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Abstract

We consider damped wave (resp. Schrödinger and plate) equations driven by a hypoelliptic “sum
of squares” operator L on a compact manifold and a damping function b(x). We assume the Chow-
Rashevski-Hörmander condition at rank k (at most k Lie brackets needed to span the tangent space)

together with analyticity of M and the coefficients of L. We prove decay of the energy at rate log(t)−
1
k

(resp. log(t)−
2
k ) for data in the domain of the generator of the associated group. We show that this

decay is optimal on a family of Grushin-type operators. This result follows from a perturbative argu-
ment (of independent interest) showing, in a general abstract setting, that quantitative approximate
observability/controllability results for wave-type equations imply a priori decay rates for associated
damped wave, Schrödinger and plate equations. The adapted quantitative approximate observabil-
ity/controllability theorem for hypoelliptic waves is obtained by the authors in [LL19, LL17].
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1 Introduction and statements

1.1 Damped hypoelliptic evolution equations

We consider a smooth compact connected d-dimensional manifold M, endowed with a smooth positive
density measure ds. We denote by L2 = L2(M) = L2(M, ds) the space of square integrable functions
with respect to this measure. Given a smooth vector field X , we define by X∗ its formal dual operator for
the duality of L2(M), that is,

∫

M

X∗(u)(x)v(x)ds(x) =

∫

M

u(x)X(v)(x)ds(x), for any u, v ∈ C∞(M).

Given m ∈ N and m smooth real vector fields X1, · · · , Xm, we consider the (Hörmander’s type I) hypoel-
liptic operator (also called sub-Riemannian Laplacian, see e.g. [LL17, Remark 1.30])

L =

m∑

i=1

X∗
i Xi. (1.1)
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Note that L is formally symmetric nonnegative since (Lu, v)L2(M) =
∑m

i=1(Xiu,Xiv)L2(M) for all u, v ∈
C∞(M). Given a nonnegative (so-called damping) function b ∈ L∞(M;R+), we are interested in the first
place in asymptotic properties of the damped wave equation associated to (L, b)

{
(∂2

t + L+ b∂t)u = 0, on (0,+∞)×M,

(u, ∂tu)|t=0 = (u0, u1), on M.
(1.2)

Solutions of (1.2) enjoy formally the following dissipation identity (obtained by taking the inner product
of (1.2) with ∂tu and integrating on (0, T )):

E(u(T ))− E(u(0)) = −
∫ T

0

∫

M

b(x)|∂tu(t, x)|2ds(x) dt, E(u) =
1

2

(
m∑

i=1

‖Xiu‖2L2(M) + ‖∂tu‖2L2(M)

)
.

We are also interested in the damped Schrödinger equation associated to (L, b)
{
(i∂t + L+ ib)u = 0, on (0,+∞)×M,

u|t=0 = u0, on M,
(1.3)

for which the L2 norm is a dissipated quantity (obtained by taking imaginary part of the inner product
of (1.3) with u and integrating on (0, T )):

1

2
‖u(T )‖2L2(M) −

1

2
‖u0‖2L2(M) = −

∫ T

0

∫

M

b(x)|u(t, x)|2ds(x) dt.

Another related equation with similar behavior is the damped plate equation associated to (L, b)
{
(∂2

t + L2 + b∂t)u = 0, on (0,+∞)×M,

(u, ∂tu)|t=0 = (u0, u1), on M.
(1.4)

Solutions of (1.4) also enjoy formally a similar dissipation identity

EP (u(T ))− EP (u(0)) = −
∫ T

0

∫

M

b(x)|∂tu(t, x)|2ds(x) dt, EP (u) =
1

2

(
‖Lu‖2L2(M) + ‖∂tu‖2L2(M)

)
.

Hence, in the three situations, “energy” decays, and an interesting question is to understand if it
converges to zero, and if so, at which rate.

We shall always assume throughout that the family (Xi) satisfies the Chow-Rashevski-Hörmander
condition (or is “bracket generating”).

Assumption 1.1. There exists ℓ ≥ 1 so that for any x ∈ M, Lieℓ(X1, · · · , Xm)(x) = TxM. Denote then
by k ∈ N∗ the minimal ℓ for which this holds.

Here, Lieℓ denotes the Lie algebra at rank ℓ of the vector fields. The integer k is sometimes referred to as
the hypoellipticity index of L. Under Assumption 1.1, the celebrated Hörmander [Hör67] and Rothschild-
Stein [RS76] theorems (see also [BCN82] for a simpler proof) state that L is subelliptic of order 1

k , that
is: there is C > 0 such that for any u ∈ C∞(M), we have

‖u‖2
H

2
k (M)

≤ C ‖Lu‖2L2(M) + C ‖u‖2L2(M) . (1.5)

As a consequence, the operator L is selfadjoint on L2(M) with domain L : D(L) ⊂ L2(M) → L2(M).

Since H2(M) ⊂ D(L) ⊂ H
2
k (M), L has compact resolvent and thus admits a Hilbert basis of eigenfunc-

tions (ϕj)j∈N, associated with the real eigenvalues (λj)j∈N, sorted increasingly, that is

Lϕi = λiϕi, (ϕi, ϕj)L2(M) = δij , 0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λj → +∞. (1.6)

This allows in particular to define adapted Sobolev spaces:

Hs
L = {u ∈ D

′(M), (1 + L)
s
2 u ∈ L2(M)}, ‖u‖Hs

L

=
∥∥(1 + L)

s
2 u
∥∥
L2(M)

, s ∈ R,

where f(L)u =
∑

j∈N
f(λj)(u, ϕj)L2(M)ϕj .

In addition to Assumption 1.1, we will also make the following analyticity assumption.
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Assumption 1.2. The manifold M, the density ds, and the vector fields Xi are real-analytic.

A non-exhaustive list of classical examples of operators L encompassed by this frameworks is provided
in [LL17, Section 1.1]. Note that the damping function b does not need to be analytic but only L∞; in
particular our results work for b = 1ω if ω is a non-empty open subset of M.

