
HAL Id: hal-02852488
https://hal.sorbonne-universite.fr/hal-02852488v1

Submitted on 7 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Utilizing Automatic Query Reformulations as Genetic
Operations to Improve Feature Location in Software

Models
Francisca Pérez, Tewfik Ziadi, Carlos Cetina

To cite this version:
Francisca Pérez, Tewfik Ziadi, Carlos Cetina. Utilizing Automatic Query Reformulations as Genetic
Operations to Improve Feature Location in Software Models. IEEE Transactions on Software Engi-
neering, 2022, 48 (2), pp.713 - 731. �10.1109/TSE.2020.3000520�. �hal-02852488�

https://hal.sorbonne-universite.fr/hal-02852488v1
https://hal.archives-ouvertes.fr


1

Utilizing Automatic Query Reformulations as
Genetic Operations to Improve Feature Location

in Software Models
Francisca Pérez, Tewfik Ziadi, Carlos Cetina

Abstract—In the combination of Model-Driven Engineering (MDE) and Search-Based Software Engineering (SBSE), genetic operations
are one of the key ingredients. Our work proposes a novel adaptation of automatic query reformulations as genetic operations that
leverage the latent semantics of software models (the cornerstone artefact of MDE). We analyze the impact of these reformulation
operations in a real-world industrial case study of feature location in models. As baselines, we use: 1) the widespread single-point
crossover plus random mutation; and 2) mask crossover plus random mutation, which is the best performer for feature location in
models. We also perform a statistical analysis to provide quantitative evidence of the impact of the results and to show that this impact
is significant. Our reformulation operations improve the results of the best baseline by 37.73% in recall and 14.08% in precision. These
results are relevant for the task of feature location in models (one of the main activities performed during software maintenance and
evolution). Furthermore, given that the only requirement to apply our approach is term availability in models, our work opens a new
research direction to improve more tasks in MDE such as bug location or requirements traceability.

Index Terms—Model-Driven Engineering, Search-Based Software Engineering, Automatic Query Reformulations
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1 INTRODUCTION

INcreasingly, the MDE community is paying more atten-
tion to the techniques offered by the SBSE community.

This has led to the combination of MDE and SBSE tech-
niques in a new field of study known as Search-Based
Model-Driven Engineering (SBMDE) [1], [2] where search-
based techniques are applied to MDE related tasks, such
as optimizing models [3], automatically generating test pro-
cedures [4], maintaining consistency between models and
metamodels [5], and feature location in models [6].

In the case of Feature Location (FL) in models, where
the term ‘feature’ refers to a specific functionality or char-
acteristic of a product, the goal is to identify the model
fragment that is associated with that specific functionality.
FL can arguably be seen as one of the most frequent mainte-
nance tasks undertaken by developers [7], [8], [9], [10] since
software maintenance and evolution involves adding new
features to programs, improving existing functionalities,
and removing unwanted functionalities. To this end, it is
essential [7], [8] that developers find the elements of the
system’s features.

Fig. 1 shows an example of FL. The upper part of the
figure shows inputs for FL: a feature description (produced
by a domain engineer), and a set of product models that are
made up of model elements. Of all these model elements,
some model elements (model elements 1-3 of the figure) are
relevant for the feature description and others are not (the
rest of the model elements of the figure). Fig. 1 highlights
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in gray the result of FL, which is the set of model elements
(i.e., model fragment) that is identified as relevant for the
feature description.
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Fig. 1. Example of Feature Location in models

Only three key ingredients are needed to apply SBSE: 1) a
representation (encoding) of the problem, 2) the definition of
a fitness function, and 3) the definition of a set of operators.
Then, candidate solutions (which are encoded following
the representation chosen) are evolved (by applying the
operators) and evaluated (by the fitness function) in an
iterative process until optimal (or near-optimal) solutions
to the problem are found.
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In the case of FL in models, the candidate solutions are
encoded as positions of a bit string where the positions of
the relevant model fragment are set to 1. The fitness function
is defined as the similarity between the text of each model
fragment and the feature description. Finally, the operators
are crossover and mutation genetic operations.

When SBSE is applied to MDE-related tasks, both the en-
coding and the fitness function strongly depend on the task
at hand. However, when it comes to the operators, genetic
operations (single-point crossover and random mutation)
are the prominent choice of SBMDE works [1]. These op-
erations randomly mix information from existing candidate
solutions to produce new candidate solutions.

In this work, we argue that, regarding models, genetic
operations could leverage the latent semantics that models
hold instead of randomly generating new candidate solu-
tions. To achieve this goal, we propose a novel adaptation
of automatic query reformulations as genetic operations.
Specifically, we utilize the reformulation of the terms of
model elements to determine the model elements that will
form new candidate solutions.

We analyze the impact of utilizing reformulations as
genetic operations in a real-world industrial case study of
feature location in models. Our industrial partner, Construc-
ciones y Auxiliar de Ferrocarriles (CAF) 1, is a worldwide
leader in train manufacturing that uses models to generate
the firmware that controls their trains. For the reformula-
tions, we not only evaluate expansion by Rochio (arguably
the most popular reformulation technique), but we also
evaluate replacement by domain specificity, reduction, and
selection by TextRank. Our baselines include single-point
crossover plus random mutation (the most popular choice
in SBMDE) and mask crossover plus random mutation (the
genetic operations that achieve the best results in feature
location in models).

To perform these analyses, the case study of our in-
dustrial partner includes both the models of software that
control and manage the trains and the oracle (the realization
of features validated by our industrial partner). We compare
the results of the four variants (expansion, replacement,
reduction, and selection) with the baselines in terms of
recall, precision, and the F-measure. Finally, we perform a
statistical analysis (following the guidelines by Arcuri and
Briand [11]) in order to provide quantitative evidence of
the impact of the results and to show that this impact is
significant.

The results show that utilizing automatic query refor-
mulations as genetic operations pays off in the location
of features in models. Our replacement variant improves
the results of the best baseline by 37.73% in recall and
14.08% in precision. We cannot claim that reformulations
will completely replace the widespread use of genetic oper-
ations in SBMDE, but this work provides an alternative in
the operators department to significantly improve results
in SBMDE. Since the only requirement for applying our
approach is the availability of terms in model elements, it
has the potential to influence most SBMDE works. However,
not all models have the same number of terms in their
elements. For instance, models that are used to generate

1. www.caf.net/en

code have more terms than those that are only used for
sketching a system. Our future work includes new hybrid
variants (crossover plus mutation plus reformulation) to
address models with a low number of terms.

In summary, our paper claims that automatic query
reformulations can be utilized as genetic operations in the
context of SBMDE. Automatic query reformulations (ex-
pansion, replacement, reduction, and selection) are already
discussed in the literature in other studies ( [12], [13], [14],
[15]). However, it is important to clarify that to date auto-
matic query reformulations have not been used as genetic
operations within an evolutionary algorithm. Neither the
surveys of SBMDE [1] since 1998 nor the surveys of genetic
operations [16], [17], [18] have reported genetic operations
utilizing automatic query reformulations. Specifically, we
claim that:

1) Utilizing automatic query reformulations as genetic
operations improves the results in the task of FL
in software models compared to the most popular
choices of genetic operations in SBMDE (single-
point crossover and random mutation). This is rel-
evant for the SBMDE community since FL is an
essential task for software maintenance and evolu-
tion [7], [8].

2) There are significant differences in performance in
terms of the solution quality of the automatic query
reformulations when they are utilized as genetic
operations. We provide recommendations on when
to use each operator.

3) Our adaptation of automatic query reformulations
to genetic operations is in terms of software models.
In other words, our adaptation has been designed
to be generic and applicable not only to feature
location and to the domain of our industrial partner
but also to other tasks and domains. Since software
models are the main artifacts of SBMDE, works
from the SBMDE community can benefit from our
adaptation.

4) Although our work focuses on models, our re-
sults can also motivate SBSE researchers to evaluate
whether automatic query reformulations as genetic
operations can improve the quality of the solutions
when other artifacts (such as code, requirements, or
tests) are used.

The rest of the paper is organized as follows: Section 2
reviews the related work. Section 3 introduces the domain
of our industrial partner and genetic operations. Section 4
presents our proposed evolutionary algorithm, which uses
the model fragment reformulation. Section 5 presents model
fragment reformulation variants. Section 6 describes the
evaluation, and Section 7 shows the results. Section 8 dis-
cusses the results. Section 9 describes the threats to validity.
Finally, Section 10 concludes the paper.

2 RELATED WORK

There is a recent survey [1] that includes related SBMDE
works since 1998. For each of these works, the survey
includes information about encoding, search technique, and
fitness. However, the survey does not include information

www.caf.net/en
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about the genetic operations (crossover and mutation) used
in each SBMDE work. Therefore, we have reviewed all of the
SBMDE works in the survey in order to provide information
about the genetic operations as well as to determine if the
work has been evaluated on an industrial scale.

