene co-expression in
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William J. Duddy1,3*

Abstract

Background: High-throughput transcriptomics measures mRNA levels for thousands of genes in a biological
sample. Most gene expression studies aim to identify genes that are differentially expressed between different
biological conditions, such as between healthy and diseased states. However, these data can also be used to
identify genes that are co-expressed within a biological condition. Gene co-expression is used in a guilt-by-
association approach to prioritize candidate genes that could be involved in disease, and to gain insights into the
functions of genes, protein relations, and signaling pathways. Most existing gene co-expression databases are
generic, amalgamating data for a given organism regardless of tissue-type.

Methods: To study muscle-specific gene co-expression in both normal and pathological states, publicly available
gene expression data were acquired for 2376 mouse and 2228 human striated muscle samples, and separated into
142 categories based on species (human or mouse), tissue origin, age, gender, anatomic part, and experimental
condition. Co-expression values were calculated for each category to create the MyoMiner database.

Results: Within each category, users can select a gene of interest, and the MyoMiner web interface will return all
correlated genes. For each co-expressed gene pair, adjusted p-value and confidence intervals are provided as
measures of expression correlation strength. A standardized expression-level scatterplot is available for every gene
pair r-value. MyoMiner has two extra functions: (a) a network interface for creating a 2-shell correlation network,
based either on the most highly correlated genes or from a list of genes provided by the user with the option to
include linked genes from the database and (b) a comparison tool from which the users can test whether any two
correlation coefficients from different conditions are significantly different.

Conclusions: These co-expression analyses will help investigators to delineate the tissue-, cell-, and pathology-
specific elements of muscle protein interactions, cell signaling and gene regulation. Changes in co-expression
between pathologic and healthy tissue may suggest new disease mechanisms and help define novel therapeutic
targets. Thus, MyoMiner is a powerful muscle-specific database for the discovery of genes that are associated with
related functions based on their co-expression.
MyoMiner is freely available at https://www.sys-myo.com/myominer

Keywords: Transcriptomics, Correlation, Gene co-expression, Gene co-expression networks, Differential correlation,
Functional genomics
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Background
High-throughput data are crucial for modern biology.
cDNA microarrays have provided an efficient way to
measure the expression of thousands of genes simultan-
eously [1, 2], thus helping the study of fundamental bio-
logical processes such as gene regulation, signaling
pathways and even complex disease traits. The main use
of microarrays is differential gene expression analysis
where two or more sets of samples are compared (e.g.
treated or diseased vs normal) and the up- or down-
regulated genes are identified. The accumulation of large
amounts of data over the years in public high-
throughput data repositories such as ArrayExpress [3]
and Gene Expression Omnibus [4], allows us to identify
relations between genes through correlation analysis.
However, it is difficult for experimental researchers to
combine and extract the information they seek if they
have limited bioinformatics expertise.
Measures of gene co-expression obtained by the ana-

lysis of data stored in high-throughput repositories such
as ArrayExpress [3] and Gene Expression Omnibus [4]
are now widely used to study gene function, protein rela-
tions and biological networks such as signaling pathways
[5, 6], and several tools and resources exist that facilitate
the exploration and analysis of gene co-expression across
tissues, common technological platforms, or conditions
[7–9]. Furthermore, pathology-specific gene co-expression
can be used as a biomarker discovery tool [10] or for pa-
tient prognosis [11, 12].
An important purpose of gene co-expression analysis

is in discovering the mechanistic links between genes.
Gene co-expression is a form of functional association,
alongside other types of functional associations such as
protein-protein interactions determined by immunopre-
cipitation experiments, or protein cellular co-localization
as determined by immunostaining. Since functional as-
sociation data can be regarded as a graph structure, gene
co-expression can be used for network biology or net-
work medicine types of analysis [13, 14]. As such, the
study of gene co-expression can be used to understand
better the mechanisms of molecular interaction within a
cell. This may be the whole cell, in which case it can be
called interactomics, or it can be focused on a specific
gene, function, or pathway. Gene co-expression analysis
therefore can enhance the study of changes to molecular
interaction networks, and can be applied both at the
whole cell level and for specific cellular functions, and to
compare between different pathologies and conditions.
Recent work suggests that direct causal relationships be-
tween genes may be inferable from gene co-expression
[15]. The purpose of gene co-expression analysis is dis-
tinct from that of differential expression analysis, the
purpose of which is to identify differences in individual
gene transcript levels between conditions. Differential

expression analysis may be combined with functional en-
richment testing to detect changes across gene sets (e.g.
representing functions, pathways, and cellular compo-
nents), but it cannot tell us about mechanistic relation-
ships between genes within a given gene set.
Several organism-specific co-expression databases

already exist such as the Arabidopsis Co-expression Tool
(ACT) [16, 17] and ATTED-II [18] for Arabidopsis thali-
ana, and CoXPRESdb [19], STARNET [20], Genevesti-
gator [21] and Human Gene Correlation Analysis
(HGCA) [22] for mammals. They collect gene expression
data and a Pearson correlation coefficient [23] is calcu-
lated for each pair of genes or probes, which can be used
as a measure of expression correlation and for network
construction from the highly-correlated genes. However,
these databases are not tissue- or cell-specific, because
their expression matrices are derived from a mix of tis-
sue types and in some cases from mixed conditions (e.g.
treated and untreated cells). Since gene expression dif-
fers between types of tissues and cells [24], it is expected
that gene co-expression will also vary. Experimentalists
seeking to identify correlation patterns for a chosen gene
of interest, usually focus on a specific tissue or cell
model and thus the relevance of co-expression values is
greatly enhanced by the specificity of the data used [25].
ImmuCo [26] and Immuno-Navigator [27] gene co-
expression databases are among the first to address im-
mune cell-specific correlation, and the latter also cor-
rects the expression matrices for batch effects. Many
conditions, such as reagents, equipment, software and
personnel could vary during the course of an experiment
and may introduce batch effects, which is a common
and strong source of variation on high-throughput data
[28, 29]. Batch effects are unrelated to biological or sci-
entific variables, are not corrected by normalization [29]
and must be removed before any further analysis. By
combining studies, one extra layer of batch effects is in-
troduced: experiments from different laboratories [30]. If
left uncorrected, this technical variation will introduce
error into the results of correlation analysis. Another
issue is that current co-expression databases include
gene co-expression from healthy samples only or from a
mix of healthy and diseased conditions. Studying the
changes in co-expression between healthy and patho-
logical states could lead to biomarker discovery and to
improved understanding of disease mechanisms [31].
Here, we introduce MyoMiner (https://www.sys-myo.

com/myominer), the first striated muscle cell- and
tissue-specific database that provides co-expression ana-
lyses in both normal and pathological tissues, addressing
both issues of overall correlation and batch effects. Myo-
Miner includes 2376 mouse and 2228 human microarray
samples separated in 142 human, mouse and cell cat-
egories based on age, sex, anatomic part and condition.
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We built a simple and easy-to-use web interface to search
for transcriptional correlation of any expressed gene pair
in muscle cells/tissues and the various pathological condi-
tions. Users can select a category and a gene of interest,
and MyoMiner will return all the expressed correlated
genes for that category. Correlation strength is measured
by the provided FDR adjusted p-value (q-value) and confi-
dence intervals are given for each correlation.

Construction and content
Microarray data collection
To collect muscle-specific microarray data and discard
low quality samples, we followed a pipeline similar to
that used for our Muscle Gene Sets resource [32], as de-
scribed below. Even though ArrayExpress partially mir-
rors Gene Expression Omnibus, we searched both
repositories for striated muscle (skeletal and cardiac),
cells and cell line experiments. In this initial screening,
we found that the most popular platforms used for
muscle-related experiments were Affymetrix Human
Genome U133 Plus 2.0 GeneChip (GEO platform
GPL570 or ArrayExpress ID A-AFFY-44) for human and
Affymetrix Mouse Genome 430 2.0 GeneChip (GEO
platform GPL1261 or ArrayExpress ID A-AFFY-45) for
murine samples. Since correlation analysis requires
homogenous data, we limited our more refined subse-
quent searches to these two platforms, which represent
about half of all muscle data on both repositories.
We searched ArrayExpress using the following strings:

(muscle(s) OR myoblast(s) OR myotube(s) OR myofiber(s)
OR cardiomyocyte(s) OR myocyte(s) OR heart(s) OR
HSMM) AND A-AFFY-44 for human samples, and (mus-
cle(s) OR myoblast(s) OR myotube(s) OR myofiber(s) OR
cardiomyocyte(s) OR myocyte(s) OR heart(s) OR C2C12
OR HL1 OR G8 OR SOL8) AND A-AFFY-45 for murine
samples. GEO and ArrayExpress assign a different ID to
each alternative platform. An alternative platform is the
same microarray chip as the original, but the data are
pre-processed with a different probe-to-gene mapping
file called Chip Description File (CDF). It is quite popu-
lar for researchers to use a different CDF than the ori-
ginal for better probe-to-probeset and probeset-to-gene
targeting accuracy (see “Probes to gene mapping” sec-
tion). GEO provides a list of the alternative platforms
into the original platform information sheet, but many
were missing. An additional way to identify the alterna-
tive platforms is to search on ArrayExpress (which is
manually curated) for alternative IDs. In the array
browser of ArrayExpress (https://www.ebi.ac.uk/arrayex-
press/arrays/browse.html), we searched for U133 Plus
2.0, MG 430 2.0 and retrieved all of the alternative GEO
platforms and IDs to A-AFFY-44 [GEO: GPL570] for
human and to A-AFFY-45 [GEO: GPL1261] for mouse
(Additional file 1: Table S1).