On the space H1
L
× L2, the operator A =

(
0 Id
−L −b(x)

)
with D(A) = H2

L
× H1

L
generates a

bounded semigroup (from the Hille-Yosida theorem) and (1.2) admits a unique solution u ∈ C0(R+;H1
L
)∩

C1(R+;L2). Our main results for damped hypoelliptic waves are summarized in the following two theorems.

Theorem 1.1 (Decay rates for damped hypoelliptic waves). Assume that b ∈ L∞(M) is such that b ≥ δ >
0 a.e. on a nonempty open set, together with Assumptions 1.1 and 1.2. Then, for all (u0, u1) ∈ H1

L
× L2,

the associated solution to (1.2) satisfies E(u(t)) → 0. Moreover, for all j ∈ N∗, there exists Cj > 0 such
that for all (u0, u1) ∈ D(Aj), the associated solution to (1.2) satisfies

E(u(t))
1
2 ≤ Cj

log(t+ 2)j/k

∥∥Aj(u0, u1)
∥∥
H1

L
×L2 , for all t ≥ 0. (1.7)

Theorem 1.1 is actually a consequence of the following result, together with [BD08].

Theorem 1.2 (Spectral properties for damped hypoelliptic waves). Assume that b ≥ δ > 0 a.e. on a
nonempty open set, together with Assumptions 1.1 and 1.2. Then, the spectrum of A contains only isolated
eigenvalues with finite multiplicity, and satisfies:

1. Sp(A) = Sp(A) and ker(A) = span{(1, 0)} (where 1 denotes the constant function),

2. Sp(A) ⊂
((

− 1
2‖b‖L∞(M), 0

)
+ iR

)
∪
(
[−‖b‖L∞(M), 0] + 0i

)
,

3. there exist C, ν > 0 such that
∥∥(is−A)−1

∥∥
L(H1

L
×L2)

≤ Ceν|s|
k

for all |s| ≥ 1,

4. there exist ε, ν > 0 such that Sp(A)∩Γk(ε, ν) = {0}, where Γk(ε, ν) = {z ∈ C,Re(z) ≥ −εe−ν| Im(z)|k}.
The first two points are rather standard, see [Leb96]. Item 3 is the key information in the Theorem,

and is a consequence of the main theorem in [LL17, Theorem 1.15]. The last point of the theorem states
an exponentially small spectral gap, and is a consequence of Item 3 and Neumann series expansion.

Combined together, Theorems 1.1 and 1.2 are the counterparts to [Leb96, Théorème 1] in the case of
the usual wave equation (k = 1, in which case no analyticity is required, and boundary condition can be
dealt with).

Note that the fact that Sp(A) ∩ iR = {0} in Item 2 (which, in turn, implies that E(u(t)) → 0 in
Theorem (1.1) for all solutions to (1.2)) is actually a consequence of the qualitative uniqueness:

(
ϕ ∈ H2

L, z ∈ C, Lϕ = zϕ on M, ϕ = 0 on ω
)

=⇒ ϕ ≡ 0 on M, (1.8)

proved by Bony [Bon69], as a consequence of the Holmgren-John theorem. Even this weaker property is
not well understood for general hypoelliptic operators if we drop Assumption 1.2, see [Bah86]. Here the
key point is the quantification of the Holmgren-John theorem proved in [LL19, LL17].

We present analogue results in the case of the damped hypoelliptic Schrödinger equation. We set
AS := iL − b with D(AS) = D(L), so that (1.3) reformulates as (∂t − AS)u = 0. Note that AS

generates a contraction semigroup (from the Hille-Yosida theorem) and (1.3) admits a unique solution
u ∈ C0(R+;L2(M)). Our main results for the damped hypoelliptic Schrödinger equation are summarized
in the following two theorems.

Theorem 1.3 (Decay rates for the damped hypoelliptic Schrödinger equation). Assume that b ∈ L∞(M)
is such that b ≥ δ > 0 a.e. on a nonempty open set, together with Assumptions 1.1 and 1.2. Then, for all
u0 ∈ L2(M), the associated solution to (1.3) satisfies u(t) → 0 in L2(M). Moreover, for all j ∈ N∗, there
exists Cj > 0 such that for all u0 ∈ D(Aj

S), the associated solution to (1.3) satisfies

‖u(t)‖L2(M) ≤
Cj

log(t+ 2)2j/k

∥∥∥Aj
Su
∥∥∥
L2(M)

, for all t ≥ 0. (1.9)
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Note that when comparing (1.9) to (1.7), the decay looks better (log(t+2)−2j/k instead of log(t+2)−j/k)

but actually consumes more derivatives: for smooth b,
∥∥∥Aj

Su
∥∥∥
L2(M)

≃ ‖u‖H2j
L

whereas
∥∥AjU

∥∥
L2(M)

≃
‖U0‖Hj

L
×Hj−1

L

. Hence both decay rates essentially coincide for data having the same regularity. Theo-

rem 1.3 is a consequence of the following result, together with [BD08].

Theorem 1.4 (Spectral properties for the damped hypoelliptic Schrödinger equation). Assume that b ≥
δ > 0 a.e. on a nonempty open set, together with Assumptions 1.1 and 1.2. Then, the spectrum of AS

contains only isolated eigenvalues with finite multiplicity, and satisfies:

1. Sp(AS) ⊂
[
− ‖b‖L∞(M), 0

)
+ i[0,+∞),

2. there exist C, ν > 0 such that
∥∥(is−AS)

−1
∥∥
L(L2)

≤ Ceν|s|
k/2

for all s ∈ R,

3. there exist ε, ν > 0 such that Sp(AS) ∩ Γk,S(ε, ν) = ∅, where Γk,S(ε, ν) = {z ∈ C,Re(z) ≥
−εe−ν| Im(z)|k/2}.

Note that in the elliptic case k = 1, the results of Theorems 1.3, 1.4 are more or less classical, even
though we did not see them written explicitely in the literature. In this situation, analyticity is not
necessary and boundary value problems can be dealt with. Our abstract perturbative proof below works
as well, as a consequence of [LL19] (with Dirichlet boundary conditions). One can however start from
the seminal estimates of Lebeau-Robbiano in this situation, see [LR95, Leb96] for Dirichlet conditions
and [LR97] for Neumann boundary conditions.