Table 1 shows the related SBMDE works (Column 1),
the genetic operations (Column 2 for crossover and Column
3 for mutation), and the industrial scale (Column 4). With
regard to the genetic operations, we use a hyphen to indicate
that the work does not provide detailed information about
the operation, and we use a cross mark to indicate that the
work explicitly mentions that it does not use the operation.
With regard to the industrial scale, we use either a check
mark to indicate that the work explicitly mentions that the
evaluation performed involves industry or a cross mark
otherwise.

The upper part of the table shows the works fol-
lowing the same order used in the survey. As the table
shows, 81.08% of the works that provide information about
the crossover operation randomly select a single-point for
crossover, and 98.11% of the works that provide infor-
mation about the mutation operation indicate that it is
done randomly. Therefore, the genetic operations of single-
point crossover and random mutation are the most popular
choices in these SBMDE works.

The lower part of Table 1 shows the works that deal with
feature location in models within the SBMDE community.
Feature location in models is the task that we are using
in this work to evaluate automatic query reformulations
as genetic operations. These are previous works of our
SVIT research group, where feature location in models is
a central topic. In [84], a combination of Formal Concept
Analysis and Latent Semantic Analysis is evaluated to guide
the evolutionary algorithm. In [6], the fitness function (the
similarity to the feature description) is fixed and five search
strategies are evaluated (Evolutionary Algorithm, Random
Search, steepest Hill Climbing, Iterated Local Search with
restarts, and a hybrid between Evolutionary Algorithm and
Hill Climbing). In [85], a learning-to-rank approach is pro-
posed to improve the fitness function to locate features in
models, whereas the candidate model fragments are ran-
domly generated. In [86], models at run-time are proposed
to be used for increasing the information for feature location.
This work also randomly generates new candidate solutions
that are used to locate features in models. In [87], the
study provides real measurements of location problems as a
help to other researchers in the design of synthetic location
problems. Their location strategy relies on a linguistic rule-
based approach and Latent Semantic Indexing.

As Table 1 shows, none of the above SBMDE works
propose novel genetic operations that leverage models. In
contrast, our work leverages the latent semantics of software
models utilizing query reformulations as genetic operations
(as the final row of the table shows). Furthermore, our work
is evaluated at an industrial scale (CAF models from real
trains with more than 1000 model elements each), whereas
only 25% of the above works are evaluated at an industrial
scale.

Outside the SBMDE community, there are many
crossover and mutation operations proposed [16], [17], [18].
These surveys identify more than 50 crossover operations

TABLE 1
Genetic operations of related SBMDE works

SBMDE work
Genetic operations Industrial

scaleCrossover Mutation

Kessentini et al. [19] - Random 7
Kessentini et al. [20] - Random 7
Kessentini et al. [21] - Random 3
Faunes et al. [22], [23] N point Random 7
Baki et al. [24] Single-point Random 7
Saada et al. [5] Single-point Random 7
Kessentini et al. [25] - Random 3
Mkaouer et al. [26] Single-point Random 7
Gyapay et al. [27] - - 7
Denil et al. [3] - Random 3
Abdeen et al. [28] Single-point Random 7
Fleck et al. [29] Single-point Random 7
Nisbet et al. [30] - - 7
Cooper et al. [31] Single-point Random 7
Fatiregun et al. [32] - - 7
Fatiregun et al. [33] Single-point Random 7
Kulkarni et al. [34] Single-point Random 7
Fatiregun et al. [35] Single-point Random 3
Fleurey et al. [4] - Random 7
Cadavid et al. [36] - Random 3
Wang et al. [37] - Random 3
Shelburg et al. [38] - Random 7
Jilani et al. [39] - Random 7
Sahin et al. [40] Single-point Random 7
Rose and Poulding [41] - Random 7
Batot [42] Single-point Random 7
Kessentini et al. [43], [44] Single-point Random 7
Faunes et al. [45] Single-point Random 7
Kessentini et al. [46] Single-point Random 3
Mansoor et al. [47] Single-point Random 7
Debreceni et al. [48] - - 7
Ghannem et al. [49] Single-point Random 7
Ghannem et al. [50] Single-point Random 7
Amoui et al. [51] Single-point Random 7
Jensen and Cheng [52] - - 3
ben Fadhel et al. [53] Single-point Random 3
Moghadam and Cinneide [54] - - 7
Ipate and Lefticaru [55] Single-point Random 7
Li and Lam [56] - - 7
Doungsa-ard et al. [57] Double point Random 7
Lefticaru and Ipate [58] Heuristic Random 7
Shirole et al. [59] Single-point Random 7
Ali et al. [60], [61] Single-point Random 3
Iqbal et al. [62] Single-point Random 3
Hänsel [63] - - 7
Kalaji et al. [64] Single-point Random 7
Yano et al. [65] 7 Random 7
Zhang et al. [66] - - 7
Li and Lam [67] - - 7
Xu et al. [68] - - 7
Shirole et al. [69] - - 7
Shirole and Kumar [70] Single-point Random 7
Prasanna and Chandran [71] Single-point Injection 7
Farooq and Lam [72] Double point Random 3
Hemmati et al. [73] Single-point Random 3
Sabharwal et al. [74] Single-point Random 7
Goldsby and Cheng [75], [76] - Random 7
Goldsby et al. [77] - Random 7
Ramirez et al. [78] Double point Random 7
McKinley et al. [79] - Random 7
Cheng et al. [80] - - 7
Williams et al. [81] - Random 7
Andrade and Macêdo [82] - - 7
Harman et al. [83] - - 7
Font et al. [84] Mask Random 3
Font et al. [6] Mask Random 3
Marcén et al. [85] - Random 3
Arcega et al. [86] - Random 3
Balları́n et al. [87] - - 3
Pérez et al. [88] Mask Random 3
Pérez et al. [89] Mask Random 3
Our work Query Reformulations 3
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and more than 20 mutation operations. However, none of
these operations leverages the latent semantics of MDE
models as our work does.

Moreover, works from the code retrieval community
[14], [90], [91] reformulate an initial query with the goal

of improving the performance of retrieving code. In con-
trast, our work uses query reformulation techniques for a
different purpose. In our work, the query reformulation
techniques are used as genetic operations of an evolutionary
algorithm. Thus, the genetic operations could leverage the
latent semantics instead of randomly generating new candi-
date solutions.

Next, we discuss the overlapping between this work and
our previous works [88], [89]. Our previous works [88],
[89] and this work address the task of Feature Location.
Moreover, the three works rely on an Evolutionary Algo-
rithm to identify the model fragment that is associated with
an input search query. In addition, the three works use
Natural Language Processing since text in natural language
is processed to locate features. Fig. 2 shows an overview of
the overlap among the three works (the Natural Language
Processing and the Evolutionary Algorithm).

This work
4 Reformulations 
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Fig. 2. Overlap and differences with our previous works

However, these three works address three completely
different aspects as the shaded parts of Fig. 2 show. The
aspect that is addressed in [89] focuses on supporting
collaboration among software engineers to locate features.
Collaboration is a useful and often necessary component
in industrial contexts where a vast amount of software is
accumulated over the years and this software has been de-
veloped and maintained by different individuals. In [89], we
do not claim collaboration should be systematically applied
to every case. Collaboration is necessary when the feature
significantly transcends the knowledge of a single software
engineer.

In [89], an automatic query reformulation technique
(Expansion) is used to produce a search query that com-
bines different feature descriptions. In this work, we use
the same reformulation technique (Expansion), but its use
has a completely different purpose, which is not related
to collaboration (as the bottom right part of Fig. 2 shows).
In addition, it is important to highlight that not only does
this work use Expansion for a different purpose, but it also
uses three other automatic query reformulation techniques
(Replacement, Reduction, and Selection).

As the upper right part of Fig. 2 shows, the aspect that is
explored in [88] focuses on analyzing the best fitness objec-
tive (Similitude, Understandability, and Timing) in common,
relevant tasks in the Software Engineering field (Require-
ment Traceability, Bug Localization, and Feature Location).

In this work, we use one of the fitness objectives (Similitude)
that is explored in [89], but the contribution of this work
does not focus on the fitness objective. This work focuses on
the genetic operations of the evolutionary algorithm (as the
bottom right part of Fig. 2 shows). The genetic operations
that are used in the evolutionary algorithm of the previous
works [88], [89] randomly mix information from existing
candidate solutions, which is the most popular choice of
genetic operations in the SBMDE community [1]. In contrast,
the novel genetic operations that are proposed here do not
randomly mix information. These novel genetic operations
leverage the latent semantics of software models using an
automatic query reformulation technique.