Next, we developed a script to parse automatically
their MIAME [33] metadata and confirm them manu-
ally, selecting only those pertinent to muscle research.
We excluded all series that did not include the raw CEL
files (Affymetrix fluorescence light intensity files) be-
cause we pre-processed them using a robust data ana-
lysis pipeline, described in detail below, so as to
homogenize the data as much as possible.
Particular microarray samples may have been used for

several experiments, or analyzed with different
normalization algorithms, or even grouped with other
samples in larger meta-analyses, the results of which
have been re-submitted to the repositories. The reused
microarrays get a different ID (GSM number in GEO)
and it is crucial to identify and remove them from co-
expression analysis, as duplicates will erroneously in-
crease correlation scores and introduce biases. Using the
conversion tool (apt-cel-convert.exe) of Affymetrix
Power Tools [34], we transformed the binary CEL files
(version 4) to ASCII text format (version 3) in order to
parse them. Their light intensity values were
concatenated into a string and used as input to three
hash algorithms: MD5 [35], SHA-1 [36] and CRC32
[37]. The combined hash acts as a unique key for each
sample and the duplicate arrays were then easily identi-
fied and removed.

Quality control of Affymetrix microarrays
The quality control pipeline was identical to that used
previously for our Muscle Gene Sets resource [32]. Ar-
rays that had extreme values or were above our set
thresholds on the combined quality controls, were ex-
cluded from any further analysis. In total, we removed
160 human and 122 mouse samples (Additional file 1:
Table S2, S3). We identified the poor quality arrays
based primarily on the output of percent present, RLE
and NUSE, as they are known to perform well [38], and
secondarily on GAPDH and β-actin ratios.

Data normalization
Pre-processing algorithms, usually termed normalization
algorithms, are three-step processes: background correc-
tion, normalization and probe summarization. An add-
itional optional step is log2 transformation. The arrays
that passed quality controls were pre-processed with the
Single Channel Array Normalization (SCAN) algorithm
[39] with default parameters except for the CDFs, which
were downloaded from BrainArray Ensembl ENSG ver-
sion 20.0.0 [40]. SCAN normalizes each array independ-
ently from its series, corrects GC bias and reduces probe
and array variation from each individual sample while in-
creasing signal-to-noise ratio. Single array normalization
is preferred when combining microarray samples from dif-
ferent series or laboratories, because other pre-processing
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algorithms such as RMA [41] or GC-RMA [42] use infor-
mation across samples for both normalization and
summarization steps, and can thus introduce correlation
artifacts [43, 44].

Probes-to-genes mapping
At the time of chip design, Affymetrix selection of
probes relied on early genome and transcriptome anno-
tation which is significantly different from our current
knowledge. The genes on the microarray chips are usu-
ally represented by multiple probesets and, conversely,
in many cases, a single probeset could target multiple
genes or even no gene. Multiple probesets targeting the
same gene could exhibit wildly different expression
levels making downstream analysis challenging. This
limitation had been observed [40], and BrainArray portal
was created to reorganize probesets with up-to-date gen-
omic, cDNA and single nucleotide polymorphism (SNP)
information in order to create a more accurate and pre-
cise CDF. This approach has become very popular
amongst researchers [45]. BrainArray CDFs are annually
updated and many microarray algorithms and tools now
use them by default. The SCAN normalization algorithm
has in-built parameters to download and use BrainArray
CDFs. For MyoMiner we used Ensembl genome [46]
(ENSG) version 20.0.0. We set the SCAN CDF specified
parameter probeSummaryPackage to InstallBrainArray-
Package(“human_sample_name.CEL”, “20.0.0”, “hs”, “ensg”)
and InstallBrainArrayPackage(“mouse_sample_name.CEL”,
“20.0.0”, “mm”, “ensg”) for human and mouse organisms
respectively.

Filtering and mapping of expressed genes to gene
symbols
In order to distinguish between expressed and unex-
pressed genes (such as genes with expression levels close
to or lower than the background noise), we used the
Universal exPression Code (UPC) algorithm [47] separ-
ately for each category. We did that because different
tissues, cells or pathological conditions have distinct
genetic profiles. UPC is a 2-step algorithm that corrects
for background noise using linear statistical models and
estimates the percentage of gene expression by calculat-
ing the active and inactive gene population. An assump-
tion is made that genes with identical molecular
characteristics should share the same background ex-
pression levels. To identify expressed genes for each cat-
egory, we calculated UPC’s percentage expression 3rd
quartile for each gene and categorized it as being
expressed if its value was higher than 50%.
To map Ensembl gene IDs to HGNC gene symbols

[48], Entrez IDs [49] and Uniprot accession numbers
[50], we used Ensembl BioMart [51]. We extracted the

required information from GRCh38.p5 assembly for hu-
man and GRCm38.p4 assembly for mouse.

Gender prediction
On approximately half of the MIAME metadata entries
for both organisms, the gender information was missing
[52]. To predict the missing gender entries we used
hgfocus.db [53] and mouse4302.db [54] from Bioconduc-
tor to map genes to chromosomes and then we calculated
the median expression of Y chromosome genes. Males
should have higher expression values than females, which
was visible on the Y chromosome gene expression histo-
gram with two clearly separated gender related peaks.

Combining datasets
To define categories of similar samples based on organ-
ism, gender, age, anatomic part and condition criteria,
we extracted all the available MIAME metadata for each
organism (Additional file 2: Table S7 and Additional file
3: Table S8). Then, we filtered all possible metadata
combinations into categories that had at least n = 12
samples. With this approach we created a large number
of categories while maintaining a high level of power.
For each category, we created a single expression matrix
that includes all the samples from that category. Further
analyses such as batch correction and gene co-
expression were based on each category’s expression
matrix.

Batch effects evaluation
For batch effect reduction we used the ComBat algo-
rithm [55] from the “SVA” Bioconductor package [56].
ComBat is a robust empirical Bayes method that adjusts
for known batch covariates. By default, we considered
each data series (i.e. study) to be a different batch for
every category (gender, age, etc). However, it is also
known that processing date/time can be a strong batch
surrogate [29]. From the text converted CEL files we re-
trieved the scan dates and also used these as batch sur-
rogates for each series, assuming that microarray
experiments performed on the same day belonged to the
same experimental batch, thus subdividing the afore-
mentioned default series batches to date and series
batches. Using principal component analysis (PCA) 3D
plots, by the “rgl” R package [57], for each category, we
identified if the samples correlate with batch surrogates
and proceeded with batch correction if necessary (Table
S4). We did not use the category differences as input for
the ComBat algorithm (modcombat = model.matrix(~ 1,
numbatches)), because (a) all samples were from the
same category and (b) samples that are assigned to a
batch are usually unevenly distributed which can induce
incorrect differences [58]. In some cases, when a batch
was represented by a single sample, after assessing the
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PCA 3D plot we assigned the sample to the closest batch
cluster if possible, otherwise we used the mean.only =
TRUE parameter in ComBat that corrects only the mean
of the batch effect not adjusting for scale. There were no
significant changes (t-test < 0.05, multiple testing con-
trolled with FDR) in gene expression of any gene in any
category before and after applying batch correction.