A similar result holds for the plate equation. The framework is quite similar to the wave equation. We

will work on the space H2
L
× L2 with the operator AP =

(
0 Id

−L2 −b(x)

)
with D(AP ) = H4

L
×H2

L
. It

generates a bounded semigroup and (1.4) admits a unique solution u ∈ C0(R+;H2
L
) ∩C1(R+;L2).

Theorem 1.5 (Decay rates for damped hypoelliptic plates). Assume that b ∈ L∞(M) is such that b ≥ δ >
0 a.e. on a nonempty open set, together with Assumptions 1.1 and 1.2. Then, for all (u0, u1) ∈ H2

L
× L2,

the associated solution to (1.4) satisfies EP (u(t)) → 0. Moreover, for all j ∈ N∗, there exists Cj > 0 such
that for all (u0, u1) ∈ D(Aj), the associated solution to (1.4) satisfies

EP (u(t))
1
2 ≤ Cj

log(t+ 2)2j/k

∥∥∥Aj
P (u0, u1)

∥∥∥
H2

L
×L2

, for all t ≥ 0. (1.10)

Similar spectral statements as Theorems 1.2 and 1.4 hold for the plate equation. We leave the details
to the reader. Again, by using our result [LL19], we could also obtain a logarithmic decay in the elliptic
case k = 1 for a compact manifold with boundary and with Dirichlet boundary conditions. We do not
know if this result is new in this context. The literature is quite big, we refer to [Leb92] and [Kom92]
for exact control results (implying exponential decay of the damped equation) and e.g. to [ADZ14] for a
spectral analysis of the decay rate.

Finally, we show that results of Theorems 1.1, 1.2, 1.3, 1.4 are optimal in general (in case k > 1; this
is already known in the elliptic case k = 1, see [Leb96, LR97]). This is also the case for Theorem 1.5 (and
the associated spectral statement); we do not state the result for the sake of brevity.

Proposition 1.6. Consider the manifold with boundary M = [−1, 1]× (R/Z), endowed with the Lebesgue

measure dx, and for k ∈ (1,+∞), define the operator L = −
(
∂2
x1

+ x
2(k−1)
1 ∂2

x2

)
, with Dirichlet conditions

on ∂M. Assume that supp(b) ∩ {x1 = 0} = ∅. Then there exist C, ν > 0 and a sequence (sj)j∈N with
sj → +∞ such that

∥∥(isj −A)−1
∥∥
L(H1

L
×L2)

≥ Ceνs
k
j ,

∥∥(isj −AS)
−1
∥∥
L(H1

L
×L2)

≥ Ceνs
k/2
j , for all j ∈ N. (1.11)

Moreover, if for all (u0, u1) ∈ D(A), the associated solution to (1.2) satisfies

E(u(t))
1
2 ≤ f(t) ‖A(u0, u1)‖H1

L
×L2 , for all t ≥ 2,
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then there is C > 0 such that f(t) ≥ C
log(t)1/k

. Similarly, if for all u0 ∈ H1
L
, the associated solution to (1.3)

satisfies
‖u(t)‖L2(M) ≤ f(t) ‖ASu‖L2(M) , for all t ≥ 2,

then there is C > 0 such that f(t) ≥ C
log(t)2/k

.

Recall that for k ∈ N
∗, the operator L = −

(
∂2
x1

+ x
2(k−1)
1 ∂2

x2

)
satisfies precisely Assumption 1.1. The

first part is thus a consequence of [BCG14, Section 2.3] as reformulated in [LL17, Proposition 1.14]. It
prove the optimality in general of Item 1.2 in Theorem 3. The second part is a corollary of the first together
with [BD08], and proves optimality of (1.7).

A reformulation of [Let20] (e.g. together with [Har89]) in the present context states that if span(X1(x), · · · , Xm(x)) 6=
TxM for x in a dense subset of M, and M \ supp(b) 6= ∅, then uniform decay does not hold: there is
no function f : R+ → R+ with f(t) → 0 such that E(u(t)) ≤ f(t)E(u(0)). This contrasts with the
Riemannian case [RT74, BLR92], and gives in this context a stronger interest to the result of Theorem 1.1
as compared to the Riemannian counterpart.

However, one may notice that logarithmic decay as in Theorem 1.1 is not always optimal. Combining
for instance [BS19, Theorem 1] together with [AL14, Theorem 2.3] implies that

Cj

log(t+2)j/k
in (1.7) can

be replaced by
Cj

tj/2
(and this is probably not optimal) in the geometric setting of Proposition 1.6 if

b(x1, x2) = 1(a,b)(x2), for any a < b.
Similarly, logarithmic decay in Theorem 1.3 is not always optimal. For instance [BS19, Theorem 1]

(together with classical equivalence between observability for the conservative system and uniform stabiliza-
tion for the damped system) implies that in the geometric setting of Proposition 1.6 if b(x1, x2) = 1(a,b)(x2)
for a < b, then uniform decay holds, that is: there are C, γ > 0 such that ‖u(t)‖L2 ≤ Ce−γt ‖u0‖L2 for all
solutions to (1.3).

Let us finally remark that all proofs below rely on the approximate observability/controllability of
the hypoelliptic wave equation with optimal cost. The latter result is proved by the authors in [LL17].
It is interesting to notice that in the elliptic case (k = 1 in the discussion above), the approximate
observability/controllability of the wave equation (proved in [LL19]) with optimal (exponential) cost allows
to recover many known control results obtained with Carleman estimates. In particular, it implies

1. null-controllability of the heat equation with optimal short-time behavior, as proved in [EZ11]
and [LL18, Proposition 1.7] (the original result is [LR95, FI96]),

2. approximate observability/controllability of the heat equation with optimal (exponential) cost [LL17,
Chapter 4] (the original result is [FCZ00]),

3. optimal logarithmic decay for the damped wave equation, see Theorem 1.1 for k = 1 (the original
result is [Leb96, LR97]).

Here, we provide a proof of the last point in a general framework presented in Section 1.2 below, and
deduce counterparts for hypoelliptic equations using [LL17].

