S. Wullschleger, R. Loewith, and M. N. Hall, TOR Signaling in Growth and Metabolism. Cell, vol.124, pp.471-484, 2006.

P. G. Bertram, J. H. Choi, J. Carvalho, T. Chan, A. W. Zheng et al., Convergence of TOR-Nitrogen and Snf1-Glucose Signaling Pathways onto Gln3, Molecular and Cellular Biology, vol.22, pp.1246-1252, 2002.

D. Stracka, S. Jozefczuk, F. Rudroff, U. Sauer, and M. N. Hall, Nitrogen Source Activates TOR (Target of Rapamycin) Complex 1 via Glutamine and Independently of Gtr/Rag Proteins, J Biol Chem, vol.289, pp.25010-25020, 2014.

J. L. Crespo, K. Daicho, T. Ushimaru, and M. N. Hall, The GATA Transcription Factors GLN3 and GAT1 Link TOR to Salt Stress in Saccharomyces cerevisiae, J Biol Chem, vol.276, pp.34441-34444, 2001.

B. J. Niles, A. C. Joslin, T. Fresques, and T. Powers, TOR Complex 2-Ypk1 signaling maintains sphingolipid homeostasis by sensing and regulating ROS accumulation, Cell Rep, vol.6, pp.541-552, 2014.

R. Weisman and M. Choder, The Fission Yeast TOR Homolog,tor1 +, Is Required for the Response to Starvation and Other Stresses via a Conserved Serine, J Biol Chem, vol.276, pp.7027-7032, 2001.

J. Heitman, N. R. Movva, and M. N. Hall, Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast, Science, vol.253, pp.905-909, 1991.

R. Loewith, J. E. Wullschleger, S. Lorberg, A. Crespo, J. L. Bonenfant et al., Two TOR Complexes, Only One of which Is Rapamycin Sensitive, Have Distinct Roles in Cell Growth Control, Molecular Cell, vol.10, pp.457-468, 2002.

X. Zheng, D. Fiorentino, J. Chen, G. R. Crabtree, and S. L. Schreiber, TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin, Cell, vol.82, pp.121-130, 1995.

S. N. Sehgal, H. Baker, C. Vézina, and . Rapamycin, A NEW ANTIFUNGAL ANTIBIOTIC, J Antibiot, vol.989, pp.727-732, 1975.

M. C. Cruz, L. M. Cavallo, J. M. Gö-rlach, G. Cox, J. R. Perfect et al., Rapamycin Antifungal Action Is Mediated via Conserved Complexes with FKBP12 and TOR Kinase Homologs in Cryptococcus neoformans, Molecular and Cellular Biology, vol.19, pp.4101-4112, 1999.

H. G. Melé-ndez, G. Billon-grand, M. Fèvre, and G. Mey, Role of the Botrytis cinerea FKBP12 ortholog in pathogenic development and in sulfur regulation, Fungal Genetics and Biology, vol.46, pp.308-320, 2009.

R. J. Bastidas, C. A. Shertz, S. C. Lee, J. Heitman, and M. E. Cardenas, Rapamycin Exerts Antifungal Activity In Vitro and In Vivo against Mucor circinelloides via FKBP12-Dependent Inhibition of Tor, Eukaryotic Cell, vol.11, pp.270-281, 2012.

F. Yu, Q. Gu, Y. Yun, Y. Yin, J. Xu et al., The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum, New Phytologist, vol.203, pp.219-232, 2014.

K. Dementhon, M. Paoletti, B. Pinan-lucarré, N. Loubradou-bourges, M. Sabourin et al., Rapamycin Mimics the Incompatibility Reaction in the Fungus Podospora anserina, Eukaryot Cell, vol.2, pp.238-246, 2003.

C. A. Shertz, R. J. Bastidas, W. Li, J. Heitman, and M. E. Cardenas, Conservation, duplication, and loss of the Tor signaling pathway in the fungal kingdom, BMC Genomics, vol.11, p.510, 2010.