Gene expression correlation
Spearman’s rank correlation [59] is a non-parametric
rank statistic that measures the strength of a monotonic,
linear or non-linear, relationship between two sets of
data. Monotonic is a function that increases when its in-
dependent variable increases, having a positive correl-
ation. If the independent variable decreases while the
function increases, the correlation will be negative.
Spearman’s correlation is simply the application of Pear-
son’s correlation [60] on rank converted data. A faster
method to calculate Spearman’s ρ is to rank the values
of xi and yi, and calculate their difference di. The rank
correlation can then be computed as follows:

ρ ¼ 1−
6
Pn

i¼1d
2
i

n n2−1ð Þ ð1Þ

where n is the number of samples and di = rank(xi) -
rank(yi). Spearman’s correlation range values between −
1 and + 1, where − 1 describes a perfect monotonically
negative correlation and + 1 a perfect monotonically
positive correlation. If the data are monotonically inde-
pendent, Spearman’s ρ is equal to 0. However, this does
not necessarily mean that the data are independent in
other ways.
Since Spearman’s correlation can be asymptotically ap-

proximated by a t-distribution with n-2 degrees of free-
dom under the null hypothesis of no correlation, we
used Student’s t-test to examine whether a correlation
was significantly different from the null hypothesis:

t ¼ ρ

ffiffiffiffiffiffiffiffi
n−2

p
ffiffiffiffiffiffiffiffiffiffi
1−ρ2

p ð2Þ

To adjust for multiple testing we used the Benja-
mini – Hochberg (BH) method [61] to control the
false discovery rate (FDR). Spearman correlation ρ-
and adjusted p-values were computed with the
“psych” R package [62].
Because the correlation coefficient is not distributed

normally and its variance is dependent on both sample
size and the correlation coefficient from the entire popu-
lation, we cannot compute confidence intervals directly
for the ρ-values [63]. First we have to convert ρ-values
into additive quantities with ρ to Z Fisher transform-
ation [64] which is the inverse hyperbolic tangent func-
tion (arctanh) (Additional file 1: Table S6, Eq. S1, S2).

Second, we compute the confidence intervals at 95%
confidence level Ztable = 1.96 (Additional file 1: Table S6,
Eq. S3). The final step is to convert Z scores back to ρ-
values using the hyperbolic tangent function (tanh)
(Additional file 1: Table S6, Eq. S4).
Thus, in any sample correlation coefficient ρ, there is a

95% probability that the true population correlation co-
efficient value will be in the range of CIlower and CIupper.

Differential co-expression
For comparing whether any two correlation coefficients ρ1
and ρ2, for different categories (various samples and sample
sizes n1 and n2), are significantly different, we make the null
hypothesis (H0) that the correlation coefficients are not
statistically different. Then we transform the ρ-values to Z
scores (Additional file 1: Table S6, Eq. S1), calculate the
difference between them and calculate an absolute Z score
by dividing the difference with the pooled standard error:

Zc ¼ Z1−Z2

SEzp

�
�
�
�

�
�
�
�;where SEzp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1−3
þ 1
n2−3

r

ð3Þ

If Zc < Ztable where Ztable = 1.96 (at 95% confidence level)
or more commonly, if the p-value which is the probability
P (Zc < 1.96) > 0.05, we cannot reject H0. The difference be-
tween ρ1 and ρ2 is not significant at 95% confidence level.

Data extraction for validation
To validate the findings of MyoMiner we compared it to
the existing databases MEM, SEEK and the GTEx RNA-
Seq collection. Since the databases include generic co-
expression data and not specific categories, we limited
their studies to muscle relevant as follows: for MEM we
selected the GPL570 (U133 Plus 2.0) platform, the Pear-
son distance method, betaMEM as the ranking method
and the dataset filter Stdev = 0 with “Skeletal Muscle” as
the text field search. For SEEK we used the refined search
option to Muscle (Non-cancer) datasets and the Pearson
distance method. For GTEx v8 we downloaded the anno-
tation data and extracted the gene TPMs for muscle rele-
vant samples using the options SMTSD =” Muscle –
Skeletal” and SMAFRZE =” RNASEQ”. We then calculated
Spearman ρ the same way as for MyoMiner.

Database construction and website implementation
MyoMiner was constructed in several steps using vari-
ous tools and processes (Fig. 1). We developed an
HTML5 website that allows querying and visualizing for
the requested gene correlations. The interface was devel-
oped using the Bootstrap responsive framework. Scatter-
plots and correlation networks are visualized with the
Nvd3 and D3 [65] JavaScript libraries respectively. All
Spearman’s ρ and p-value pairwise matrices, and meta-
data are stored on a relational MySQL database which
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runs under an Apache web server. Dynamic content is
processed by the PHP programming language: data re-
trieval, ρ to Z transformations and CI calculations. The
front and back-end is powered by Okeanos [66] cloud
services. Complete listings of data series IDs and sample
numbers are provided in Additional file 2: Table S7 and
Additional file 3: Table S8.

Utility and discussion
Data statistics
Following filtering and programmatic retrieval of 81 hu-
man (2541 samples) and 198 mouse (2642 samples)
muscle series from the ArrayExpress repository, we
manually parsed the MIAMI compliant SDRF (sample
and data relationship format) metadata file of each series
while crosschecking them, if applicable, with the corre-
sponding SOFT (simple omnibus format in text) file
from GEO. If there were missing data or differences

between ArrayExpress and GEO, we tracked the publica-
tion that described the series to correct the missing in-
formation. If we still could not extract the missing data,
we contacted the corresponding authors in case they
could provide us with the correct data. Working in close
co-operation with ArrayExpress and GEO personnel, we
corrected several series metafiles, although the most
common mismatches were copying errors.
We identified and removed 169 human and 144

mouse samples as duplicates. A further 160 human
and 122 mouse samples did not pass quality controls
and were discarded, leaving us with 2228 human
samples (from 74 series) and 2376 mouse samples
(from 189 series). The samples were then classified
to different categories of 12 or more samples each.
In total, 1810 human samples were assigned to 69
categories and 1155 mouse samples were assigned to
73 categories (Table S4).

Fig. 1 Workflow of data pre-processing method used for MyoMiner. We identified studies that are pertinent to muscle research from GEO and
ArrayExpress. Only the studies that provided the raw CEL files proceeded to quality controls. Samples that passed QC were pre-processed with
the SCAN algorithm. We thoroughly curated the metadata files and separated them into categories. We used PCA to detect and remove batch
effects using the ComBat algorithm. Users have access to muscle tissue and cells gene-pair co-expression, differential co-expression of every
category and co-expression networks. All data are available on the MyoMiner web portal.
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Categories were created based on gender, age, muscle
tissue, condition and strain. A total of 8 skeletal and car-
diac muscle tissues are included on MyoMiner together
with the combination of those. Human age was classified
in years as follows: 0 to 14 as child, 15 to 24 as young,
25 to 59 as adult and 60+ as old. For mouse the classifi-
cation is in weeks: E (embryonic days) as embryo, 0 to
11 weeks as young, 12 to 24 as adult and 25+ as old. We
also included 4 separate strains for mouse: C57BL/6 J,
CD1, C3H/HeJ and FVB but also the combinations of
them and several other strains (Table 1). The Cells cat-
egory was derived from mouse microarrays: skeletal
muscle precursor cells, cardiomyocytes and immortal-
ized C2C12 mouse cell lines at different stages of differ-
entiation: myoblasts, myotubes 1–2, 3–4 and 5+ days
after differentiation. MyoMiner covers 53 distinct condi-
tions including normal and pathological ones. In detail,
several exercise categories: aerobic, resistance, endur-
ance, trained or sedentary; different types of diet: high
fat or calorie restricted diet; type 2 diabetes (DM2): Pre-
DM2, DM2 relatives, etc.; muscle regeneration: cardio-
toxin and glycerol injections; several cardiomyopathies:
Idiopathic, Dilated, Ischemic and Arrhythmogenic; mus-
cular dystrophies: Duchenne muscular dystrophy, Mdx,
Myotonic dystrophy type 2, and many other categories
(Additional file 1: Table S4, MyoMiner web portal).
To measure the accuracy of the gender prediction

method we first tried it on the samples with known gen-
der. For human only 1135 out of 2228 samples had their
gender reported. The method classified 98% of the sam-
ples to their reported gender. 23 samples (~ 2%) did not
match and we investigated further into their original pub-
lications. 5 samples out of the 23 were correctly predicted
but were reported in the repositories or publications as
opposite-sex. This increased the initial match to 98.4%.
Regarding the mouse data, the gender was reported in
1390 out of 2376 samples. Again, testing this method on
the known gender samples resulted in about a 98% match,

with 56 samples being predicted as opposite sex from the
ones reported. We identified and corrected 16 falsely re-
ported cases, increasing the prediction match to 98.3%
(Additional file 1: Table S5). All gender mismatches that
we corrected occurred from copying errors.