1.2 From approximate control to damped waves : abstract setting

As already mentioned, we prove the results of Theorems 1.2 and 1.1 in an abstract operator setting. This
allows us to stress links between the cost of approximate controls and a priori decay rates for damped waves.
This follows the spirit of e.g. [Har89, BZ04, Phu01, Mil05, Mil06, TW09, EZ11, AL14, CPS+19], explor-
ing the links between different equations and their control properties (i.e. observability, controllability,
stabilization...). Here, we follow closely [AL14].

Let H and Y be two Hilbert spaces (resp. the state space and the observation/control space) with
norms ‖·‖H and ‖·‖Y , and associated inner products (·, ·)H and (·, ·)Y . We denote by A : D(A) ⊂ H → H
a nonnegative selfadjoint operator with compact resolvent, and B ∈ L(Y ;H) a control operator. We recall

that B∗ ∈ L(H ;Y ) is defined by (B∗h, y)Y = (h,By)H for all h ∈ H and y ∈ Y . We define H1 = D(A
1
2 ),

equipped with the graph norm ‖u‖H1
:= ‖(A + Id)

1
2u‖H , and its dual H−1 = (H1)

′ (using H as a pivot

space) endowed with the norm ‖u‖H−1
:= ‖(A+ Id)−

1
2 u‖H .

5



In applications to Theorems 1.1-1.2-1.3-1.4, we take H = Y = L2(M), A = L and B = B∗ is
multiplication by the function

√
b.

We introduce in this abstract setting the wave equation
{
∂2
t u+Au = F,

(u, ∂tu)|t=0 = (u0, u1),
(1.12)

the damped wave equation
{
∂2
t u+Au +BB∗∂tu = 0,

(u, ∂tu)|t=0 = (u0, u1),
(1.13)

and the damped Schrödinger equation
{
i∂tu+Au+ iBB∗u = 0,

u|t=0 = u0.
(1.14)

Definition 1.7. Given T > 0 and a function G : R+ → R+, we say that the wave equation (1.12) with
F = 0 is approximately observable from B∗ in time T with cost G if there is µ0 > 0 such that for all
(u0, u1) ∈ H1 ×H , the associated solution u to (1.12) with F = 0 satisfies

‖(u0, u1)‖H×H−1
≤ G(µ) ‖B∗u‖L2(0,T ;Y ) +

1

µ
‖(u0, u1)‖H1×H , for all µ ≥ µ0. (1.15)

According to [Rob95] or [LL20, Appendix], this is equivalent to approximate controllability (ε close)
with cost G(1/ε). This is satisfied for the usual wave equation in a general context with B∗ = 1ω,
G(µ) = Ceνµ, for all T > 2 supx∈M dg(x, ω) (where dg is the Riemannian distance), as proved in [LL19].
For the hypoelliptic wave equation, we proved in [LL17, Theorem 1.15] that this is satisfied for B∗ = 1ω,

G(µ) = Ceνµ
k

, for all T > 2 supx∈M dL(x, ω) (where dL is the appropriate sub-Riemannian distance and
k the hypoellipticity index of L).

Our main results can be divided in several steps. Firstly we have

Proposition 1.8. Let G : R+ → R+ be such that G(µ) ≥ c0
µ > 0 for µ ≥ µ0. Assume that there is T > 0

such that the wave equation (1.12) with F = 0 is approximately observable from B∗ in time T with cost G
in the sense of Definition 1.7. Then, we have

(
λ ∈ C, v ∈ D(A), Av = λ2v, B∗v = 0

)
=⇒ v = 0, (1.16)

and there is λ0 > 0 such that for all α > 0,

‖v‖H ≤ K

α
(λ +

√
2 + α)G(λ +

√
2 + α)

(
‖B∗v‖Y + C

∥∥(A− λ2)v
∥∥
H

)
, for all v ∈ D(A), λ ≥ λ0.

(1.17)

with K =
√
T + c−1

0 and C > 0 a constant depending only on B and T .

Note that in this statement,
√
2 can be replaced by 1 at the cost of a slightly longer proof, and λ0 is the

µ0 given in the definition of approximate observability. In most applications we have in mind, G(µ) ≈ eνµ
k

and the estimate is better for smaller values of α. In a situations in which one would have G(µ) ≈ µγ ,
then a better choice of α would be α ≈ λ, so that (1.17) remains a bound of order G(λ).

Secondly, we assume that for some function G and some λ0 > 0 we have

‖v‖H ≤ G(λ)
(
‖B∗v‖Y +

∥∥(A− λ2)v
∥∥
H

)
, for all v ∈ D(A), λ ≥ λ0. (1.18)

This is precisely (1.17) with G(λ) = K(1+C)
α (λ +

√
2 + α)G(λ +

√
2 + α). From this estimate, we deduce

the sought spectral properties (resolvent estimates and localization of the spectrum linked to the function
G). See Section 2.3 for the damped Schrödinger equation and Section 2.4 for the damped wave equation.
A direct application of Proposition 1.8 gives in the context of hypoelliptic operators.
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Corollary 1.9. With the notations of Section 1.1, assume that b ∈ L∞(M) is such that b ≥ δ > 0 a.e. on
a nonempty open set, together with Assumptions 1.1 and 1.2. Then, (1.8) is satisfied and there is ν > 0,
C > 0 and λ0 > 0 such that,

‖v‖L2(M) ≤ Ceνλ
k( ‖bv‖L2(M) +

∥∥(L− λ2)v
∥∥
L2(M)

)
, for all v ∈ H2

L
, λ ≥ λ0.

This corollary states a stronger version of the Eigenfunction tunneling estimates of [LL17, Theorem 1.12]
(which is the same statement for solutions to (L− λ2)v = 0). Note that the constant ν is (essentially) the
same as in the cost of approximate controls in [LL17, Theorem 1.15].

Thirdly, we deduce from the spectral properties the sought decay estimates (respectively in Sections 2.3
and 2.4 for the damped Schrödinger and wave equations) using the Batty-Duyckaerts theorem, which we
now recall.

Theorem 1.10 (Batty and Duyckaerts [BD08]). Let (etB)t≥0 be a bounded C0-semigroup on a Banach
space X , generated by B.