D. Chen, L. Shi, S. Yue, T. Zhang, S. Wang et al., The Slt2-MAPK pathway is involved in the mechanism by which target of rapamycin regulates cell wall components in Ganoderma lucidum, Fungal Genetics and Biology, vol.123, pp.70-77, 2019.

N. Valette, T. Perrot, R. Sormani, E. Gelhaye, and M. Morel-rouhier, Antifungal activities of wood extractives, Fungal Biology Reviews, vol.31, pp.113-123, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595725

D. C. Eastwood, D. Floudas, M. Binder, A. Majcherczyk, P. Schneider et al., The Plant Cell Wall-Decomposing Machinery Underlies the Functional Diversity of Forest Fungi, Science, vol.333, pp.762-765, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02647602

D. Floudas, M. Binder, R. Riley, K. Barry, R. A. Blanchette et al., The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes, Science, vol.336, pp.1715-1719, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268324

M. Morel, E. Meux, Y. Mathieu, A. Thuillier, K. Chibani et al., Xenomic networks variability and adaptation traits in wood decaying fungi, Microbial Biotechnology, vol.6, pp.248-263, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268111

L. G. Nagy, R. Riley, P. J. Bergmann, K. Krizsán, F. M. Martin et al., Genetic Bases of Fungal White Rot Wood Decay Predicted by Phylogenomic Analysis of Correlated Gene-Phenotype Evolution, Mol Biol Evol, vol.34, pp.35-44, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01551070

D. Martinez, L. F. Larrondo, N. Putnam, M. Gelpke, K. Huang et al., Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78, Nature Biotechnology, vol.22, pp.695-700, 2004.

M. Tien and T. K. Kirk, Lignin-Degrading Enzyme from the Hymenomycete Phanerochaete chrysosporium, Burds. Science, vol.221, pp.661-663, 1983.

A. Joubert, B. Calmes, R. Berruyer, M. Pihet, J. Bouchara et al., Laser nephelometry applied in an automated microplate system to study filamentous fungus growth, BioTechniques, vol.48, pp.399-404, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02662333

E. Krieger, K. Joo, J. Lee, J. Lee, S. Raman et al., Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8, Proteins: Structure, Function, and Bioinformatics, vol.77, pp.114-122, 2009.

P. Kersten and D. Cullen, Copper radical oxidases and related extracellular oxidoreductases of wood-decay Agaricomycetes, Fungal Genetics and Biology, vol.72, pp.124-130, 2014.

J. Choi, J. Chen, S. L. Schreiber, and J. Clardy, Structure of the FKBP12-Rapamycin Complex Interacting with Binding Domain of Human FRAP, Science, vol.273, pp.239-242, 1996.

A. J. Ferná-ndez-gonzález, N. Valette, A. Kohler, S. Dumarçay, R. Sormani et al., Oak extractive-induced stress reveals the involvement of new enzymes in the early detoxification response of Phanerochaete chrysosporium, Environmental Microbiology, vol.20, pp.3890-3901, 2018.

X. Huang and A. Madan, CAP3: A DNA Sequence Assembly Program, Genome Res, vol.9, pp.868-877, 1999.

F. M. Roelants, K. L. Leskoske, M. Marshall, M. N. Locke, M. N. Thorner et al., The TORC2-Dependent Signaling Network in the Yeast Saccharomyces cerevisiae, Biomolecules, vol.7, p.66, 2017.

A. Gonzá-lez and M. N. Hall, Nutrient sensing and TOR signaling in yeast and mammals, EMBO J, vol.36, pp.397-408, 2017.

J. Urban, A. Soulard, A. Huber, S. Lippman, D. Mukhopadhyay et al., Sch9 Is a Major Target of TORC1 in Saccharomyces cerevisiae, Molecular Cell, vol.26, pp.663-674, 2007.

K. Falloon, P. R. Juvvadi, A. D. Richards, J. M. Vargas-muñiz, H. Renshaw et al., Characterization of the FKBP12-Encoding Genes in Aspergillus fumigatus, PLOS ONE, vol.10, p.137869, 2015.