Query results and features
The MyoMiner interface was designed to enable users to
search and quickly retrieve the transcriptional co-
expression of any expressed gene pair in muscle tissue
and cells. All categories are presented as buttons on the
main page (Fig. 2a). When selecting a category, the op-
tions that are not relevant to it are deactivated, thereby
constraining the search to (and indicating to the user)
only those options which remain available. MyoMiner
supports queries using HGNC gene symbols (e.g. DYSF),
Ensembl IDs (e.g. ENSG00000135636), Entrez gene IDs
(e.g. 8291) and Uniprot accession numbers (e.g.
O75923). The table output retrieves the correlation
values for all expressed gene pairs in the selected cat-
egory (Fig. 2b) sorted by ρ-value. The first column com-
prises the paired gene symbols which can also be clicked
to search for its list of correlated genes. The second col-
umn is a description of the paired gene, also serving as a
link to the associated gene on GeneCards [67]. The third
column shows the Spearman’s correlation coefficient but
also if clicked the scatterplot of this pair. The fourth and
fifth columns report two statistic summaries for the user
to judge the significance of the correlation: the FDR ad-
justed p-value, and the CI at 95% confidence level, that
include information about the estimated effect size and
the uncertainty associated with this estimate. CI trans-
lates to 95% probability that the population correlation
coefficient true ρ-value is between CIlower and CIupper. A
search bar is provided on the top right corner of the
table format for easy gene pair filtering and the columns
can be sorted by clicking on their headers (e.g. sort by
positive or negative correlation). The results can be
downloaded, in various formats, using the appropriate
buttons at the bottom left corner of the table.
Scatterplots are important as supplementary informa-

tion to help interpret the correlation coefficient. In Myo-
Miner, interactive expression scatterplots for any gene
pair can be accessed by clicking the ρ-value. A modal win-
dow will appear showing the normalized expression values
obtained by SCAN for the selected gene pair (Fig. 2c). The
series that were used for the selected category are dis-
played at the top of the scatterplot. By clicking or double-
clicking the series ID, one can either remove the selected
series or retain that series only, respectively. Removing
series on the scatterplot window will not affect the ρ-value
as it is pre-computed for all series shown on the
scatterplot.

Table 1 Gender, age, tissue and strain classification for each
organism. Eight distinct muscle tissues, 4 different age stages
(years for human and weeks for mouse) and 4 separated mouse
strains with their combinations

Organism Human Mouse

Gender Both, Male, Female Both, Male, Female

Age All ages, Child, Young,
Adult, Old

All ages, Embryo,
Young, Adult, Old

Anatomic part Combined heart, Left
ventricle, Both ventricles,
Myocardium, Combined
skeletal muscle, Quadriceps,
Rectus abdominis, Biceps
brachii

Combined heart, Left
ventricle, Both ventricles,
Combined skeletal
muscle, Quadriceps,
Gastrocnemius, Tibialis
anterior, Soleus

Strain NA Combined, C57BL/6 J,
CD1, C3H/HeJ, FVB
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Correlation networks can be accessed by selecting
the network tab and pressing the submit button
without the need to re-select the category (Fig. 2d).
A signed un-weighted 2-shell network will be con-
structed. It works either with the number of co-

expressed genes in each shell (default: 15 and 5
genes for 1st and 2nd shell respectively) or by set-
ting a correlation threshold through the advanced
options. A combination of these two methods is also
possible.

Fig. 2 How to browse MyoMiner. a Select a category of interest. All categories are visible at the beginning, so that the user can find with ease
what is available on MyoMiner. By clicking a category only the options that are related with this category will remain visible. This way the user is
guided to the available MyoMiner categories. b Table output. Search by gene symbol, Ensembl or Entrez gene ID. All transcriptional co-
expressions of any expressed gene-pair displayed when hitting submit. The first column is the paired gene symbol, the second is the annotation
of the paired gene, the third is the Sprearman’s correlation of that pair, the fourth and fifth are the BH FDR adjusted p-value and the confidence
intervals. The table can be downloaded in CSV format or copied directly to the clipboard c Gene pair scatterplot. The expression values of every
sample of the selected category for that gene pair are plotted by clicking on the r value. Each series is shown at the top and can be toggled to
display the expression values for any series independently. d Correlation network. The network is constructed based on gene correlation. Users
can change the number of relations or set a correlation threshold from the advanced options. e Differential co-expression analysis. Select two or
more categories and compare the first to the rest. A gene may be a regulator if its co-expression is significantly altered (p-value) between
pathological conditions. MyoMiner can be accessed at https://www.sys-myo.com/myominer
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Another feature is the gene list network, available
through the advanced options, where the user can input a
list of genes to create the correlation network. In this case,
default 1st and 2nd shell values are set to 0 in order to
firstly identify if the genes on the list are related. These
values can be changed to add co-expressed genes outside
from the gene list. The search form “Locate genes in the
network” will hide for a short time all the genes in the net-
work except for the searched gene, making it easy to pin-
point the location of genes inside the network. The link
threshold bar can be used to remove edges below a certain
correlation value, creating sub networks in the process. The
blue colored node is used to point the queried gene, the
light blue depicts the 1st shell connected nodes and orange
the 2nd shell nodes. Users can pan and zoom by click-
dragging on an empty space of the interactive network area
and using the mouse wheel, respectively. The nodes are
interactive and can be moved to any space of the network
area. Users can also double-click a node to highlight its im-
mediate connected nodes.
Since correlation networks can grow quite large, includ-

ing thousands of nodes and many more edges, it could take
several minutes to retrieve the values for large networks
from the database. For this reason, we decided that network
construction will be a client side task, using the D3 Java-
Script library. For large networks, we recommend using the
Chrome browser as it could take some time to render big
networks, especially on low end machines. We also recom-
mend having the graphics card enabled for the browser in
order to avoid long rendering time for the network.
Differential co-expression analysis is emerging as a

method to complement traditional differential expres-
sion analysis [13, 68]. It can detect biologically important
differentially co-expressed gene pairs that would other-
wise not be detected via co-expression or differential ex-
pression [69]. Differentially co-expressed genes between
different conditions are likely to be regulators, thus
explaining differences between phenotypes [70]. MyoMi-
ner provides differential co-expression analysis for any
gene pair from any category combination. In the “Com-
pare gene co-expression” form, users can set the cat-
egories for comparison (Fig. 2e). The first category is
compared to the rest after the gene in question is selected.
The output includes the gene symbol and its description,
the ρ1 value from the first category, the ρ2 value from the
second category and the p-value of the comparison. If the
p-value is higher than 0.05 the difference of ρ1 and ρ2 is
not significant at 95% confidence level. MyoMiner sup-
ports multiple simultaneous comparisons.

Improved combined data quality after the correction of
batch effects
By combining data from different data sets and labora-
tories from around the world we introduce unwanted

technical variation which needs to be corrected. Differ-
ent processing days between samples in a series were
also observed, through PCA plots, as another source of
strong non-biological variation [29]. To improve the
quality of the co-expression values obtained from tens to
hundreds of samples, we check each category for the
presence of batch effects by different series and/or pro-
cessing dates. To acquire the scan dates from the micro-
array CEL files, we parsed them in text format. We then
used PCA to visualize the samples from each category,
colored by series or processing dates, on a 3D plane
(Fig. 3b), in order to identify underlying batch effects.
When we observed non-biological variation we corrected
it using the ComBat algorithm [55], as described in the
“Batch effects evaluation” section.
Below, we present two examples where batch effect

treatment drastically altered the correlation coefficient
between the gene pairs (Fig. 3). Dysferlin is a type II
transmembrane protein that is enriched in skeletal and
cardiac muscle and involved in membrane repair [71].
Mutations or loss of DYSF gene lead to muscular dystro-
phies called dysferlinopathies. Synaptopodin 2-like (SYN-
PO2L) protein is an important paralog of Synaptopodin-
2 (SYNPO2) that is involved in active binding and bund-
ling and associated with Duchene muscular dystrophy
and myofibrilar myopathy 2. We selected the adult hu-
man resistance exercise category to illustrate how batch
correction removes bias introduced when combining
data. Before correction, no strong correlation is observed
between DYSF and SYNPO2L: ρ = − 0.05 (Table 2, also
shown with Pearson’s correlation coefficients).
Clustering and PCA plots show that the samples are

grouped by series, which may indicate bias (Fig. 3a, b left).
The DYSF and SYNPO2L gene expression scatterplot
reveal the extent of the batch effect: even though individ-
ual series (different colors) have clear positive correlation
the overall correlation is canceled out when combined
(Fig. 3c). In detail, the selected category is comprised of
three series. Individual series Spearman correlation is
GSE47881 ρ = 0.6, GSE48278 ρ = 0.3 and GSE28422 ρ =
0.67. We can also average the correlation values using ρ-
to-Z Fisher’s transformation (Additional file 1: Table S6,
Eq. S1) to convert the non additive ρ-values to Z scores,
then average the Z scores and finally convert the mean Z
back to ρ-value (Additional file 1: Table S6, Eq. S4).
DYSF-SYNPO2L average ρ-value for the category is 0.54.
After we treated the samples with ComBat which reduced
the aforementioned bias (Fig. 3 a, b, c right) the correlation
value increased to 0.62 which could indicate a possible
functional association between DYSF and SYNPO2L [72].
In another example between DYSF and Synaptopodin