Assume that
∥∥etBB−1

∥∥
L(Ḣ)

≤ f(t) with f decreasing to 0. Then iR ∩ Sp(B) = ∅ and there is C > 0

such that ∥∥(iλ− B)−1
∥∥
L(X )

≤ 1 + Cf−1

(
1

2(|λ|+ 1)

)
.

Conversely, suppose that iR ∩ Sp(B) = ∅ and
∥∥(is− B)−1

∥∥
L(X )

≤ M(|s|), s ∈ R, (1.19)

where M : R+ → R∗
+ is a non-decreasing function on R+. Then, setting

Mlog(s) = M(s)
(
log(1 +M(s)) + log(1 + s)

)
, (1.20)

there exists c > 0 such that for all j ∈ N,

∥∥etBB−j
∥∥
L(X )

= O
(

1

M
−1
log

(
t
cj

)j
)
, as t → +∞,

where M
−1
log : R+ → R+ denotes the inverse of the strictly increasing function Mlog.

We refer to [Duy15, CS16] for alternative proofs of the result of [BD08]. Note that on a Hilbert space
(which is the case here) Mlog in the result can be replaced by M if it is polynomial at infinity, according
to [BT10, Theorem 2.4] (see also [CPS+19] and the references therein for generalizations of [BT10]).

Acknowledgements. The first author is partially supported by the Agence Nationale de la Recherche under
grant SRGI ANR-15-CE40-0018. Both authors are partially supported by the Agence Nationale de la
Recherche under grant ISDEEC ANR-16-CE40-0013.

2 Proofs

2.1 From approximate observability of waves to a free resolvent estimate with

an observation term: Proof of Proposition 1.8

From approximate observability, we deduce the following (seemingly more general) result, concerning
equation (1.12) with a general right hand-side F .

Proposition 2.1. Let T > 0 and a function G : R+ → R+. Assume that the wave equation (1.12) with
F = 0 is approximately observable from B∗ in time T with cost G, in the sense of Definition 1.7. Then,
there are µ0, C > 0 such that for all F ∈ L2(0, T ;H) and (u0, u1) ∈ H1 × H, the associated solution u
to (1.12) satisfies

‖(u0, u1)‖H×H−1
≤ G(µ)

(
‖B∗u‖L2(0,T ;Y ) + C ‖F‖L2(0,T ;H)

)
+

1

µ
‖(u0, u1)‖H1×H , for all µ ≥ µ0. (2.1)
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Note that the constant µ0 is actually the same as in Definition 1.7 and that C depends only on T and
‖B∗‖L(Y ;H).

Proof. According to the linearity of (1.12), we decompose u as u = u0 + uF where u0 is the solution
to (1.12) for F = 0 and uF is the solution to (1.12) with (u0, u1) = (0, 0).

First, according to the assumption, Definition 1.7 applies to the function u0, so that (1.15) reads:

‖(u0, u1)‖H×H−1
≤ G(µ)

∥∥B∗u0
∥∥
L2(0,T ;Y )

+
1

µ
‖(u0, u1)‖H1×H , for all µ ≥ µ0. (2.2)

Second, to estimate uF , we perform classical energy inequalities for (1.12). We rewrite (1.12) as

(∂2
t +A+ Id)uF = uF + F, (uF , ∂tu

F )|t=0 = (0, 0).

Taking the inner product of this equation with ∂tu
F (assuming at first that F ∈ L1

loc(R;H1) and thus
uF ∈ C0(R;D(A)) ∩ C1(R;H1) ∩C2(R;H)) implies

1

2

d

dt

(∥∥∂tuF
∥∥2
H
+
∥∥uF

∥∥2
H1

)
≤
(∥∥uF

∥∥
H
+ ‖F‖H

) ∥∥∂tuF
∥∥
H
.

Writing Ẽ(t) = 1
2

(∥∥∂tuF
∥∥2
H
+
∥∥uF

∥∥2
H1

)
, this is Ẽ′(t) ≤ 2Ẽ(t) + ‖F‖2H . The Gronwall lemma together

with the vanishing initial data imply

sup
t∈[0,T ]

∥∥uF (t)
∥∥2
H

≤ sup
t∈[0,T ]

Ẽ(t) ≤ CT ‖F‖2L1(0,T ;H) .

As a consequence, boundedness of B∗ yields

∥∥B∗uF
∥∥
L2(0,T ;Y )

≤ ‖B∗‖L(Y ;H)

∥∥uF
∥∥
L2(0,T ;H)

≤ ‖B∗‖L(Y ;H) CT ‖F‖L2(0,T ;H) .

Recalling that u0 = u− uF and combining this estimate with (2.2) yields for all µ ≥ µ0

‖(u0, u1)‖H×H−1
≤ G(µ)

∥∥B∗(u− uF )
∥∥
L2(0,T ;Y )

+
1

µ
‖(u0, u1)‖H1×H

≤ G(µ)
(
‖B∗u‖L2(0,T ;Y ) + CB,T ‖F‖L2(0,T ;H)

)
+

1

µ
‖(u0, u1)‖H1×H ,

which concludes the proof of the proposition.

From this result, we deduce a proof of Proposition 1.8 as a direct corollary.

Proof of Proposition 1.8. For v ∈ D(A) and λ ∈ C, we may apply the result of Proposition 2.1 to the
function u(t) = cos(λt)v which satisfies (1.12) with

u0 = v, u1 = 0, F (t) = cos(λt)(−λ2 +A)v.

We remark that the assumption of (1.16) implies F = 0 and B∗u = 0, and hence (2.1) reads ‖v‖H ≤
1
µ ‖v‖H1

for all µ ≥ µ0. Letting µ converges to +∞ yields the conclusion of (1.16).

Let us now prove (1.17). Still for u(t) = cos(λt)v, we have

‖B∗u‖2L2(0,T ;Y ) ≤ T ‖B∗v‖2Y , ‖F‖2L2(0,T ;H) ≤ T
∥∥(−λ2 +A)v

∥∥2
H
.