3 BACKGROUND

This section introduces the railway domain of our industrial
partner as well as a running example of the software model,
the model fragment that realizes a feature, and the model
fragment encoding with bit strings. In addition, this section
introduces single-point crossover and random mutation,
which is the most popular choice of genetic operations in
the SBMDE community.

3.1 Railway domain and running example
Models, which are high-level specifications of systems, have
progressively gained importance as the primary artefacts for
generating products for major players in the software engi-
neering field (i.e., tool vendors, researchers, and enterprise
software developers). This is triggered by the demand for
more abstract approaches than mere coding [92]. Models
raise the abstraction level using terms that are much less
bound to the underlying implementation and technology
and that are much closer to the problem domain [92].
Abstract approaches provide benefits for improving pro-
ductivity, while ensuring quality and performance [92] in
industrial contexts.

Fig. 3 depicts a product model excerpt that is taken from
a real-world train. The product model is specified using the
Domain-Specific Language (DSL) that formalizes the train
control and management of the products manufactured
by our industrial partner. The DSL has the expressiveness
required to describe both the interaction between the main
pieces of installed equipment and the non-functional aspects
related to regulation. It will be used throughout the rest
of the paper to present a running example. For the sake
of understandability and legibility, we present a simplified
equipment-focused subset of the DSL (due to intellectual
property rights concerns), and we do not show the terms
that are included in the relationships between model ele-
ments.

Specifically, the example in the figure presents a con-
verter assistance scenario where two High Voltage Equip-
ment devices (Pantograph Front and Pantograph Rear) collect
energy from the overhead wires and send it to their respec-
tive Contactors (Breaker and Circuit), which in turn send
it to their independent Voltage Converters (Converter and
Peer Coverage). The converters then power their assigned
Consumer Equipment: the HVAC (air conditioning system)
on the left, and the PA (public address system) and CCTV
(cameras system) on the right.
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Model Fragment encoding:

Fig. 3. Example of a product model, model fragment, and encoding

In [7], feature location is defined as follows: ”Feature
location is the task of finding the source code in a system
that implements a feature”. Since our work targets soft-
ware models instead of source code, we adapt the above
definition as: Feature location is the task of finding the
model elements (i.e., a model fragment) in a system that
implements a feature. The model elements of Fig. 3 high-
lighted in gray comprise an example model fragment, which
includes one contactor (Failure overload) that connects the
voltage converter (Peer Coverage) to a Consumer Equipment
(HVAC) that is assigned to Converter. This model fragment
implements the ’converter assistance’ feature, which allows
the passing of current from one converter to equipment that
is assigned to its peer for coverage in case of the overload
or failure of the first converter.

A model fragment is encoded in a bit string to be easily
manipulated. The bit string contains as many positions as
elements in the parent product model. Each position in the
string has two possible values: 0, if the element does not
appear in the fragment; or 1, if the element does appear in
the fragment. In Fig. 3, elements 5-7, 12, and 17-19 comprise
the model fragment, so the corresponding values are set to
’1’ in its binary string representation.

Although this example of feature location in a model
fragment in a model-driven industrial context may look
easy, an industrial context tends to have a myriad of prod-
ucts that require large and complex models behind it, which
makes manual feature location very complex. For example,
the models of our industrial partner that specify each train
unit include several thousand elements. In addition, manual
feature location becomes even more complex because the
models are created and maintained by different software
engineers over long periods of time since the maintenance
contracts of trains last 25 years. Under these complex con-
ditions, an algorithm that automatically retrieves the model
fragment that realizes the feature description provided as
input is greatly needed.

3.2 Genetic operations in an evolutionary algorithm
To address feature location in models, evolutionary algo-
rithms have obtained good results [6], [84], [88], [89]. The
execution of an evolutionary algorithm involves iterating
over a population (e.g., a population of model fragments)
to generate new individuals (e.g., a model fragment) using
genetic operations (e.g., crossover and mutation).

The crossover operation imitates the sexual reproduction
that is followed by some living beings in nature to breed
new individuals. In other words, two individuals mix their
genomic information to give birth to a new individual that
holds some genetic information from one parent and some
from the other one. This could make the new individual
adapt better (or worse) to its living environment, depend-
ing on the genetic information inherited from its parents.
Following this idea, the crossover operation consists of
randomly selecting a point on both parents and swapping
the encoding from the selected point. As a result, two
individuals are generated.

The upper part of Fig. 4 depicts an example of the
single-point crossover operation applied to bit strings that
represent the encoding of two model fragments (Parent A
and Parent B). The selected point is 2 (half of the size of the
parent model fragments). As the figure shows, two model
fragments (MF1 and MF2) are generated as a result. MF1

holds the first half of its encoding from Parent A, whereas
the second half of its encoding is from Parent B. In contrast,
MF2 holds the first half of its encoding from Parent B,
whereas the second half of its encoding is from Parent A.

1 0 0 0

Parent A. Model fragment 

1 1 1 1
1 2 3 4 1 2 3 4

1 0 1 1
1 2 3 4

1 1 0 0
1 2 3 4

Random
mutation

Random
mutation

0 0 0 1
1 2 3 4

0 1 0 1
1 2 3 4

Single-point
crossover

Parent B. Model fragment 

MF1 MF2

MF3 MF4

Fig. 4. Widespread Genetic Operations using encoding at the bit level

The mutation operation is used to imitate the mutations
that randomly occur in nature when new individuals are
born. In other words, a new individual holds a small dif-
ference with regard to its parent that could make it adapt
better (or worse) to its living environment. Following this
idea, the random mutation operation involves a probability
that serves to determine whether a bit in a string is changed
from its original state. The random mutation operation also
involves the generation of a random value for each bit in the
string. This random value indicates whether or not a specific
bit will be modified.

The lower part of Fig. 4 shows two examples of the
random mutation operation. On the one hand, the example
in the left part of the figure shows that the encoding of
MF1 is taken as parent and MF3 is generated. The bits
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that are randomly changed in MF3 with regard to MF1 are
highlighted in gray (bits at Positions 1 and 3). On the other
hand, the example in the right part of the figure shows
that the encoding of MF2 is taken as parent and MF4 is
generated. The bits that are randomly changed in MF4 with
regard to MF2 are highlighted in gray (bits at Positions 1
and 4).

To assess the relevance of each individual of the pop-
ulation (e.g., model fragment) in relation to the provided
query (e.g., feature description), a fitness function based on
Information Retrieval (IR) techniques is applied. This is be-
cause each individual can be viewed as a textual document,
which is made up of a set of terms. For each document,
textual similarities are computed with regard to the query.
As a result, a ranking of the individuals of the population
is obtained, which is sorted from the highest to the lowest
fitness value.

4 THE EVOLUTIONARY ALGORITHM FOR FEATURE
LOCATION USING THE MODEL FRAGMENT REFOR-
MULATION

Our approach utilizes automatic query reformulations as
the genetic operations of an evolutionary algorithm for
feature location in models. Fig. 5 shows an overview of
our approach. The upper part of the figure shows the
inputs: the query, which is the feature description, and the
product models where the model fragment that realizes the
feature description must be located. The middle part of
Fig. 5 shows the four steps of the evolutionary algorithm:
Natural Language Processing (to homogenize the texts of
the inputs); Initialization (to create an initial model fragment
population); Fitness Function (to assess the similitude of a
model fragment to the input feature description); and Model
Fragment Reformulation (to generate new model fragments
that are added to the population). The bottom part of the
figure shows the output of the algorithm, which is a ranking
of model fragments that is in descending order based on the
similitude to the input feature description.

In the following subsections, we describe each step of
the evolutionary algorithm.

4.1 Natural Language Processing

This step homogenizes the text that is extracted from the
inputs of the evolutionary algorithm (the feature descrip-
tion and the models) through Natural Language Processing
(NLP) techniques. Text homogenization using NLP tech-
niques is often regarded as beneficial and is a frequent
practice [93].

Text homogenization is performed as follows. 1) The text
is tokenized (i.e., divided into words). As a result, the text
is divided using a white space since it is a tokenizer that
can usually be applied. More complex tokenizers, such as
CamelCase naming, need to be applied for some sources.
2) The Parts-of-Speech (POS) tagging technique analyzes
the words grammatically and infers the role of each word
in the input text. The result is that each word is tagged
in a category and some categories that do not provide
relevant information can be removed (e.g., prepositions). 3)
Stemming techniques unify the language that is used in the
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Fig. 5. Overview of the Evolutionary Algorithm for Feature Location using
the model fragment reformulation

text by reducing each word to its root. This serves to group
together different words that refer to similar concepts. For
instance, plurals are turned into singulars (circuits to circuit).
4) The Domain Term Extraction and Stopword Removal
techniques are applied to automatically filter terms in or
out. We selected these NLP techniques to homogenize the
text of the inputs of the evolutionary algorithm since they
obtained the best results in a previous work [94].