(SYNPO), which may be modulating actin-based shape
and mobility of dendritic spines, we find that batch effect
correction reduces the bias-inflated correlation ρ = 0.62.
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Fig. 3 Example of batch effects treatment. The adult human quadriceps resistance exercise category is constructed from three series: GSE47881
(olive green), GSE28422 (pink) and GSE48278 (turquoise) that include 45 samples in total. GSE9103 (magenta) series, from sedentary individuals, is
used as a visual control. On the left, one can see the untreated samples and on the right the batch-treated samples, using each series as a
surrogate. a Hierarchical clustering of both resistance exercise and sedentary samples shows a clear separation. Note that resistance exercise
samples are clustered by their corresponding series even after pre-processing (normalization). After treating the samples with ComBat, the
resistance exercise samples are now mixed, reducing the batch effect. b Principal component analysis plots of the same samples. In the untreated
plot, samples are clustered very well by their series (olive green, pink and turquoise). However, the resistance exercise series are as far from each
other as the sedentary (visual control in this case) series. After the batch correction (right) all resistance exercise samples are clustered together
and are clearly separated from the sedentary samples cluster. c The expression values of DYSF and SYNPO2L are grouped by series resulting in a
correlation value r = − 0.05. After batch correction the samples are mixed with ρ = 0.62. d Inversely, in the example of DYSF and SYNPO where the
ρ value is artificially high, before the treatment (ρ = 0.62), the correction reduces it to ρ = 0.36
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Individual series correlation is as follows: GSE47881 ρ =
0.31, GSE48278 ρ = − 0.4 and GSE28422 ρ = 0.64. The
scatterplot also reveals that the series have mixed correla-
tions (Fig. 3d left) and the overall ρ is biased when we
combined the series. The average correlation of the three
series is 0.21. After removing the bias (Fig. 3d right) the
correlation is reduced from 0.62 to 0.36. Gene pairs that
had reduced correlation after batch treatment were more
common, suggesting that batch correction reduced the
number of false positive correlations.

Validation of correlation values
We sought to validate the correlation values generated for
MyoMiner, by comparison to two existing databases of
gene co-expression (MEM and SEEK), and to the GTEx
RNA-Seq data compendium. We did this to the extent
possible given the limited muscle-specificity and lack of
muscle condition sub-categorization of those databases.
For this comparison, a panel of 20 muscle-relevant genes
(Additional file 4: Table S9) were chosen based on
muscle-relevant annotations (Entrez Gene, GeneCards),
and on their frequency of representation in consensus lists
of the Muscle Gene Sets collection [32]. All 190 pair-wise
Pearson correlation values were obtained from MyoMiner
for these 20 muscle-relevant genes from MyoMiner’s
healthy human whole muscle category (Human|Both gen-
ders|All Ages|Skeletal muscle|Normal).
The MyoMiner values were compared against similar

correlation values for the same pairs of genes given by
MEM and SEEK for the closest relevant datasets that we
could identify in the MEM and SEEK databases. Pearson
correlation could be obtained directly from SEEK,
whereas MEM returns a p-value for the strength of cor-
relation that is not directly comparable to Pearson, so
for MEM we ranked the 190 pair-wise correlations and

compared rankings between the two tools. A text search
for “Skeletal Muscle” in the MEM tool enabled extrac-
tion of correlation values for a dataset that combined 25
muscle-relevant studies on the Affymetrix HG U133
Plus 2.0 array. For SEEK, the ‘Muscle (Non-cancer)’
dataset was chosen, which combines 87 mostly muscle-
related data series from several gene expression platforms.
We observed strong agreement in correlation values for
MyoMiner with SEEK (Pearson r = 0.87; Fig. 4) and with
MEM (Spearman ρ = 0.74; Additional file 1: Fig. S1).
Correlation values for healthy whole muscle were cal-

culated from GTEx RNA-Seq data in a similar way to
those calculated for MyoMiner’s healthy human whole
muscle category. A reasonable level of agreement was
observed in correlation values between MyoMiner and
GTEx (Pearson r = 0.66; Additional file 1: Fig. S1).

Conclusions
In this work we retrieved and analyzed striated muscle
pertinent microarray samples and combined them effect-
ively for the construction of a muscle-tissue-specific co-
expression database. MyoMiner provides a simple, ef-
fective and easy way to identify co-expressed gene pairs
under a vast number of experimental conditions. This
was not available in any existing co-expression database.
Thus, MyoMiner represents a powerful tool for muscle
researchers, helping them to delineate gene function and
key regulators.
For MyoMiner we chose to use the Spearman correl-

ation coefficient, despite the fact that Pearson correl-
ation seems to be more popular in other correlation
databases. We did not use the Pearson correlation be-
cause it is sensitive to outliers and because of the as-
sumptions that need to be met, in order to calculate
adjusted p-values: every gene would have to be normally

Table 2 Examples of gene pairs correlation changes after batch correction. We illustrate two correlation examples (i) between DYSF
and SYNPO2L, where the correlation increases significantly and (ii) between DYSF and SYNPO, where the correlation decreases. Both
Spearman and Pearson’s correlations are available to indicate that batch effects are prevalent in both parametric and non-parametric
statistics. We see considerable changes on their combined correlation coefficients, which is due to the correction of the variation
between studies having been done in different labs by different people. In the case of DYSF - SYNPO2L, originally there seems to be
no correlation on the combined samples, despite that a strong positive correlation is observed in each individual series. This bias is
removed after batch correction with ComBat, resulting in a positive correlation. The example of the DYSF – SYNPO pair shows an
initial strong positive correlation before batch correction, while the individual series have mixed positive and negative correlations.
Following batch correction this value is reduced

DYSF - SYNPO2L DYSF - SYNPO

Spearman ρ Pearson r Spearman ρ Pearson r

Uncorrected −0.05 0.02 0.62 0.53

Batch corrected 0.62 0.65 0.36 0.42

GSE47881 0.6 0.67 0.31 0.39

GSE48278 0.3 0.31 −0.4 −0.08

GSE28422 0.67 0.79 0.64 0.71

Average of the 3 series 0.54 0.62 0.21 0.38
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distributed, while gene pairs have to be bivariately nor-
mally distributed. On the other hand, Spearman correl-
ation is robust to outliers and does not require
assumptions of linearity. To determine the strength of
the correlation we have provided the adjusted p-value
and the confidence intervals.
It is noteworthy that the most correlated partners for

a driver gene may vary significantly between co-
expression databases. This could be attributed to differ-
ent transcriptomic platforms, although most of these da-
tabases use GPL570 and GPL1261 platforms as we did.
Moreover, different pre-processing methods, batch effect
correction methods or the lack thereof, tissue- and cell-
specific expression, variable cell states, different correl-
ation coefficients, and other factors, add to the differ-
ences found between co-expression databases. An
investigation of the inconsistencies between co-
expression databases could identify common gene char-
acteristics or the key factors that contribute to those dif-
ferences. Our comparison of MyoMiner to the MEM
and SEEK databases suggests that there is reasonable
agreement of these resources in terms of co-expressed

gene pairs in healthy muscle, validating the approach
used in MyoMiner, and supporting the trustworthiness
of MyoMiner’s correlation values for muscle diseases
and other muscle conditions.
One caveat of gene expression correlation is that it

can be driven by other factors. For example, a tran-
scription factor (TF), when upregulated, drives the ex-
pression of gene X and Y. In this scenario, TF with X
and TF with Y will be highly correlated. However, X
and Y will be highly correlated as well, since both are
upregulated from the same TF. This could be benefi-
cial as X and Y could be involved in the same pro-
cesses, but if we are interested specifically in the
relation of X with Y, their correlation would be zero
if TF was not upregulated. In order to extract the
correlation between X and Y without TF interfering,
we can calculate the partial correlation [73]. Partial
correlation could theoretically be used to remove all
the gene effects from a pair of genes, but it would re-
quire more microarray experiments than the number
of genes. It has been used successfully to create rela-
tively small networks [74].