Estimate (2.1) thus implies for all λ ≥ 0, µ ≥ µ0

‖v‖H ≤ G(µ)
√
T
(
‖B∗v‖Y + C

∥∥(A− λ2)v
∥∥
H

)
+

1

µ
‖v‖H1

. (2.3)

We now remark that

(Av, v)H − λ2 ‖v‖2H =
(
(A− λ2)v, v

)
H

≤
∥∥(A− λ2)v

∥∥
H
‖v‖H
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Hence, we deduce

‖v‖2H1
= ((A+ 1)v, v)H ≤ (λ2 + 1) ‖v‖2H +

∥∥(A− λ2)v
∥∥
H
‖v‖H

≤ (λ2 + 2) ‖v‖2H +
∥∥(A− λ2)v

∥∥2
H
.

Plugging this into (2.3) yields, for all µ ≥ µ0 and λ ≥ 0,

‖v‖H ≤ G(µ)
√
T
(
‖B∗v‖Y + C

∥∥(A− λ2)v
∥∥
H

)
+

1

µ

(∥∥(A− λ2)v
∥∥
H
+ (λ+

√
2) ‖v‖H

)
.

We let α > 0 and choose µ = µ(λ) = max{λ +
√
2 + α, µ0} so that to absorb the last term in the right

handside, implying for all λ ≥ 0,
(
1− λ+

√
2

λ+
√
2 + α

)
‖v‖H ≤ G(µ(λ))

√
T
(
‖B∗v‖Y + C

∥∥(A− λ2)v
∥∥
H

)
+

1

µ(λ)

∥∥(A− λ2)v
∥∥
H
.

We then take λ ≥ µ0 so that µ(λ) = λ+
√
2+α ≥ 1. This implies 1

µ(λ)

∥∥(A− λ2)v
∥∥
H

≤ c−1
0 G(µ(λ))

∥∥(A− λ2)v
∥∥
H

and thus, for λ ≥ µ0,

α

µ(λ)
‖v‖H ≤ G(µ(λ))

√
T
(
‖B∗v‖Y + C

∥∥(A− λ2)v
∥∥
H

)
+ c−1

0 G(µ(λ))
∥∥(A− λ2)v

∥∥
H
.

This concludes the proof of the proposition.

We finally give a proof of Corollary 1.9.

Proof of Corollary 1.9. By assumption, b ≥ δ > 0 on a non empty open set ω. Since M is compact,
supx∈M dL(x, ω) is finite. For the hypoelliptic wave equation on H = Y = L2(M), we proved in [LL17,

Theorem 1.15] that (1.15) is satisfied for A = L, Bω = B∗
ω = multiplication by 1ω, G(µ) = Ceνµ

k

, for all
T > 2 supx∈M dL(x, ω) (where dL is the appropriate sub-Riemannian distance and k the hypoellipticity
index of L). Since ‖1ωu‖L2(M) ≤ δ−1 ‖bu‖L2(M), the same inequality with different constants remains

true with B = B∗ = multiplication by b. Thus, we deduce from Proposition 1.8 that (1.18) is satisfied

(after having fixed α = 2−
√
2) with G(λ) = K(1 + C)(λ + 2)G(λ+ 2) = C(λ + 2)eν(λ+2)k .

2.2 From free resolvent estimate with an observation term to damped resol-

vent estimate

In this section, we start from an estimate for A with an observation term like (1.17), and deduce associated
estimates for damped operators.

Now, for later use (see Sections 2.3 and 2.4 below), we introduce the operators:

Qλ = −i(AS − iλ) = A− λ+ iBB∗,

Pλ = P (iλ) = A− λ2 + iλBB∗,

both with domain D(Qλ) = D(Pλ) = D(A).

Proposition 2.2. Let G1, G2 ≥ 0, λ > 0, and v ∈ D(A), and assume

‖v‖H ≤ G1 ‖B∗v‖Y +G2

∥∥(A− λ2)v
∥∥
H
. (2.4)

Then we have

‖v‖H ≤
(
(G1λ

− 1
2 +G2

√
2 ‖B‖L(Y ;H))

2 + 2
√
2G2

)
‖Pλv‖H , (2.5)

‖v‖H ≤
(
(G1 +G2

√
2 ‖B‖L(Y ;H))

2 + 2
√
2G2

)
‖Qλ2v‖H . (2.6)

In particular, given G : R+ → R+ such that G(µ) ≥ c0 > 0 on R+ and λ0 ≥ 1, if (1.18) is satisfied,
then writing K = (1 +

√
2 ‖B‖L(Y ;H))

2 + 2
√
2c−1

0 , we have

‖v‖H ≤ KG(|λ|)2 ‖Pλv‖H , for all v ∈ D(A), λ ∈ R, |λ| ≥ λ0, (2.7)

‖v‖H ≤ KG
(√

λ
)2 ‖Qλv‖H , for all v ∈ D(A), λ ≥ λ2

0. (2.8)
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Note that when passing from (1.17) to (2.7), we change G to G
2, which is a loss in general; this is linked

to the fact that the proof of Proposition 2.2 consists only in a very rough estimate, treating the damping
terms iBB∗ and iλBB∗ as remainders.

Proof of Proposition 2.2. We only prove the result for Pλ, the analogue proof for Qλ is identical.
First, we remark that, under the above assumptions, we have

λ ‖B∗v‖2Y = λ (BB∗v, v)H = Im (Pλv, v)H ≤ ‖Pλv‖H ‖v‖H . (2.9)

Second, we notice that (A− λ2)v = Pλv − iλBB∗v and thus, using (2.9),

∥∥(A− λ2)v
∥∥2
H

≤ 2 ‖Pλv‖2H + 2λ ‖BB∗v‖2H ≤ 2 ‖Pλv‖2H + 2 ‖B‖2L(Y ;H) λ ‖B∗v‖2Y
≤ 2 ‖Pλv‖2H + 2 ‖B‖2L(Y ;H) ‖Pλv‖H ‖v‖H .

Plugging the last two estimates in (2.4) yields

‖v‖H ≤ (G1λ
− 1

2 +G2

√
2 ‖B‖L(Y ;H)) ‖Pλv‖

1
2

H ‖v‖
1
2

H +G2

√
2 ‖Pλv‖H .