For example, the following feature description of our
industrial partner “Passing of current from one converter to
the HVAC that is assigned to its peer converter for coverage in
case of overload or failure of the first converter” is homogenized
into the following terms: current, convert, hvac, peer, convert,
coverag, overload, failur, and convert.

In a model, the text homogenization is performed for
the text of each model element using the same techniques
as those used to homogenize a feature description. For
example, the homogenized terms of Model element 18 in
Fig. 3 are: failur, overload.

4.2 Initialization
This step generates an initial population of model fragments
from the input set of product models. To generate the
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initial population of model fragments, model elements of
a product model are randomly extracted and added to a
collection of model fragments. This random technique is
the one commonly used in the SBMDE community and in
evolutionary algorithms in general [6].

Each generated model fragment belongs to a product
model. Once this step calculates the initial population of
model fragments, it is used as input in the next step.

4.3 Fitness Function

This step assesses each of the produced candidate model
fragments by ranking them according to a fitness function.
The fitness function assesses the relevance of each model
fragment in relation to the provided query. To do this,
methods based on Information Retrieval (IR) techniques
are applied [88]. Specifically, we applied Latent Semantic
Indexing (LSI) [95], [96] to analyze the relationships between
the model fragments in the population and the query. We
selected LSI since this technique obtained the best results
for FL tasks [97].

LSI constructs vector representations of a query and a
corpus of text documents by encoding them as a term-
by-document co-occurrence matrix. Each row in the matrix
corresponds to terms and each column corresponds to doc-
uments, followed by the query in the last column. Each cell
of the matrix holds the number of occurrences of a term
inside a document or the query. In our approach, terms are
all individual words from the homogenized text of model
fragments and the query, whereas the documents are the
Natural Language (NL) representations of model fragments
and the query.

Once the matrix is built, it is normalized and decom-
posed into a set of vectors using a matrix factorization
technique called Singular Value Decomposition (SVD) [95].
With SVD, one vector that represents the latent semantics
of the texts is obtained for each document and for the query.
Finally, the similarities between each document and the query
are calculated as the cosine between both of their vectors,
obtaining values between 0 and 1. Cosine values that are
closer to 1 denote a higher degree of similarity, whereas
cosine values that are closer to 0 denote a lower degree
of similarity. Similarity increases as vectors point in the
same general direction (as more terms are shared between
documents).

Once the similitude scores are obtained, if the stop
condition is met, the algorithm will stop returning the model
fragment ranking. Usually, the stop condition can be a time
slot, a fixed number of generations, or a trigger value of
the fitness that makes the process terminate when reached.
In addition, it is also possible to monitor the fitness values
and determine when they are converging and no further
improvements are being made by new generations. The stop
condition greatly depends on the domain and the problem
being solved; therefore, it is adjusted based on the results
being output by the process.

Once the model fragment ranking is returned, new in-
puts (feature description and product models where the
feature must be located) will be necessary to execute the
algorithm again. As occurs in other works that retrieve text
from an initial query, the results depend on the quality

of the queries [98], [99]. The more properties and values
of the elements are explicitly mentioned in the query, the
closer the result will be to the search objective. Therefore,
if irrelevant model fragments are obtained in the ranking,
the model fragments of the ranking can be considered as a
starting point from where solutions can be manually refined,
or the query may be refined to automatically obtain different
solutions.

If the stop condition is not yet met, the evolutionary
algorithm will continue its execution towards the next step
of the algorithm by providing the evaluated model fragment
population as input.

4.4 Model fragment reformulation

This step generates new model fragments using a novel
application of query reformulation as genetic operations of
the evolutionary algorithm. The goal of using query refor-
mulation strategies as genetic operations of the evolutionary
algorithm is to take into account the latent semantics of the
inputs of the reformulation. In addition, the fitness score of
each model fragment of the population can be used to select
the best candidates from the population, which can drive
the model fragment reformulation.

Researchers in the field of FL have proposed a large
variety of query reformulation strategies for an initial
query [100] in order to improve the quality of the retrieved
information (usually, text or code). Since not all of these
techniques can be applied in our work (i.e., model-based
corpus), we selected the query reformulation strategies us-
ing the following criteria: 1) we did not consider strategies
that relied on sources of information that are external to the
corpus, such as the web or ontologies, since our goal is to
support FL tasks in industrial domains that are specific and
have intellectual property rights concerns; and 2) we did
not consider non-practical techniques that were based on
algorithms with high computational complexity since our
goal is to support users’ daily FL tasks.

Since different reformulation strategies can be used to
perform the model fragment reformulation, the quality of
the resulting model fragments could differ. Our proposed
model fragment reformulation variants are presented in the
next section.

5 MODEL FRAGMENT REFORMULATION VARIANTS

To compare how different model fragment reformulations
affect the quality of the model fragment, we propose four
variants. The variants are based on reformulation strategies
that are found in the literature to reformulate the terms of
an initial search query (expansion [12], replacement [13],
reduction [14], and selection [15]).

5.1 Variant 1: Expansion

This variant applies a query reformulation strategy that
is based on Rocchio’s method [12], which is perhaps the
most commonly used method for query reformulation [98].
In Rocchio’s method, the order of the terms in the top K
relevant documents is based on the sum of the importance
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Fig. 6. Model fragment reformulation using four variants: (V1) expansion, (V2) replacement, (V3) reduction, and (V4) selection

of each term of the K documents relative to the corpus by
using the following equation:

Rocchio =
∑
d∈R

TfIdf(t, d)

where R is the set of top K relevant documents in the list
of retrieved results, d is a document in R, and t is a term in
d. The first component of the measure is the Term Frequency
(Tf), which is the number of times that the term appears in a
document and is an indicator of the importance of the term
in the document compared to the rest of the terms in that
document. The second component is the Inverse Document
Frequency (Idf), which is the inverse of the number of
documents in the corpus containing that term and indicates
the specificity of that term for a document containing it.
Once the terms in these K relevant documents are in order,
the top N terms are selected to expand the input query.

To reformulate a model fragment by means of Rocchio
expansion, this variant considers the following inputs: the
input query (which is the model fragment to be refor-
mulated), and the corpus (which is the model fragment
population). First, the terms of the input query and the
documents of the corpus are extracted. Second, the relevant
and non-relevant documents are selected. The relevant doc-
uments are the top K model fragments that have the highest
fitness score, whereas the non-relevant documents are the
rest of the model fragments of the population. Third, the

terms of the relevant documents are ordered using Rocchio’s
method. Fourth, the top N terms are selected. Finally, the
model elements from the product model that match the
selected terms are identified. These model elements are used
to extend the model fragment to be reformulated.

Fig. 6-(V1) shows an example of the core of this variant,
which sets the top three model fragments with the highest
fitness score as relevant documents and reformulates the
model fragment with the top term. The upper part of Fig. 6-
(V1) shows the inputs: the model fragment to be reformu-
lated (i.e., initial query) and a set of the model fragment
population. Then, this variant selects the terms in order to
expand the model fragment to be reformulated as follows:

1) It extracts the terms of the initial query (breaker,
convert, hvac) and the terms of each model fragment
of the population, (e.g., MF1: convert, hvac, failur,
overload, peer, coverag; MF2: convert, hvac, failur, over-
load; and MF4: hvac, failur, overload).

2) It selects the top three model fragments as relevant
documents (MF1 fitness score: 0.93; MF2: 0.81; and
MF4: 0.71) and the rest of the model fragments of
the population as non-relevant documents.

3) It orders the homogenized terms of the relevant
documents using Rocchio’s method: convert, hvac,
failur, overload, coverag, peer.

4) It selects the top term that is not already included in
the initial query (failur).
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Once failur is selected as the term to expand, it is used
to identify the model element of the product model that
matches failur (shown in Fig. 3). As a result, the model
element Failure Overload is identified in order to extend the
model to be reformulated. The bottom part of Fig. 6-(V1)
depicts the resulting reformulated model fragment.

5.2 Variant 2: Replacement
This variant is based on a query reformulation strategy that
has been applied in source code retrieval [13]. The strategy
selects a set of candidate terms to replace the initial query
with a new set of query terms. These terms are domain-
specific since domain specificity appears to be the dominant
factor in improving the results [13].

Domain specificity (DS) measures the extent to which a
term is specific to the domain document. In [13], domain
specificity DS(t, d) of term t in document d is estimated
by comparing the relative frequency of the term within a
domain-specific document versus its relative frequency in
a general corpus of documents [101]. It is calculated as
follows:

DS(t, d) = ln

[
freq(t, d)∑
t∈d freq(t, d)

/
freq(t, G)∑
t∈G freq(t, G)

]
where freq(t, d) is the total number of occurrences

of term t in a given document d, the first component
freq(t, d)/

∑
t∈d freq(t, d) is the normalized number of

occurrences of term t in the domain-specific document d,
and the second component is the normalized number of
occurrences of t in the general corpus of documents. DS is
then calculated as the average value of all domain specificity
values from each document of the collection:

DS(t) =
1

|D|
∑
d∈D

DS(t, d)

To reformulate a model fragment by means of replace-
ment, this variant considers the terms of the model fragment
to be reformulated as initial query . To select the terms
that replace the N terms of the initial query, a DS value
is calculated for each term of the relevant documents (i.e.,
terms from the top K model fragments that have the highest
fitness score). Then, the top N terms with the highest DS
value are selected. The selected terms are used to identify
the model elements from the product model that comprise
the reformulated model fragment.