Fig. 4 Validation of MyoMiner by comparison to the SEEK co-expression search engine. Pearson correlation values were extracted from both
MyoMiner and SEEK for each pair of a panel of 20 muscle-relevant genes (190 pairwise combinations). For MyoMiner, these were obtained for the
healthy human whole muscle category (Human|Both genders|All Ages|Skeletal muscle|Normal). For SEEK, the ‘Muscle (Non-cancer)’ dataset was
chosen, which combines 87 mostly muscle-related data series from several gene expression platforms. The correlation value from SEEK for a
given gene pair was plotted against that from MyoMiner for the same gene pair. The 190 values from MyoMiner correlated with those from SEEK
with Pearson r of 0.87
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To derive statistical confidence across large numbers
of experiments, and because we wished MyoMiner to
examine co-expression differences between experimental
conditions (some of which have low quantities of pub-
lished expression data), we have focused our analysis on
the most-used microarray platforms for human and
murine muscle studies. Microarrays have been extremely
useful in a wide area of biological applications, but they
also have a number of limitations. Importantly, a micro-
array can only detect RNA sequences that the designed
probes can detect. Simply put, if the RNA contains se-
quences that have no corresponding oligos in the array,
the sequences will not be measured. In gene expression
analysis, a gene that was not described before will not be
present in the array. Also, non-coding RNA sequences
are typically not present on arrays. This problem is more
pronounced in older arrays where only a set number of
probes could be printed on the array; thus a portion of
the genes could eventually be measured. Newer com-
mercial arrays have tried to compensate for this by in-
cluding probes that do not match to any known genes at
the time they are designed - predicted transcripts which
can then be assigned to newly discovered genes if their
sequences match. Also, as time progresses more re-
searchers are using the now popular BrainArray CDF re-
pository which is updated annually. Another difficulty in
terms of probe design, is to generate probes of which
the RNA sequences do not overlap. If sequences are
homologous, then a probe could detect multiple genes at
once, which is particularly problematic for genes with
many splice variants or for genes that belong to the
same family. Dai et al. [40], address this issue by select-
ing probes that detect specific and unique parts of the
gene (whenever this is possible). It should be noted that
specific arrays can detect splice variants by having
probes which detect specific exons or exon junctions
[75–77]. Moreover, microarrays measure, by design,
relative concentration indirectly. The intensity measured
in a probe is proportional to the concentration of a se-
quence that can hybridize to this probe. However, ex-
perimental spike-in studies [78] showed that the probe
intensity is nonlinearly proportional to the target con-
centration [79–81]. The array will become saturated at
high target concentrations, while at low concentrations
there will be no binding. The intensities are linear within
a very limited range of RNA concentration. Another
limitation is that co-expression analyses based on a sin-
gle microarray platform may have technical biases asso-
ciated with that platform: for example, the properties of
cross-hybridization and the dynamic range of probes dif-
fer among microarray platforms, as does the signal-to-
noise ratio [18]. These limitations of microarray technol-
ogy may to some extent account for the stronger agree-
ment of MyoMiner’s correlation values with those of

tools such SEEK (r = 0.88) and MEM (ρ = 0.74), which
use mainly microarray data, compared with the moder-
ate agreement with correlation values obtained from the
GTEx RNA-Seq dataset (r = 0.66). For these reasons, it
may be useful in future work to cross-reference common
co-expression patterns found in MyoMiner against those
found in RNA-Seq data in order to identify whether any
consistent disparities are present that may be resulting from
technical biases in the microarray chip – such instances
could then be filtered out of MyoMiner findings for specific
experimental categories. Published RNA-Seq datasets are
becoming more numerous in the neuromuscular field but
remain limited in number especially when considering spe-
cific experimental or pathological conditions.
A major reason for creating MyoMiner is to be able to

compare gene co-expression networks between condi-
tions – i.e. to identify cases were the co-expression of a
given gene pair is lost, gained, or inverted, as a result of,
for example, a pathological genetic mutation or an envir-
onmental change. For individual gene pairs, this is cur-
rently facilitated by the MyoMiner web interface, and
the MyoMiner database itself opens up the possibility of
a systematic analysis in the future. Clearly, such analysis
is not possible without measuring co-expression separ-
ately in the conditions that are to be compared. How-
ever, a caveat of this approach is that a highly specific
phenotype might lack biological variation to an extent
that gene co-expression becomes overly noisy. Our com-
parisons to healthy skeletal muscle sub-sets of the SEEK
and MEM databases suggest that there is consistency of
identified co-expressed gene pairs for this biological con-
dition, indicating that noise does not dominate, and bod-
ing well for other conditions. However, care should be
taken and high confidence p-values should be sought
when comparing between very precise biological condi-
tions in MyoMiner, especially for murine samples, in
which inter-individual variation could be relatively minor.
Finally, it could be interesting in future iterations of

MyoMiner to examine the relationship of gene co-
expression with other types of gene and protein func-
tional association (e.g. [82–84]) especially for the identi-
fication of functional modules [85].
The MyoMiner database is a powerful tool for muscle

researchers to investigate gene function, based on tissue
specific co-expression, and new disease mechanics, based
on changes in co-expression between normal and patho-
logical tissues.
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Additional file 1. Figure S1. Pair-wise correlations of 20 selected
muscle genes in MyoMiner compared to the same pairwise correlations
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quality samples and series from the human and mouse microarray data
collection. Table S4. Number of samples, series and expressed genes
for each of 69 and 73 categories in human and mouse respectively.
Table S5. Samples with opposite gender prediction. Table S6. Supple-
mentary equations for ρ to Ζ and Z to ρ transformations, and confidence
intervals calculation.

Additional file 2. Table S7. Complete listing of data series IDs for
human experiments.

Additional file 3. Table S8. Complete listing of data series IDs for
murine experiments.

Additional file 4. Table S9. The panel of 20 muscle-relevant genes
used for validation of MyoMiner co-expression values. This panel is based
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sensus lists of the Muscle Gene Sets collection.

Abbreviations
GEO: Gene Expression Omnibus; FDR: False discovery rate; CDF: Chip
description file; MIAME: Minimum Information About a Microarray
Experiment; CEL: The file format of the Affymetrix raw (light intensity) file;
RLE: Relative Log Expression; NUSE: Normalized Unscaled Standard Error;
SCAN: Single Channel Array Normalization; RMA: Robust Multi-array Average;
GC-RMA: GeneChip Robust Multi-array Average; UPC: Universal exPression
Code; HGNC: HUGO Gene Nomenclature Committee; DM2: Diabetes Mellitus
type 2; PCA: Principal Component Analysis; TF: Transcription Factor

Acknowledgements
AM was supported by the MyoGrad International Graduate School for
Myology.

Authors’ contributions
AM constructed the database and web interface, and carried out the
bioinformatics analyses. WD conceived and managed the study. AM wrote
the manuscript, with important contributions from WD. IM provided support
for mathematical/technical theory. SD contributed to design of disease
categories. GBB and SS contributed to project conception. All authors read
and approved the final manuscript.

Funding
This work was supported by the MyoGrad International Graduate School for
Myology, and the Association Française contre les Myopathies (AFM). The
funding bodies had no role in: the design of the study; collection, analysis,
and interpretation of data; or in the writing of the manuscript.

Availability of data and materials
The transcriptomic data that support the findings of this study are available
from ArrayExpress, https://www.ebi.ac.uk/arrayexpress/, and the Gene
Expression Omnibus, https://www.ncbi.nlm.nih.gov/geo/. Complete listings of
data series IDs and sample numbers are provided in Additional file 2: Table
S7 and Additional file 3: Table S8. All the data generated for MyoMiner are
available at https://sys-myo.com/myominer/.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Sorbonne Université, Inserm, Institut de Myologie, U974, Center for Research
in Myology, 47 Boulevard de l’hôpital, 75013 Paris, France. 2Centre of Systems
Biology, Biomedical Research Foundation, Academy of Athens, 4 Soranou
Ephessiou St., 11527 Athens, Greece. 3Northern Ireland Centre for Stratified
Medicine, Biomedical Sciences Research Institute, C-TRIC, Altnagelvin Hospital

Campus, Glenshane Road, Ulster University, Derry/Londonderry BT47 6SB, UK.
4Muscle Research Unit, Experimental and Clinical Research Center – a joint
cooperation of the Charité Medical Faculty and the Max Delbrück Center for
Molecular Medicine, Lindenberger Weg 80, 13125 Berlin, Germany.

Received: 18 October 2019 Accepted: 13 April 2020

References
1. Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann

M, Wang C, Kobayashi M, Horton H, et al. Expression monitoring by
hybridization to high-density oligonucleotide arrays. Nat Biotechnol. 1996;
14(13):1675–80.

2. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene
expression patterns with a complementary DNA microarray. Science. 1995;
270(5235):467–70.

3. Kolesnikov N, Hastings E, Keays M, Melnichuk O, Tang YA, Williams E,
Dylag M, Kurbatova N, Brandizi M, Burdett T, et al. ArrayExpress
update--simplifying data submissions. Nucleic Acids Res. 2015;
43(Database issue):D1113–6.

4. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M,
Marshall KA, Phillippy KH, Sherman PM, Holko M, et al. NCBI GEO: archive for
functional genomics data sets--update. Nucleic Acids Res. 2013;41(Database
issue):D991–5.

5. Marbach D, Costello JC, Kuffner R, Vega NM, Prill RJ, Camacho DM, Allison
KR, Kellis M, Collins JJ, Stolovitzky G. Wisdom of crowds for robust gene
network inference. Nat Methods. 2012;9(8):796–804.

6. De Smet R, Marchal K. Advantages and limitations of current network
inference methods. Nat Rev Microbiol. 2010;8(10):717–29.

7. Zhu Q, Wong AK, Krishnan A, Aure MR, Tadych A, Zhang R, Corney DC,
Greene CS, Bongo LA, Kristensen VN, et al. Targeted exploration and analysis
of large cross-platform human transcriptomic compendia. Nat Methods.
2015;12(3):211–4 213 p following 214.