Writing

(G1λ
− 1

2 +G2

√
2 ‖B‖L(Y ;H)) ‖Pλv‖

1
2

H ‖v‖
1
2

H ≤ 1

2
(G1λ

− 1
2 +G2

√
2 ‖B‖L(Y ;H))

2 ‖Pλv‖H +
1

2
‖v‖H ,

allows to absorb the last term in the left hand-side and implies

1

2
‖v‖H ≤ 1

2
(G1λ

− 1
2 +G2

√
2 ‖B‖L(Y ;H))

2 ‖Pλv‖H +G2

√
2 ‖Pλv‖H .

This concludes the proof of (2.5), and (2.7) corresponds to the case G1 = G2 = G(λ). Also, we notice that
for λ ∈ R, P−λu = Pλu, so the statement in the case λ ≥ λ0 implies the case λ ≤ −λ0. Finally, the proof
of (2.6) is similar to that of (2.5) (beware that it should be written for Qλ2 and not Qλ), and (2.8) follows
from changing λ2 into λ.

Note that another advantage of Proposition 2.2 is that it is flexible enough to support perturbations
of the operator A by lower order terms. This was used in [JL19] where similar estimates were used for
application to perturbed operators coming from linearization of a nonlinear equation. See also [CPS+19,
Bur19] for recent related perturbation results.

2.3 Damped Schrödinger-type equations

There are not many references concerning the damped Schrödinger equation. So let us start from the
beginning. We set AS := iA−BB∗ with D(AS) = D(A), so that (1.14) reformulates as (∂t −AS)u = 0.

The compact embedding D(A) →֒ H implies that AS has a compact resolvent. First spectral properties
of AS are described in the following lemma.

Lemma 2.3. The spectrum of AS contains only isolated eigenvalues and we have

∥∥(z Id−AS)
−1
∥∥
L(H)

≤ 1

Re(z)
, for Re(z) > 0, (2.10)

∥∥(z Id−AS)
−1
∥∥
L(H)

≤ 1

| Im(z)| , for Im(z) < 0. (2.11)

Moreover, assuming (Au = zu,B∗u = 0) =⇒ u = 0, we have

Sp(AS) ⊂ [−‖B∗‖2L(H;Y ), 0) + i[0,+∞).
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Proof. The structure of the spectrum comes from the fact that AS has a compact resolvent (since so does
A, and BB∗ is bounded). Now, for a general z ∈ C, we have

‖(z Id−AS)u‖H ‖u‖H ≥ Re ((z Id−AS)u, u)H = Re(z) ‖u‖2H + ‖B∗u‖2H ≥ Re(z) ‖u‖2H ,

which yields (2.10). The statement (2.11) comes from

‖(AS − z Id)u‖H ‖u‖H ≥ Im ((AS − z Id)u, u)H = (Au, u)H − Im(z) ‖u‖2H ≥ − Im(z) ‖u‖2H .

Finally given z ∈ Sp(AS), there is u ∈ D(A)\{0} such that ASu = zu. Taking inner product with u yields

z ‖u‖2H = (ASu, u)H = i(Au, u)H − ‖B∗u‖2H .

In particular,

Re(z) = −‖B∗u‖2H
‖u‖2H

∈ [−‖B∗‖2L(H) , 0], Im(z) =
(Au, u)H

‖u‖2H
≥ 0.

Now if Re(z) = 0, this implies B∗u = 0 and hence zu = ASu = iAu. The assumption then yields u = 0,
which contradicts the fact that u is an eigenvector. Thus Sp(AS) ∩ iR = ∅.

We then deduce straightforwardly from Lemmata 2.2 and 2.3 the following result.

Theorem 2.4. Let G : R+ → R+ be such that G(µ) ≥ c0 > 0 on R+, λ0 ≥ 1, and assume (1.18). Then
there exists K > 1 (the same as in Proposition 2.2), such that

‖(iλ Id−AS)
−1‖L(H) ≤ KG

(√
λ
)2
, for all λ ≥ λ2

0,

Sp(AS) ∩ ΓG,S = ∅,

where ΓG,S =

{
z ∈ C, Im(z) ≥ λ2

0,Re(z) ≥ − 1

KG

(√
Im(z)

)2

}
. Finally, assuming further (1.17), there exists

another constant K̃ ≥ K such that

‖(iλ Id−AS)
−1‖L(H) ≤ K̃G

(√
|λ|
)2
, for all λ ∈ R,

Sp(AS) ∩ Γ̃G,S = ∅,

where Γ̃G,S =

{
z ∈ C,Re(z) ≥ − 1

K̃G

(√
| Im(z)|

)2

}
.

Proof. The first point is a rewriting of (2.8) in Lemma 2.2.
The second point comes from the general fact that

∥∥(z Id−AS)
−1
∥∥
L(H)

≥ 1
dist(z,Sp(AS)) (following from

a Neumann series expansion). Hence, we have for λ ≥ λ2
0,

dist(iλ, Sp(AS)) ≥
∥∥(iλ Id−AS)

−1
∥∥−1

L(H)
≥
(
KG

(√
λ
)2)−1

,

which, together with the localization of the spectrum in Lemma 2.3, proves the second point.
For the last point, Lemma 2.3 ensures that λ 7→ ‖(iλ Id−AS)

−1‖L(H) is a well defined continuous

function on R, which is bounded by 1
|λ| for λ < 0. On the interval (−∞, λ2

0], it is therefore bounded

by a constant C0 ≤ C0c
−2
0 G

(√
|λ|
)2

. This gives the expected estimates for all λ ∈ R with another

K̃ = max
(
K,C0c

−2
0

)
. Again, Neumann expansion gives the localization of the spectrum.

As a consequence, we deduce the following decay.

Theorem 2.5. Let G : R+ → R+ be such that G(µ) ≥ c0 > 0 on R+, λ0 ≥ 1, and assume (1.18) and

(1.16). Assume further that G is nondecreasing and set M(λ) = G
(√

λ
)2

. Then, there exists c > 0 such

that for all j ∈ N∗, there is Cj > 0 such that for all u0 ∈ D(Aj
S) and associated solution u of (1.14),

‖u(t)‖H ≤ Cj

M
−1
log

(
t
cj

)j
∥∥∥Aj

Su0

∥∥∥
H
, for all t > 0,

where Mlog is defined in (1.20).