Fig. 6-(V2) shows an example of the core of this variant,
which takes both the model fragment to be reformulated
(i.e., initial query) and the model fragment population as
input. The terms that replace the three homogenized terms
of the initial query (breaker, convert, hvac) are selected by
calculating the DS value for each term of the relevant docu-
ments. In this example, the relevant documents are the top
three model fragments with the highest fitness score: MF1,
MF2, andMF4. Afterwards, since the initial query has three
terms, the top three terms with the highest DS value (peer,
coverag, convert) are selected to identify the model elements
from the product model to be included in the reformulated
model fragment. The bottom part of Fig. 6-(V2) depicts the
reformulated model fragment obtained as a result.

5.3 Variant 3: Reduction
This variant is based on a conservative automatic query re-
duction approach that has previously been used in software
engineering [14], [102]. This approach consists of eliminat-
ing non-discriminating terms, which are those terms that
appear in more than 25% of the documents in the corpus.

Recent research has shown that removing noisy terms
from the query leads to substantial retrieval improve-
ment [103]. Longer queries are typically used to express
more sophisticated information needs. Nevertheless, longer
queries are used to include important information as well as
noise (i.e., terms that do more to confuse the search engine
than support it in its task). Since the performance of most
commercial and academic search engines deteriorates while
handling longer queries [104], the aim of query reduction is
to reduce long queries to shorter ones.

To reformulate a model fragment by means of reduction,
its terms are extracted as the base query. Then, the terms
of each document in the corpus (i.e., the terms of each
model fragment of the population) are extracted and used
to calculate the terms of the base query that are reduced
(if they appear in more than 25% of the documents in the
corpus). Afterwards, the terms to be reduced are used to
identify the model elements to be removed from the model
fragment to be reformulated.

Fig. 6-(V3) shows an example of the core of this variant
in which the inputs are shown in the upper part of the
figure (the model fragment to be reformulated and a set
of the model fragment population). This variant performs
the selection of terms to be reduced from the homogenized
terms of the model fragment to be reformulated (breaker,
convert, hvac). In this example, the term hvac appears in more
than 25% of the documents in the corpus, so it is selected to
be reduced. Then, this term is used to identify the model
element (hvac) from the model fragment to be reformulated,
and it is then removed. As a result, the reformulated model
fragment shown at the bottom part of Fig. 6-(V3) is obtained.

5.4 Variant 4: Selection
This variant is based on a query reformulation strategy
that has been applied in source code retrieval [15]. The
strategy automatically selects a set of top N terms from
the text of a change request (title and description). To do
this, the technique starts with the transformation of the text
into a text graph where terms are denoted as vertices, and
meaningful relations among those terms are represented as
the edges [105]. This relation can be statistical, syntactic, or
semantic in nature [106]. Once the graph is created, Tex-
tRank and POSRank calculations are applied to determine
the importance of a term in the graph.

This variant considers statistical relations to transform
the input text into the text graph and TextRank calculation
as applied in [15] since the combination of statistical and
syntactic graphs as well as the combination of TextRank
and POSRank calculations provide a marginal improve-
ment [15].

To capture statistical relations, co-occurrence of the
words within a fixed window (e.g., window size = 2) is
considered across all of the sentences from the request (as
recommended by Mihalcea and Tarau [105]). For example,
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the relationships obtained from the homogenized terms of
MF1 are: convert ↔ hvac, hvac ↔ failur, failur ↔ overload,
overload↔ peer, and peer↔ coverag; Then, these relationships
are encoded as bi-directional into the connecting edges
between the corresponding vertices (i.e., terms) in the text
graph.

Once the text graph is encoded, it is considered to be a
regular connected network, and a popular graph-based al-
gorithm (PageRank [107]) for ranking its vertices (i.e., terms)
is applied. PageRank was originally proposed by Brin and
Page for web link analysis, and the algorithm exploits the
topological properties of a graph to estimate the weight
(i.e., importance) of each of the vertices. TextRank is an
adaptation of PageRank for text graph [15]. It analyzes the
connectivity (i.e., connected neighbors and their weights) of
each term vi in the graph recursively and then calculates the
term’s weight, TR(vi), as follows:

TR(vi) = (1− φ) + φ
∑
j∈Vi

TR(vj)

|V (vj)|
(0 ≤ φ ≤ 1)

where V (vj) and φ denote the list of vertices connected
to vi and the dumping factor, respectively. In the context
of web surfing, the dumping factor, φ, is considered to be
the probability of randomly choosing a web page by the
surfer, and 1 - φ is the probability of jumping off that page.
Mihalcea and Tarau [105] use a heuristic value of φ = 0.85
for natural language texts in the context of keyword ex-
traction, and we also use the same value for our TextRank
calculation as recommended in [15]. We initialize each of
the terms in the graph with a default value of 0.25 [15]
and run an iterative version of the algorithm [107]. The
computation iterates until it reaches the maximum iteration
limit (i.e., 100 as suggested by Blanco and Lioma [106]).
Once the computation is over, each of the terms in the graph
has a final score, which is considered to be the weight or
importance of that term within the texts provided as input.
Then, the top N terms are selected.

To reformulate a model fragment by means of statistical
relations and TextRank, this variant considers as a text
the terms of each of the relevant documents (i.e., the top
k model fragments with the highest fitness). Each text is
considered as a sentence that will be encoded in the text
graph. Once the text graph is encoded and the computation
of TextRank is completed, the top N terms will be used to
identify the model elements that will comprise the reformu-
lated model fragment.

Fig. 6-(V4) shows an example of the core of this variant
in which the terms to be used as input in the reformulation
of the model fragment are the top three model fragments
of the population that have the highest fitness score (MF1,
MF2, MF4). The text graph of the previous example, which
includes the homogenized terms and relationships of MF1,
is extended to encode the terms and relationships of the
other relevant documents. Hence, the relationships obtained
from the homogenized terms of MF2 are convert ↔ hvac,
hvac ↔ failur, and failur ↔ overload; and the relationships
from MF4 are hvac ↔ failur and failur ↔ overload. Once the
computation of TextRank is completed and if the top five
homogenized terms are selected (as recommended in [15]),

the result is: failur, overload, coverag, peer, and hvac. After-
wards, these terms are used to identify the model elements
from the product model that comprise the reformulated
model fragment. The lower part of Fig. 6-(V4) depicts the
reformulated model fragment obtained as a result.

6 EVALUATION

This section explains the evaluation of our work, the re-
search questions we set out to answer, and the evaluation
process, measures, and statistical analysis that we used to
answer these questions.

6.1 Research questions
We seek to answer the following three research questions:

RQ1: What is the performance in terms of the solution
quality of the baselines and the four model fragment reformulation
variants?

RQ2: Is the difference in performance between the variants
and the baseline that obtains the best results significant?

RQ3: How much is the quality of the solution influenced using
each variant compared to the baseline that obtains the best results?

6.2 Planning and execution
Fig. 7 presents an overview of the process that is planned
to answer each research question. To put the performance
of our work in perspective and to study the impact on the
results, we set two baselines. Baseline 1 is the evolutionary
algorithm that uses the most popular choice of genetic
operations of the SBMDE community (see Table 1), whereas
Baseline 2 is an evolutionary algorithm that is similar to
Baseline 1 but that replaces the single-point crossover op-
eration of Baseline 1 with a randomly generated mask. The
mask determines how the combination of two parents is
done, indicating for each element of the model fragments
whether the new individual should inherit from one parent
or the other. Then, the element may or may not be included
depending on whether or not it is present in the parent
selected. We set Baseline 2 because the mask crossover
operation achieves the best results when it comes to locating
features in models [6], [84], [88], [89].

The evaluation process takes the data set provided by
our industrial partner as input, as the left part of Fig. 7
shows. The data is made up of 23 trains where, on average,
each product model is composed of more than 1200 model
elements. Each model element has about 15 properties that
include terms, which are used to differentiate among model
elements. Specifically, CAF provided the following docu-
mentation of their railway solutions: 121 feature descrip-
tions; the 23 product models where the model fragments
should be located; and the approved feature realization
(i.e., the model fragment that corresponds to each feature)
that will be considered to be the ground truth (oracle).
The model fragments that correspond to each feature have
between 5 and 20 model elements, with an average of 13.55
model elements and a median of 14 model elements.