8. Kolde R, Laur S, Adler P, Vilo J. Robust rank aggregation for gene list
integration and meta-analysis. Bioinformatics. 2012;28(4):573–80.

9. Consortium GT. Human genomics. The genotype-tissue expression (GTEx)
pilot analysis: multitissue gene regulation in humans. Science. 2015;
348(6235):648–60.

10. Sun Y, Zhang W, Chen D, Lv Y, Zheng J, Lilljebjorn H, Ran L, Bao Z, Soneson C,
Sjogren HO, et al. A glioma classification scheme based on coexpression
modules of EGFR and PDGFRA. Proc Natl Acad Sci U S A. 2014;111(9):3538–43.

11. Ma RL, Shen LY, Chen KN. Coexpression of ANXA2, SOD2 and HOXA13
predicts poor prognosis of esophageal squamous cell carcinoma. Oncol
Rep. 2014;31(5):2157–64.

12. Futamura N, Nishida Y, Urakawa H, Kozawa E, Ikuta K, Hamada S, Ishiguro N.
EMMPRIN co-expressed with matrix metalloproteinases predicts poor
prognosis in patients with osteosarcoma. Tumour Biol. 2014;35(6):5159–65.

13. de la Fuente A. From 'differential expression' to 'differential networking' -
identification of dysfunctional regulatory networks in diseases. Trends
Genet. 2010;26(7):326–33.

14. Liu BH. Differential Coexpression network analysis for gene expression data.
Methods Mol Biol. 1754;2018:155–65.

15. Bhuva DD, Cursons J, Smyth GK, Davis MJ. Differential co-expression-based
detection of conditional relationships in transcriptional data: comparative
analysis and application to breast cancer. Genome Biol. 2019;20(1):236.

16. Jen CH, Manfield IW, Michalopoulos I, Pinney JW, Willats WG, Gilmartin PM,
Westhead DR. The Arabidopsis co-expression tool (ACT): a WWW-based tool
and database for microarray-based gene expression analysis. Plant J. 2006;
46(2):336–48.

17. Manfield IW, Jen CH, Pinney JW, Michalopoulos I, Bradford JR, Gilmartin PM,
Westhead DR. Arabidopsis Co-expression Tool (ACT): web server tools for
microarray-based gene expression analysis. Nucleic Acids Res. 2006;34(Web
Server issue):W504–9.

18. Aoki Y, Okamura Y, Tadaka S, Kinoshita K, Obayashi T. ATTED-II in 2016: a
plant Coexpression database towards lineage-specific Coexpression. Plant
Cell Physiol. 2016;57(1):e5.

19. Okamura Y, Aoki Y, Obayashi T, Tadaka S, Ito S, Narise T, Kinoshita K.
COXPRESdb in 2015: coexpression database for animal species by DNA-
microarray and RNAseq-based expression data with multiple quality
assessment systems. Nucleic Acids Res. 2015;43(Database issue):D82–6.

Malatras et al. BMC Medical Genomics           (2020) 13:67 Page 14 of 16

https://www.ebi.ac.uk/arrayexpress/
https://www.ncbi.nlm.nih.gov/geo/
https://sys-myo.com/myominer/


20. Jupiter D, Chen H, VanBuren V. STARNET 2: a web-based tool for
accelerating discovery of gene regulatory networks using microarray co-
expression data. BMC Bioinformatics. 2009;10:332.

21. Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P,
Gruissem W, Zimmermann P. Genevestigator v3: a reference expression
database for the meta-analysis of transcriptomes. Adv Bioinforma. 2008;
2008:420747.

22. Michalopoulos I, Pavlopoulos GA, Malatras A, Karelas A, Kostadima MA,
Schneider R, Kossida S. Human gene correlation analysis (HGCA): a tool for
the identification of transcriptionally coexpressed genes. BMC Res Notes.
2012;5(1):265.

23. Pearson K. Note on regression and inheritance in the case of two parents.
Proc R Soc Lond. 1895;58:240–2.

24. Piro RM, Ala U, Molineris I, Grassi E, Bracco C, Perego GP, Provero P, Di Cunto F.
An atlas of tissue-specific conserved coexpression for functional annotation
and disease gene prediction. Eur J Hum Genet. 2011;19(11):1173–80.

25. Greene CS, Krishnan A, Wong AK, Ricciotti E, Zelaya RA, Himmelstein DS,
Zhang R, Hartmann BM, Zaslavsky E, Sealfon SC, et al. Understanding
multicellular function and disease with human tissue-specific networks. Nat
Genet. 2015;47(6):569–76.

26. Wang P, Qi H, Song S, Li S, Huang N, Han W, Ma D. ImmuCo: a database of
gene co-expression in immune cells. Nucleic Acids Res. 2015;43(Database
issue):D1133–9.

27. Vandenbon A, Dinh VH, Mikami N, Kitagawa Y, Teraguchi S, Ohkura N,
Sakaguchi S. Immuno-navigator, a batch-corrected coexpression database,
reveals cell type-specific gene networks in the immune system. Proc Natl
Acad Sci U S A. 2016;113(17):E2393–402.

28. Leek JT. svaseq: removing batch effects and other unwanted noise from
sequencing data. Nucleic Acids Res. 2014;42:21.

29. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman
D, Baggerly K, Irizarry RA. Tackling the widespread and critical impact of
batch effects in high-throughput data. Nat Rev Genet. 2010;11(10):733–9.

30. Irizarry RA, Warren D, Spencer F, Kim IF, Biswal S, Frank BC, Gabrielson E,
Garcia JG, Geoghegan J, Germino G, et al. Multiple-laboratory comparison of
microarray platforms. Nat Methods. 2005;2(5):345–50.

31. Malatras A. Bioinformatics tools for the systems biology of dysferlin deficiency. PhD
Thesis: Université Pierre et Marie Curie - Paris VI. Freie: Universität Berlin; 2017.

32. Malatras A, Duguez S, Duddy W. Muscle gene sets: a versatile
methodological aid to functional genomics in the neuromuscular field.
Skelet Muscle. 2019;9(1):10.

33. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C,
Aach J, Ansorge W, Ball CA, Causton HC, et al. Minimum information about
a microarray experiment (MIAME)-toward standards for microarray data. Nat
Genet. 2001;29(4):365–71.

34. Affymetrix Power Tools [https://www.thermofisher.com/de/en/home/life-
science/microarray-analysis/microarray-analysis-partners-programs/
affymetrix-developers-network/affymetrix-power-tools.html].

35. Turner S, Chen L. Updated security considerations for the MD5 message-
digest and the HMAC-MD5 algorithms; 2011.

36. Eastlake D. Secure hash algorithm 1 (SHA1); 2001.
37. Brayer K, Hammond JL Jr. Evaluation of error detection polynomial

performance on the AUTOVON channel. In: IEEE National
Telecommunications Conference. vol. 1. New Orleans, LA: Institute of
Electrical and Electronics Engineers; 1975. p. 8–21. to 28–25.

38. McCall MN, Murakami PN, Lukk M, Huber W, Irizarry RA. Assessing affymetrix
GeneChip microarray quality. BMC Bioinformatics. 2011;12:137.

39. Piccolo SR, Sun Y, Campbell JD, Lenburg ME, Bild AH, Johnson WE. A single-
sample microarray normalization method to facilitate personalized-medicine
workflows. Genomics. 2012;100(6):337–44.

40. Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, Bunney WE, Myers RM,
Speed TP, Akil H, et al. Evolving gene/transcript definitions significantly alter
the interpretation of GeneChip data. Nucleic Acids Res. 2005;33(20):e175.

41. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U,
Speed TP. Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64.

42. Wu Z, Irizarry RA, Gentleman R, Martinez-Murillo F, Spencer F. A model-
based background adjustment for oligonucleotide expression arrays. J Am
Stat Assoc. 2004;99(468):909–17.

43. Lim WK, Wang K, Lefebvre C, Califano A. Comparative analysis of microarray
normalization procedures: effects on reverse engineering gene networks.
Bioinformatics. 2007;23(13):i282–8.

44. Usadel B, Obayashi T, Mutwil M, Giorgi FM, Bassel GW, Tanimoto M, Chow
A, Steinhauser D, Persson S, Provart NJ. Co-expression tools for plant
biology: opportunities for hypothesis generation and caveats. Plant Cell
Environ. 2009;32(12):1633–51.

45. Sandberg R, Larsson O. Improved precision and accuracy for microarrays
using updated probe set definitions. BMC Bioinformatics. 2007;8:48.

46. Aken BL, Ayling S, Barrell D, Clarke L, Curwen V, Fairley S, Fernandez Banet J,
Billis K, Garcia Giron C, Hourlier T, et al. The Ensembl gene annotation
system. Database (Oxford). 2016;baw093.

47. Piccolo SR, Withers MR, Francis OE, Bild AH, Johnson WE. Multiplatform
single-sample estimates of transcriptional activation. Proc Natl Acad Sci U S
A. 2013;110(44):17778–83.