11



Again, Mlog in the result can be replaced by M if it is polynomial at infinity, according to [BT10,
Theorem 2.4].

Proof. This is a direct corollary of Theorem 2.4 and Theorem 1.10 applied to B = AS .

We may now conclude the proofs of Theorems 1.3 and 1.4.

Proof of Theorems 1.3 and 1.4. Corollary 1.9 implies that (1.18) is true with G(µ) = Ceνµ
k

. Then, The-
orem 2.4 implies Theorem 1.4. Indeed, taking into account (1.16), we then obtain that the resolvent is

bounded on the positive imaginary axis by a constant times M(λ) = G
(√

λ
)2

= Ce2ν
+λk/2

(after having
changed the constants slightly).

Finally, we obtain

Mlog(λ) = Ce2ν
+λk/2

(
log
(
1 + Ce2ν

+λk/2)
+ log(1 + λ)

)
≤ Ce2ν

+λk/2

(after having changed the constants slightly), and thus M
−1
log(t) ≥ c log(t)2/k for large t. Theorem 2.5

implies Theorem 1.3.

2.4 Damped wave-type equations: semigroup setting and end of the proofs

Let us now turn this estimate into a resolvent estimate for the generator of the damped wave group, and
then into a decay estimate for (1.13). We equip H = H1 ×H with the norm

‖(u0, u1)‖2H = ‖(A+ Id)
1
2 u0‖2H + ‖u1‖2H ,

and define the seminorm
|(u0, u1)|2H = ‖A 1

2u0‖2H + ‖u1‖2H .

Of course, if A is coercive on H , | · |H is a norm on H equivalent to ‖ ·‖H. We define the energy of solutions
of (1.13) by

E(u(t)) =
1

2

(
‖A 1

2u‖2H + ‖∂tu‖2H
)
=

1

2
|(u, ∂tu)|2H.

The damped wave equation (1.13) can be recast on H as a first order system
{

∂tU = AU,
U |t=0 = t(u0, u1),

U =

(
u
∂tu

)
, A =

(
0 Id

−A −BB∗

)
, D(A) = D(A) ×H1. (2.12)

The compact embeddings D(A) →֒ H1 →֒ H imply that D(A) →֒ H compactly, and that the operator A
has a compact resolvent. First, spectral properties of A are described in the following lemma borrowed
from [Leb96, AL14]. We define the following quadratic family of operator

P (z) = A+ z2 Id+zBB∗, z ∈ C, D(P (z)) = D(A). (2.13)

Lemma 2.6 (Lemma 4.2 of [AL14]). The spectrum of A contains only isolated eigenvalues and, provided
(1.16) is satisfied, we have

Sp(A) ⊂
((

− 1

2
‖B∗‖2L(H;Y ), 0

)
+ iR

)
∪
(
[−‖B∗‖2L(H;Y ), 0] + 0i

)
,

with ker(A) = ker(A)×{0}. Moreover, the operator P (z) in (2.13) is an isomorphism from D(A) onto H
if and only if z /∈ Sp(A).

This Lemma leads us to introduce the spectral projector of A on ker(A), given by

Π0 =
1

2iπ

∫

γ

(z Id−A)−1dz ∈ L(H),

where γ denotes a positively oriented circle centered on 0 with a radius so small that 0 is the single
eigenvalue of A in the interior of γ. We set Ḣ = (Id−Π0)H and equip this space with the norm

‖(u0, u1)‖2Ḣ := |(u0, u1)|2H = ‖A 1
2u0‖2H + ‖u1‖2H ,
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and associated inner product. This is indeed a norm on Ḣ since ‖(u0, u1)‖Ḣ = 0 is equivalent to (u0, u1) ∈
ker(A) × {0} = Π0H. Besides, we set Ȧ = A|Ḣ with domain D(Ȧ) = D(A) ∩ Ḣ. Remark that Sp(Ȧ) =

Sp(A) \ {0} and thus Sp(Ȧ) ∩ iR = ∅.

Lemma 2.7 (Lemma 4.3 of [AL14]). The operator Ȧ generates a contraction C0-semigroup on Ḣ, denoted

(etȦ)t≥0. Moreover, the operator A generates a bounded C0-semigroup on H, denoted (etA)t≥0 and the
unique solution to (1.13) is given by (u, ∂tu)(t) = etA(u0, u1). Finally, we have

etA = etȦ(Id−Π0) + Π0, for all t ≥ 0. (2.14)

Once we have put the abstract damped wave equation (1.13) in the appropriate semigroup setting, it
remains to:

1. deduce from (1.17)-(1.18) a resolvent estimate for Ȧ,

2. relate this resolvent estimate to a decay estimate for etȦ, and

3. deduce the decay of the energy for (1.13).

Step 1 is realized thanks to the following result from [AL14].

Lemma 2.8 (Lemma 4.6 of [AL14]). There exist C > 1 such that for s ∈ R, |s| ≥ 1,

C−1‖(is Id−Ȧ)−1‖L(Ḣ) −
C

|s| ≤ ‖(is Id−A)−1‖L(H) ≤ C‖(is Id−Ȧ)−1‖L(Ḣ) +
C

|s| , (2.15)

C−1|s|‖P (is)−1‖L(H) ≤ ‖(is Id−A)−1‖L(H) ≤ C
(
1 + |s|‖P (is)−1‖L(H)

)
. (2.16)

As a corollary of this together with Proposition 2.2, we deduce the following result.

Theorem 2.9. Let G : R+ → R+ be such that G(µ) ≥ c0 > 0 on R+, λ0 ≥ 1, and assume (1.18). Then
there exists K > 1 such that

‖(iλ Id−A)−1‖L(H) ≤ K|λ|G(|λ|)2, for all λ ∈ R, |λ| ≥ λ0,

‖(is Id−Ȧ)−1‖L(Ḣ) ≤ K|λ|G(|λ|)2, for all λ ∈ R, |λ| ≥ λ0,

Sp(Ȧ) ∩ ΓG = ∅, