T. Takahashi and H. Iwahara, Ionic Conduction in Perovskite-Type Oxide Solid Solution and Its Application to the Solid Electrolyte Fuel Cell. Energy Convers, vol.11, pp.105-111, 1971.

K. Miyazaki, N. Sugimura, K. Matsuoka, Y. Iriyama, T. Abe et al., Perovskite-Type Oxides La1?xSrxMnO3 for Cathode Catalysts in Direct Ethylene Glycol Alkaline Fuel Cells, J. Power Sources, vol.178, issue.2, pp.683-686, 2008.

K. A. Stoerzinger, W. Lü, C. Li, and . Ariando,

T. Venkatesan and Y. Shao-horn, Highly Active Epitaxial La (1-x ) Sr x MnO 3 Surfaces for the Oxygen Reduction Reaction: Role of Charge Transfer, J. Phys. Chem. Lett, vol.6, issue.8, pp.1435-1440, 2015.

J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough et al., Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-Air Batteries, Nat. Chem, vol.2011, issue.7, pp.546-550

K. A. Stoerzinger, M. Risch, B. Han, and Y. Shao-horn, Recent Insights into Manganese Oxides in Catalyzing Oxygen Reduction Kinetics, ACS Catal, vol.2015, issue.10, pp.6021-6031

M. I. Ansari, A. Qurashi, and M. K. Nazeeruddin, Frontiers, Opportunities, and Challenges in Perovskite Solar Cells: A Critical Review, J. Photochem. Photobiol. C Photochem. Rev, vol.35, pp.1-24, 2018.

,

S. S. Hashim, M. R. Somalu, K. S. Loh, S. Liu, W. Zhou et al., Perovskite-Based Proton Conducting Membranes for Hydrogen Separation: A Review, Int. J. Hydrogen Energy, vol.43, issue.32, pp.15281-15305, 2018.

,

J. Sunarso, S. S. Hashim, N. Zhu, and W. Zhou, Perovskite Oxides Applications in High Temperature Oxygen Separation, Solid Oxide Fuel Cell and Membrane Reactor: A Review, Prog. Energy Combust. Sci, vol.61, pp.57-77, 2017.

M. Ebrahimizadeh-abrishami, M. Risch, J. Scholz, V. Roddatis, N. Osterthun et al., Oxygen Evolution at Manganite Perovskite Ruddlesden-Popper Type Particles, Trends of Activity on Structure, Valence and Covalence. Materials (Basel), vol.2016, p.921

P. D. Battle, M. A. Green, N. S. Laskey, J. E. Millburn, L. Murphy et al., Layered Ruddlesden?Popper Manganese Oxides: Synthesis and Cation Ordering, Chem. Mater, vol.9, issue.2, pp.552-559, 1997.

S. Sengodan, S. Choi, A. Jun, T. H. Shin, Y. Ju et al., Layered Oxygen-Deficient Double Perovskite as an Efficient and Stable Anode for Direct Hydrocarbon Solid Oxide Fuel Cells, Nat. Mater, vol.14, issue.2, pp.205-209, 2015.

,

A. Tarancón, M. Burriel, J. Santiso, S. J. Skinner, and J. A. Kilner, Advances in Layered Oxide Cathodes for Intermediate Temperature Solid Oxide Fuel Cells, J. Mater. Chem, issue.19, p.3799, 2010.

D. Lee and H. Lee, Controlling Oxygen Mobility in Ruddlesden-Popper Oxides. Materials (Basel), vol.10, 2017.

D. Chen, J. Wang, Z. Zhang, Z. Shao, and F. Ciucci, Boosting Oxygen Reduction/Evolution Reaction Activities with Layered Perovskite Catalysts, Chem. Commun, vol.52, issue.71, pp.10739-10742, 2016.

J. Du, T. Zhang, F. Cheng, W. Chu, Z. Wu et al., Nonstoichiometric Perovskite CaMnO 3?? for Oxygen Electrocatalysis with High Activity, Inorg. Chem, vol.53, issue.17, pp.9106-9114, 2014.

H. Lin, P. Liu, S. Wang, Z. Zhang, Z. Dai et al., A Highly Efficient Electrocatalyst for Oxygen Reduction Reaction: Three-Dimensionally Ordered Macroporous Perovskite LaMnO3, J. Power Sources, vol.412, pp.701-709, 2018.

,

M. P. Pechini, Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor, vol.330, 1967.

R. Epherre, E. Duguet, S. Mornet, E. Pollert, S. Louguet et al., Manganite Perovskite Nanoparticles for Self-Controlled Magnetic Fluid Hyperthermia: About the Suitability of an Aqueous Combustion Synthesis Route, J. Mater. Chem, vol.21, issue.12, p.4393, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00653583

B. Cai, K. Akkiraju, W. P. Mounfield, Z. Wang, X. Li et al., Solid-State Gelation for Nanostructured Perovskite Oxide Aerogels, Chem. Mater, 2019.

D. Portehault, S. Delacroix, G. Gouget, R. Grosjean, and T. Chan-chang, Beyond the Compositional Threshold of Nanoparticle-Based Materials, Acc. Chem. Res, vol.51, issue.4, pp.930-939, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01883831

H. Thi-n'goc, L. D. Le;-mouafo, C. Etrillard, A. Torres-pardo, J. Dayen et al., Surface-Driven Magnetotransport in Perovskite Nanocrystals, Adv. Mater, vol.29, issue.9, p.1604745, 2017.

A. Raihani, H. Durand, B. Chassagneux, F. Kerridge, D. H. Inman et al., Zirconia Formation by Reaction of Zirconium Sulfate in Molten Alkali-Metal Nitrates or Nitrites, J. Mater. Chem, vol.4, issue.8, p.1331, 1994.

C. E. Houscroft and A. G. Sharpe, Inorganic Chemistry, 2005.

M. H. Ehsani, M. J. Mehrabad, P. Kameli, M. E. Ghazi, and F. S. Razavi, Low-Temperature Electrical Resistivity of Bilayered LaSr2Mn2O7 Manganite, J. Low Temp. Phys, vol.2016, issue.5-6, pp.359-370

M. H. Ehsani, M. E. Ghazi, P. Kameli, and F. S. Razavi, DC Magnetization Studies of Nano-and Micro-Particles of Bilayered Manganite LaSr2Mn2O7, J. Alloys Compd, vol.586, pp.261-266, 2014.

M. H. Ehsani, M. E. Ghazi, and P. Kameli, Effects of PH and Sintering Temperature on the Synthesis and Electrical Properties of the Bilayered LaSr2Mn2O7 Manganite Prepared by the Sol-Gel Process, J. Mater. Sci, vol.2012, issue.15, pp.5815-5822

D. T. Hue, T. Manh, L. H. Anh, L. Hong, M. H. V;-phan et al., Sol -Gel Synthesis , Characterization , and Magnetic Properties of Double-Layered Perovskite Manganite La1.25Sr1.75Mn2O7, IEEE Trans. Magn, vol.50, issue.6, pp.2503204-2503204, 2014.

M. H. Ehsani, P. Kameli, and M. E. Ghazi, Influence of Grain Size on the Electrical Properties of the Double-Layered LaSr2Mn2O7 Manganite, J. Phys. Chem. Solids, vol.2012, issue.6, pp.744-750

V. Celorrio, L. Calvillo, E. Dann, G. Granozzi, A. Aguadero et al., Oxygen Reduction Reaction at LaxCa1-XMnO3 Nanostructures: Interplay between A-Site Segregation and B-Site Valency, Catal. Sci. Technol, vol.6, issue.19, pp.7231-7238, 2016.

,

T. Poux, F. S. Napolskiy, T. Dintzer, G. Kéranguéven, S. Y. Istomin et al., Dual Role of Carbon in the Catalytic Layers of Perovskite/Carbon Composites for the Electrocatalytic Oxygen Reduction Reaction, Catal. Today, vol.2012, issue.1, pp.83-92

C. Yang, O. Fontaine, J. Tarascon, and A. Grimaud, Chemical Recognition of Active Oxygen Species on the Surface of Oxygen Evolution Reaction Electrocatalysts. Angew. Chemie Int, vol.56, pp.8652-8656, 2017.

C. Yang, C. Laberty-robert, D. Batuk, G. Cibin, A. V. Chadwick et al., Phosphate Ion Functionalization of Perovskite Surfaces for Enhanced Oxygen Evolution Reaction, J. Phys. Chem. Lett, vol.8, issue.15, pp.3466-3472, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02129160

F. Gonell, N. Alem, P. Dunne, G. Crochet, P. Beaunier et al., Versatile Molten Salt Synthesis of Manganite Perovskite Oxide Nanocrystals and Their Magnetic Properties, vol.5, pp.358-363, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02168943

J. M. Coey, M. Viret, and S. Von-molnár, Mixed-Valence Manganites, Adv. Phys, vol.48, issue.2, pp.167-293, 1999.

D. Portehault, S. Cassaignon, E. Baudrin, and J. Jolivet, Morphology Control of Cryptomelane Type MnO 2 Nanowires by Soft Chemistry, Growth Mechanisms in Aqueous Medium, vol.19, pp.5410-5417, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00181057

C. M. Sánchez-sánchez and A. J. Bard, Hydrogen Peroxide Production in the Oxygen Reduction Reaction at Different Electrocatalysts as Quantified by Scanning Electrochemical Microscopy, Anal. Chem, issue.19, pp.8094-8100, 2009.

M. Villanueva-rodríguez, C. M. Sánchez-sánchez, V. Montiel, E. Brillas, J. M. Peralta-hernández et al., Characterization of Ferrate Ion Electrogeneration in Acidic Media by Voltammetry and Scanning Electrochemical Microscopy. Assessment of Its Reactivity on 2,4-Dichlorophenoxyacetic Acid Degradation, Electrochim. Acta, vol.64, pp.196-204, 2012.

,

H. Hsu, L. Ji, M. Du, J. Zhao, E. T. Yu et al., Optimization of PbI2 /MAPbI3 Perovskite Composites by Scanning Electrochemical Microscopy, J. Phys. Chem. C, issue.35, pp.19890-19895, 2016.

,

A. J. Bard and M. V. Mirkin, Scanning Electrochemical Microscopy

M. Dekker, , 2001.