In addition, CAF provided us with lists of domain
terms and stopwords to process the NL. The list of domain
terms has around 300 domain terms, and the stopwords
list has around 60 words. The list of domain terms and
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stopwords was obtained from the existing documentation in
CAF. Specifically, these lists were obtained from the existing
documentation that is used for training new employees.
We believe that companies similar to CAF will also have
documentation for training new employees in their domain,
so this documentation can be used to generate the two lists
that our approach needs to process the NL.

6.2.1 Answering Research Question 1
To assess the performance in terms of solution quality of the
two baselines and the four model fragment reformulation
variants (expansion, replacement, reduction, and selection),
we executed 30 independent runs (as suggested by Arcuri
and Fraser [108]) for each feature, baseline, and variant, i.e.,
121 (features) x 6 (two baselines and four variants) x 30
repetitions = 21780 independent runs.

To assess the quality of each retrieved model fragment, a
confusion matrix was calculated by comparing the retrieved
model fragment and the oracle. The confusion matrix is a
table that is often used to describe the performance of a
classification model on a set of test data (the best solutions)
for which the true values are known (from the oracle). In our
evaluation, each solution is a retrieved model fragment that
is made up of a subset of the model elements that are part
of the product model. Since the granularity is at the level
of model elements, the presence or absence of each model
element is considered to be a classification. The confusion
matrix distinguishes between the predicted values and the
real values, classifying them into four categories: 1) True
Positive (TP): values that are predicted as true (in the
solution) and are true in the real scenario (the oracle); 2)
False Positive (FP): values that are predicted as true (in the
solution) but are false in the real scenario (the oracle); 3)
True Negative (TN): values that are predicted as false (in
the solution) and are false in the real scenario (the oracle);
and 4) False Negative (FN): values that are predicted as false
(in the solution) but are true in the real scenario (the oracle).

In a report, from the comparison of each feature in the
baselines and the four variants, we recorded three perfor-
mance measures that are widely accepted in the software en-
gineering research community [109]: Recall = TP

TP+FN (mea-
sures the number of elements of the oracle that are correctly

retrieved); Precision = TP
TP+FP (measures the number of

elements from the solution that are correct according to the
oracle); and F-measure = 2 ∗ Precision∗Recall

Precision+Recall (corresponds
to the harmonic mean of precision and recall). Recall and
precision values can range between 0% to 100%. A value
of 100% precision and 100% recall implies that both the
solution and the oracle are the same.

6.2.2 Answering Research Question 2
To determine if the difference in performance between the
variants and the baseline is significant, the results should
be properly compared. To do this, all of the data resulting
from the empirical analysis was analyzed using statistical
methods following the guidelines in [11]. The goal of our
statistical analysis is to provide formal and quantitative
evidence (statistical significance) that the variants and the
baseline (which obtains the best results) do in fact have an
impact on the comparison metrics (i.e., the differences were
not obtained by mere chance).

In order to enable statistical analysis, the baseline that
obtains the best results and all variants should be run a
large enough number of times (independently) to collect
information on the probability distribution. A statistical
test should then be run to assess whether there is enough
empirical evidence to claim that there is a difference among
the baseline and the variants. To do this, two hypotheses
are defined: 1) the null hypothesis H0 is typically defined to
state that there is no difference when the baseline and the
variants are compared; and 2) the alternative hypothesis H1

states that there is a difference if at least one of the variants
or the baseline is different. A statistical test aims to verify
whether H0 should be rejected.

The statistical tests provide a probability value, p-value,
which obtains values between 0 and 1. The lower the
p-value of a test, the more likely that the null hypothesis
H0 (defined to state that there is no difference among the
baseline and the variants) is false. It is accepted by the
research community that a p-value under 0.05 is statistically
significant [11], and so H0 can be considered false.

The test to be used depends on the properties of the
data. Since our data does not follow a normal distribution,
our analysis requires the use of non-parametric techniques.
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There are several tests for analyzing this kind of data; how-
ever, the Quade test is more powerful when working with
real data [110]. In addition, the Quade test has shown better
results than the others when the number of algorithms is
low [111].

To determine whether a variant has a significant impact
on the quality of the solution with regard to the baseline,
the quality of the solution of each variant should be statis-
tically compared against the baseline. In order to do this,
we performed an additional post-hoc analysis (pair-wise
comparison between a variant and the baseline).

6.2.3 Answering Research Question 3
To determine how much the quality of the solution is
influenced using each variant compared to the baseline, it
is important to assess (through effect size measures) whether
a criterion is statistically better than the baseline, and if so,
the magnitude of the improvement.

For a non-parametric effect size measure, we used two
non-parametric effect size measures: Vargha and Delaney’s
Â12 [112], [113] and Cliff’s delta [114], [115]. Â12 measures
the probability that running one variant yields higher values
than running the baseline. If the variant and the baseline are
equivalent, then Â12 will be 0.5. For example, Â12 = 0.7
between Variant 1 and the baseline means that Variant 1
would obtain better results in 70% of the runs, and Â12 =
0.3 means that the baseline would obtain better results in
70% of the runs. We recorded an Â12 value for each pair-
wise comparison between a variant and the baseline.

Cliff’s delta is an ordinal statistic that describes the
frequency with which an observation from one group is
higher than an observation from another group compared
to the reverse situation. It can be interpreted as the degree to
which two distributions overlap with values ranging from
-1 to 1. For instance, when comparing distribution x and
distribution y: a value of 0 means there is no difference
between two distributions; a value of -1 means that all
samples in distribution x are lower than all samples in
distribution b; a value of 1 means the opposite (all samples
in x are higher than all samples in y). In addition, threshold
values were defined [116] for the interpretation of Cliff’s
delta effect size (|d| < 0.147 → ”negligible”; |d| < 0.33 →
”small”; |d| < 0.474→ ”medium”, |d| ≥ 0.474→ ”large”).

6.3 Implementation details
For a fair comparison between the baselines and the vari-
ants, we have chose the parameters shown in Table 2. These
parameters (such as population size and number of parents)
correspond to those settings that are commonly used in the
literature [6], [88], [89], [100], [117].

To implement the baselines and the model fragment re-
formulation variants, we used the Eclipse Modeling Frame-
work [118] to manipulate the models. The techniques used
to process the NL were implemented using OpenNLP [119]
for the POS-Tagger and using the English (Porter2) stem-
ming algorithm [120] for the stemming algorithm (origi-
nally created using snowball and then compiled to Java).
The LSI was implemented using the Efficient Java Matrix
Library (EJML [121]). The genetic operations are built upon
the Watchmaker Framework for Evolutionary Computation

TABLE 2
Parameter settings

Genetic Operations Parameter description Value
Evolutionary algorithm Size: Population Size 100

r: Solutions replaced at population size 2
Crossover and mutation µ: Number of Parents 2

λ: Number of offspring from µ parents 2
pcrossover : Crossover probability 0.9
pmutation: Mutation probability 0.1

Reformulations (V1,V2,V4) Number of relevant documents 5
Reformulation (V1) Terms to expand 10
Reformulation (V3) Reduction value 25

[122]. An independent run of one of the baselines comprises
more than 1406 lines of code, whereas an independent run of
one of the variants comprises more than 1770 lines of code.
Just the implementation of the operations that perform the
model fragment reformulation comprises an average of 409
lines of code for each variant.

Overall, there are two atomic performance measures for
evolutionary algorithms with regard to solution quality and
algorithm speed (or search effort). In this paper, we focus on
the solution quality (i.e., obtaining a solution that is more
similar to the one from the oracle in terms of precision and
recall). After running some prior tests for each baseline and
variant to determine the time to converge (and adding a
margin to ensure convergence), we allocated a fixed amount
of wall clock time (80 seconds) to stop the execution. During
that time, the baselines are capable of executing an average
of 347685 generations, whereas Variants 1-4 are capable of
executing an average of 258, 384, 10176, and 480 gener-
ations, respectively. We performed the execution using a
Mac Pro computer with an Intel Xeon E5-2697 V2 processor
(clock speeds 2.7 GHz and 12 cores) and 64 GB of RAM.
The computer was running macOS Mojave (10.14.5) as the
hosting Operative System and the Java(TM) SE Runtime
Environment (build 1.8.0 77).

The data set and part of the implementation are lim-
ited by confidentiality agreements that we have with the
industrial partner. The trains of the data set are currently
operating and under maintenance contracts or will be re-
leased in the near future. The CSV files used as input in
the statistical analysis as well as an open-source imple-
mentation of the baselines and variants are available here:
https://www.bitbucket.org/svitusj/mfr

7 RESULTS

This section presents the results obtained for RQs 1-3.

7.1 Research Question 1

Table 3 shows the mean values and standard deviations of
recall, precision, and F-measure for the two baselines and
the four model fragment reformulation variants.

RQ1 answer. The results reveal that Baseline 2 outper-
forms Baseline 1 in the three performance measures (recall,
precision, and F-measure). With regard to the variants, Vari-
ant 1 outperforms the baseline in recall (76.60%). Moreover,
Variant 2 (replacement) obtains the best results in terms
of recall, precision, and F-measure (95.67%, 66.50%, and
77.71%, respectively), whereas Variant 3 obtains the worst

https://www.bitbucket.org/svitusj/mfr
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TABLE 3
Mean values and standard deviations for recall, precision, and the

F-measure for the baselines and variants

Recall ± (σ) Precision ± (σ) F-measure ± (σ)

Baseline 1 34.34 ± 15.13 33.06 ± 12.47 30.67 ± 10.82
Baseline 2 57.94 ± 14.14 52.42 ± 15.19 52.70 ± 10.17
Variant 1 76.60 ± 14.02 37.47 ± 15.28 47.81 ± 14.75
Variant 2 95.67 ± 2.43 66.50 ± 13.30 77.71 ± 9.57
Variant 3 28.49 ± 13.12 10.67 ± 9.15 12.77 ± 7.99
Variant 4 67.43 ± 15.89 34.84 ± 13.29 43.89 ± 12.98

results (28.49% in recall, 10.67% in precision, and 12.77% in
F-measure).

7.2 Research Question 2
The Quade test p-value is� 2.2x10−16 for all performance
indicators (recall, precision, and F-measure).

In order to report the results of the post-hoc analysis
(pair-wise comparison between a variant and the baseline),
we compare the results of the variants with the results
of Baseline 2 since it outperforms Baseline 1. In addition,
we compare the results of the variants. Table 4 shows the
Holm’s post-hoc p− V alues.

TABLE 4
Holm’s post-hoc p− V alues for comparing each variant with Baseline 2

and for comparing the variants

Recall Precision F-measure

V1 vs Baseline � 2x10−16 5.6x10−13 0.0025
V2 vs Baseline � 2x10−16 6.4x10−14 � 2x10−16

V3 vs Baseline � 2x10−16 � 2x10−16 � 2x10−16

V4 vs Baseline 1.7x10−5 2.8x10−16 7.6x10−8

V1 vs V2 � 2x10−16 � 2x10−16 � 2x10−16

V1 vs V3 � 2x10−16 � 2x10−16 � 2x10−16

V1 vs V4 5.7x10−5 0.2 0.035
V2 vs V3 � 2x10−16 � 2x10−16 � 2x10−16

V2 vs V4 � 2x10−16 � 2x10−16 � 2x10−16

V3 vs V4 � 2x10−16 � 2x10−16 � 2x10−16

RQ2 answer. Since the Quade test p-Values and Holm’s
post-hoc p− V alues shown in Table 4 are smaller than 0.05
in all cases when a variant is compared with the baseline,
we reject the null hypothesis. Consequently, we can state
that there are significant differences for every pair-wise
comparison between the variants (V1-V4) and the base-
line for all of the performance indicators (recall, precision,
and F-measure). With regard to the pair-wise comparisons
between the variants, the performance indicators (recall,
precision, and F-measure) are smaller than 0.05 in all cases
except when precision of V1 is compared with V4. Conse-
quently, we can state that there are significant differences
for every pair-wise comparison between the variants (V1-
V4) for all of the performance indicators (recall, precision,
and F-measure) except for precision when V1 and V4 are
compared.

7.3 Research Question 3
Table 5 shows the values of the effect size statistics be-
tween pair-wise comparisons of a Variant and the baseline

(Baseline 2). In addition, Table 5 shows the values of the
effect size statistics between pair-wise comparisons of two
variants. Specifically, the upper part of the table shows the
Â12 values, whereas the lower part of the table shows the
Cliff’s Delta values for recall, precision, and F-measure.

TABLE 5
Effect size measures for comparing each variant with Baseline 2 and

for comparing the variants

Â12

Recall Precision F-measure

V1 vs Baseline 0.8178 0.2466 0.4055
V2 vs Baseline 0.9980 0.7483 0.9659
V3 vs Baseline 0.0636 0.0133 0.0022
V4 vs Baseline 0.6665 0.1983 0.3015
V1 vs V2 0.0939 0.0765 0.0332
V1 vs V3 0.9962 0.9270 0.9665
V1 vs V4 0.6599 0.5490 0.5956
V2 vs V3 1 0.9994 1
V2 vs V4 0.9632 0.9578 0.9881
V3 vs V4 0.0273 0.0741 0.0283

Cliff’s Delta

Recall Precision F-measure

V1 vs Baseline 0.6356 -0.5068 -0.1890
V2 vs Baseline 0.9961 0.4967 0.9318
V3 vs Baseline -0.8729 -0.9732 -0.9955
V4 vs Baseline 0.3331 -0.6033 -0.3968
V1 vs V2 -0.8121 -0.8469 -0.9335
V1 vs V3 0.9923 0.8541 0.9331
V1 vs V4 0.3199 0.0980 0.1912
V2 vs V3 1 0.9988 1
V2 vs V4 0.9264 0.9157 0.9762
V3 vs V4 -0.9453 -0.8518 -0.9433

RQ3 answer. From the results, we can conclude how
much the quality of the solution is influenced using each
variant compared to the baseline. The magnitude of im-
provement using Variant 2 (replacement) instead of the
baseline can be interpreted as being large according to the
magnitude scales [116] of the Cliff’s Delta values. According
to the Â12 value, Variant 2 obtains better results in the F-
measure than the baseline in 96.59% of the runs. Hence,
Variant 2 (replacement) has an actual impact on perfor-
mance. In contrast, the baseline has an actual impact on
performance with regard to Variant 1 (expansion), Variant 3
(reduction), and Variant 4 (selection). The largest difference
is when Variant 3 and the baseline are compared, whereas
the differences with Variant 4 and Variant 1 are medium and
small, respectively. With regard to the comparisons of two
variants, the largest differences are obtained when Variant 2
(replacement) and Variant 3 (reduction) are compared. Vari-
ant 2 obtains better results in the F-measure than Variant 3
in 100% of the runs.

8 DISCUSSION

Our empirical results have confirmed that utilizing auto-
matic query reformulations as genetic operations pays off in
the location of features in models. However, it turns out that
the results do not include all of the model elements of the
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features (100% of recall and precision). Our analysis of the
results reveals that this happens because the fitness step that
guides the evolutionary algorithm is not giving the highest
fitness values to the approved feature realizations due to
incomplete feature descriptions and vocabulary mismatch.

On the one hand, incomplete feature descriptions do not
completely describe the model fragment to be located. On
the other hand, vocabulary mismatch is a phenomenon that
occurs when different words are used to refer to the same
concept in the feature description and models. Although we
use NLP to unify the terms, vocabulary mismatch remains
an issue since in-house terms are often not recognized as
eligible synonyms and are therefore excluded from NLP.
This leads to vocabulary mismatch. For example, the terms
PLC and system may be recognized as synonyms, but the
terms PLC and COSMOS are definitely not known to be
synonyms because COSMOS is an in-house term that is
used exclusively by our industrial partner to refer to the
term PLC. To minimize the vocabulary mismatch issue
between the feature description and models, NLP should
be extended in order to include a list of in-house synonyms.

By analyzing the results of each variant, we detected
that there are significant differences in terms of the solution
quality in comparison to the most popular choices of genetic
operations in SBMDE (Baseline 2). In addition, we detected
the following:

V1 (Expansion): This variant only has the ability to add
elements to a model fragment. When a model fragment of
the initial population is created with model elements that
do not belong to the solution of the oracle, V1 is not able
to remove those elements. V1 obtains the best results in the
model fragments of the initial model fragment population
that have been created with fewer model elements. How-
ever, V1 is not able to reach the solution of the oracle and
even the model fragment to be reformulated has a small size
(even when it only has one single model element).

V2 (Replacement): This variant has the ability to remove
elements from the model fragment. In fact, this variant
replaces all of the terms of the query as is stated in the
literature (in our case, all of the elements of the model
fragment to be reformulated). This could lead to believing
that replacement does not preserve model elements after
the reformulation. However, after inspecting the results, we
found that the terms selected to perform the replacement
correspond to some model elements that were originally in
the model element. Hence, this variant has the capacity to
conserve, to eliminate, and to add elements.

V3 (Reduction): This variant only eliminates elements of
the model fragment because of its definition in the literature
of reformulations. Analogously to what happens with V1,
it may seem that model fragments with more elements are
the ones that should give better results. However, this is not
the case when the results are analyzed. The criterion used
by this variant for reducing the most popular terms (i.e., the
terms that appear in more than 25% of the documents) does
not lead to good results. This is because domain experts
produce queries that include terms that are popular in
the relevant documents. Since this variant eliminates those
popular terms, the reformulated model fragment differs
from the oracle since it does not include model elements
that are related to the popular terms.