48. Braschi B, Denny P, Gray K, Jones T, Seal R, Tweedie S, Yates B, Bruford E.
Genenames.org: the HGNC and VGNC resources in. Nucleic Acids Res. 2019;
47(D1):D786–92.

49. Maglott D, Ostell J, Pruitt KD, Tatusova T. Entrez gene: gene-centered
information at NCBI. Nucleic Acids Res. 2011;39(Database issue):D52–7.

50. The UniProt Consortium. UniProt: the universal protein knowledgebase.
Nucleic Acids Res. 2017;45(D1):D158–69.

51. Kinsella RJ, Kahari A, Haider S, Zamora J, Proctor G, Spudich G, Almeida-
King J, Staines D, Derwent P, Kerhornou A, et al. Ensembl BioMarts: a
hub for data retrieval across taxonomic space. Database (Oxford). 2011;
2011:bar030.

52. Florez-Vargas O, Brass A, Karystianis G, Bramhall M, Stevens R, Cruickshank S,
Nenadic G. Bias in the reporting of sex and age in biomedical research on
mouse models. Elife. 2016;5.

53. Carlson M. hgfocus.db: Affymetrix Human Genome Focus Array annotation
data (chip hgfocus). R package version 323; 2016.

54. Carlson M. mouse4302.db: Affymetrix Mouse Genome 430 2.0 Array
annotation data (chip mouse4302). R package version 323; 2016.

55. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray
expression data using empirical Bayes methods. Biostatistics. 2007;8(1):
118–27.

56. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for
removing batch effects and other unwanted variation in high-throughput
experiments. Bioinformatics. 2012;28(6):882–3.

57. Adler D, D M, et al: rgl: 3D Visualization Using OpenGL. R package version
0951441 2016.

58. Nygaard V, Rodland EA, Hovig E. Methods that remove batch effects while
retaining group differences may lead to exaggerated confidence in
downstream analyses. Biostatistics. 2016;17(1):29–39.

59. Spearman C. The proof and measurement of association between two
things. Am J Psychol. 1904;15(1):72–101.

60. Pearson K. Notes on the history of correlation. Biometrika. 1920;13:25–45.
61. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical

and powerful approach to multiple testing. J R Stat Soc Series B Stat
Methodol. 1995;57:289–300.

62. Revelle W. psych: Procedures for Personality and Psychological Research. 1.7.
5 ed. Evanston, Illinois: Northwestern University; 2017.

63. Lu Z, Shen D: Computation of Correlation Coefficient and Its Confidence
Interval in SAS.

64. Fisher RA. Frequency distribution of the values of the correlation
coefficient in samples from an indefinitely large population. Biometrika.
1915;10(4):507–21.

65. Bostock M, Ogievetsky V, Heer J. D3 Data-Driven Documents. IEEE Trans Vis
Comput Graph. 2011;17(12):2301–9.

66. Koukis V, Venetsanopoulos C. Koziris N: ~okeanos: building a cloud, Cluster
by Cluster. IEEE Internet Computing. 2013;17(3):67–71.

67. Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, Nativ N,
Bahir I, Doniger T, Krug H, et al. GeneCards Version 3: the human gene
integrator. Database (Oxford). 2010;2010:baq020.

68. Kostka D, Spang R. Finding disease specific alterations in the co-expression
of genes. Bioinformatics. 2004;20(Suppl 1):i194–9.

69. Hudson NJ, Reverter A, Dalrymple BP. A differential wiring analysis of
expression data correctly identifies the gene containing the causal
mutation. PLoS Comput Biol. 2009;5(5):e1000382.

70. Li KC. Genome-wide coexpression dynamics: theory and application. Proc
Natl Acad Sci U S A. 2002;99(26):16875–80.

71. Han R, Campbell KP. Dysferlin and muscle membrane repair. Curr Opin Cell
Biol. 2007;19(4):409–16.

Malatras et al. BMC Medical Genomics           (2020) 13:67 Page 15 of 16

https://www.thermofisher.com/de/en/home/life-science/microarray-analysis/microarray-analysis-partners-programs/affymetrix-developers-network/affymetrix-power-tools.html
https://www.thermofisher.com/de/en/home/life-science/microarray-analysis/microarray-analysis-partners-programs/affymetrix-developers-network/affymetrix-power-tools.html
https://www.thermofisher.com/de/en/home/life-science/microarray-analysis/microarray-analysis-partners-programs/affymetrix-developers-network/affymetrix-power-tools.html


72. Assadi M, Schindler T, Muller B, Porter J, Ruegg M, Langen H. Identification
of proteins interacting with dysferlin using the tandem affinity purification
method. Open Cell Dev Biol J. 2008;1:17–23.

73. Yule GU. On the theory of correlation for any number of variables,
treated by a new system of notation. Proc Math Phys Eng Sci. 1907;
79(529):182–93.

74. Ma S, Gong Q, Bohnert HJ. An Arabidopsis gene network based on the
graphical Gaussian model. Genome Res. 2007;17(11):1614–25.

75. Bumgarner R. Overview of DNA microarrays: types, applications, and their
future. Curr Protoc Mol Biol. 2013;22:21.

76. Gardina PJ, Clark TA, Shimada B, Staples MK, Yang Q, Veitch J, Schweitzer A,
Awad T, Sugnet C, Dee S, et al. Alternative splicing and differential gene
expression in colon cancer detected by a whole genome exon array. BMC
Genomics. 2006;7:325.

77. Castle J, Garrett-Engele P, Armour CD, Duenwald SJ, Loerch PM, Meyer MR,
Schadt EE, Stoughton R, Parrish ML, Shoemaker DD, et al. Optimization of
oligonucleotide arrays and RNA amplification protocols for analysis of
transcript structure and alternative splicing. Genome Biol. 2003;4(10):R66.

78. Latin Square data for expression algorithm assessment [https://www.
thermofisher.com/fr/fr/home/life-science/microarray-analysis/microarray-
data-analysis/microarray-analysis-sample-data/latin-square-data-expression-
algorithm-assessment.html].

79. Skvortsov D, Abdueva D, Curtis C, Schaub B, Tavaré S. Explaining differences
in saturation levels for Affymetrix GeneChip® arrays. Nucleic Acids Res. 2007;
35(12):4154–63.

80. Chudin E, Walker R, Kosaka A, Wu SX, Rabert D, Chang TK, Kreder DE.
Assessment of the relationship between signal intensities and transcript
concentration for Affymetrix GeneChip® arrays. Genome Biol. 2002;3(1):
research0005.0001.

81. Hekstra D, Taussig AR, Magnasco M, Naef F. Absolute mRNA concentrations
from sequence-specific calibration of oligonucleotide arrays. Nucleic Acids
Res. 2003;31(7):1962–8.

82. Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F,
Campbell NH, Chavali G, Chen C, del -Toro N, et al. The MIntAct
project—IntAct as a common curation platform for 11 molecular interaction
databases. Nucleic Acids Res. 2014;42(D1):D358–63.

83. Calderone A, Castagnoli L. Cesareni G: mentha: a resource for browsing
integrated protein-interaction networks. Nat Methods. 2013;10(8):690–1.

84. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new
perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res.
2017;45(D1):D353–61.

85. Choobdar S, Ahsen ME, Crawford J, Tomasoni M, Fang T, Lamparter D, Lin J,
Hescott B, Hu X, Mercer J, et al. Assessment of network module
identification across complex diseases. bioRxiv. 2019:265553.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Malatras et al. BMC Medical Genomics           (2020) 13:67 Page 16 of 16

https://www.thermofisher.com/fr/fr/home/life-science/microarray-analysis/microarray-data-analysis/microarray-analysis-sample-data/latin-square-data-expression-algorithm-assessment.html
https://www.thermofisher.com/fr/fr/home/life-science/microarray-analysis/microarray-data-analysis/microarray-analysis-sample-data/latin-square-data-expression-algorithm-assessment.html
https://www.thermofisher.com/fr/fr/home/life-science/microarray-analysis/microarray-data-analysis/microarray-analysis-sample-data/latin-square-data-expression-algorithm-assessment.html
https://www.thermofisher.com/fr/fr/home/life-science/microarray-analysis/microarray-data-analysis/microarray-analysis-sample-data/latin-square-data-expression-algorithm-assessment.html

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Construction and content
	Microarray data collection
	Quality control of Affymetrix microarrays
	Data normalization
	Probes-to-genes mapping
	Filtering and mapping of expressed genes to gene symbols
	Gender prediction
	Combining datasets
	Batch effects evaluation
	Gene expression correlation
	Differential co-expression
	Data extraction for validation
	Database construction and website implementation

	Utility and discussion
	Data statistics
	Query results and features
	Improved combined data quality after the correction of batch effects
	Validation of correlation values

	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