V4 (Selection): This variant has the same capabilities to
explore the solution space as V2 (Replacement) by conserv-
ing, eliminating, and adding elements to the model frag-
ment to be reformulated. However, V4 follows a different
strategy than V2. The main idea of V4 is to identify the
elements that comprise the reformulated model fragment
by selecting N terms according to their importance (given
by the connected terms of the relevant model fragments and
their weights). The main idea of V2 is to replace the elements
of the model fragment to be reformulated with elements that
correspond to the terms with the highest domain specificity.
Our results show that the strategy of V2 is better suited for
the task of feature location in models such as the ones of our
industrial partner.

V2 (Replacement) obtains the best results for FL in
models. One may think that this operator should always be
the preferred option. However, by analyzing the results, we
detected that V4 (Selection) is a better choice when incom-
plete feature descriptions are the input of feature location.
In other words, if the software engineer in charge of feature
location has confidence in the completeness of the feature
description, then V2 is the recommended operator. The idea
of domain specify of V2 yields better quality results in that
scenario. On the other hand, if the software engineer thinks
that the feature description is significantly incomplete, then
V4 is the recommended operator. The idea of V4 of giving
more importance to the connected terms is better suited to
compensate for incomplete feature descriptions.

In the context of feature location in models, V3 (Re-
duction) is not recommended in any case. In all of the
cases, the criterion of reduction worsens the quality of the
results by eliminating terms that are relevant to the feature.
Finally, when SBMDE researchers evaluate these operators
in other software engineering tasks, we recommend that in
the case of V1 (Expansion), the initial population should
only compromise individuals of one single model element.
This is the best scenario for this operator, and it will help
to better understand the potential of this operator in other
tasks.

Our results are relevant to the SBMDE community since
researchers should consider reformulations as genetic oper-
ations to improve their approaches. All reformulation vari-
ants should still be considered since different MDE-related
tasks might require different reformulation variants (or even
combinations of them). In fact, a catalog of reformulations
for MDE tasks is part of our future work.

It is important to highlight that the models taken as
input in this work are used in a Model-Driven Development
(MDD) context, so these models are used to obtain the
code to completely control a train. For this reason, these
MDD models are richer in terms than other kinds of models
such as sketches for analysis. In the case of these MDD
models, which are rich in terms, the use of reformulations to
exploit the latent semantics pays off. However, in non-MDD
models, we cannot affirm that the results will be similar.
Our intuition makes us think that latent semantics can help
in non-MDD models, but it might not be enough. Therefore,
our future work also includes non-MDD models and hybrid
variants that combine widespread genetic operations and
reformulations.

There are other software maintenance and evolution
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activities where it is also essential that software elements be
found, such as bug location and requirements traceability.
Bug location aims to identify the location in the software
that is pertinent to a software fault. Removing bugs is
analogous to removing unwanted functionality [123]. In
this sense, the bug description of a bug report could be
used as the (unwanted) feature description. The output of
the (unwanted) feature location is the ranking of model
fragments that are relevant to the bug.

In the case of requirements traceability, it is important to
highlight the differences between a feature and a require-
ment. They are written in a different style, in a different
phase of development, and with a different goal in mind.
Requirements are written before development, are client-
influenced, and are for contracts. In contrast, features are
written when products already exist, are internal, and are for
reuse. Nevertheless, requirements are commonly specified
in textual form by means of natural language, as is the case
of feature descriptions. Therefore, a requirement could be
used as the input query, whereas the output would hold
model fragments that are relevant to the requirement.

Our adaptation of automatic query reformulations to
genetic operations has been designed to be generic and
applicable not only to feature location and to the domain
of our industrial partner, but also to other tasks (e.g., bug
location and requirements traceability) and domains. Hence,
our work opens a new research direction for the SBMDE
community (where models are the cornerstone artifact) to
improve other software maintenance and evolution tasks.

Although our work focuses on models, our results can
also motivate SBSE researchers, who use other artifacts such
as code, requirements, or tests, to evaluate whether the
quality of the solution is improved using genetic operations
that leverage the latent semantics instead of randomly gen-
erating new candidate solutions.

9 THREATS TO VALIDITY

We use the classification to threats of validity suggested by
De Oliveira et al. [124] to acknowledge the threats to the
validity of our work.

Conclusion validity threats: We considered 30 indepen-
dent runs for each variant and feature to address the first
threat of this type, which is not accounting for random
variation. To avoid the second threat of this type, which
is the lack of a formal hypothesis and statistical tests, we
employed standard statistical analysis following accepted
guidelines [108]. To address the threat of the lack of a good
descriptive analysis, we have used the recall, precision, and
F-measure measurements to analyze the confusion matrix
obtained; however, other measurements could be applied.
Some works argue that the use of the Vargha and Delaney
Â12 measurement can be misrepresentative [108] and that
data should be pre-transformed before applying it. We did
not find any use cases for data pre-transformation that
applied to our case study.

Internal validity threats: We used values from the
literature for the algorithms to address the first identified
threat of this type, which is the threat of poor parameter
settings. As suggested by Arcuri and Fraser [108], default
values are good enough to measure the performance of

location techniques. These values have been tested in similar
algorithms for Feature Location [125]. With regard to the
parameter required to produce a solution (stop condition),
we used 80 seconds since it was the time needed by our
approach in the real-world industrial context. Nevertheless,
we cannot yet claim how this time scales in other real-world
industrial contexts with a larger search space size or a larger
solution size. Another threat of this type is the lack of real
problem instances. To address this threat, the evaluation of
this paper was applied to an industrial case study.

Construct validity threats: To address the identified
threat of the lack of assessing the validity of cost mea-
sures, we performed a fair comparison among the vari-
ants. In addition, our evaluation was performed using
three measures (recall, precision, and F-measure), which
are widely accepted in the software engineering research
community [109].

External validity threats: To mitigate the threat of the
lack of a clear object selection strategy, our approach uses
an industrial case study, whose instances are collected from
real-world problems.

With regard to what extent it is possible to generalize
the results, the results depend on the quality of the queries,
as occurs in other works [98], [99]. Poor queries assign a
high rank to irrelevant model fragments. It is also worth
noting that the language used for the model elements and
the feature descriptions provided must be the same. This
language is specific to each domain; however, as long as
both elements are built using the same terminology, the LSI
will work. To narrow the gap between the two elements,
different NLP techniques such as tokenizers, stemming,
or POS tagging techniques can eventually be applied. For
instance, the naming conventions used by companies for
model elements can follow different formats, but the ap-
proach can be tailored to handle them.

Moreover, to mitigate the generalization threat, our ap-
proach has been designed to be generic and applicable not
only to the domain of our industrial partner but also to
other different domains. Our approach can be applied to any
model that conforms to MOF (the OMG metalanguage for
defining modeling languages), and the text elements that are
associated to the models are extracted automatically using
the reflective methods provided by the Eclipse Modeling
Framework. The requisites to apply our approach are that
the set of models must conform to MOF, and the feature
description must be provided in NL. However, our ap-
proach should be applied to other domains before assuring
its generalization.

10 CONCLUSION

SBSE ideas are increasing in the MDE community. Nevethe-
less, the resulting new field of study known as SBMDE is
still in its early stages. SBMDE researchers are reusing as is
techniques from SBSE without leveraging the particularities
of software models (the cornerstone artefact of MDE). This
is the case of one of the main ingredients of SBMDE: genetic
operations.

Our work proposes a novel adaptation of automatic
query reformulations as genetic operations that leverage the
latent semantics of software models. We analyze the impact
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of these operations in a real-world industrial case study of
feature location in models. As baselines, we use single-point
crossover plus random mutation (the most popular choice
in SBMDE) and mask crossover plus random mutation (the
genetic operations that achieve the best results in feature
location in models).

Our reformulation operations have improved the results
of the best baseline (by 37.73% in recall and 14.08% in
precision). This is relevant for the task of feature location in
models, which is one of the main activities performed dur-
ing software maintenance and evolution [126]. Other main
activities that share the goal of localizing relevant model
elements in models (such as bug location and requirements
traceability) are also candidates that can benefit from our
reformulation operations.

Furthermore, the only requirement for applying our
approach is the availability of terms in model elements.
Therefore, our reformulation operations have the potential
to influence most SBMDE works. We are aware that not
all kinds of models have the same number of terms. For
instance, a model for sketching a system is likely to have
fewer terms than a model for generating the entire code of a
system. Thus, exploring new variants of our reformulation
operations to suit more kinds of models is part of our future
work.

In addition, since reformulation operations are quite
promising and suggest an optimistic future for improving
feature location in software models, future works should
explore the performance of feature location in code using
reformulations as genetic operations instead of using oper-
ations that randomly mix information.
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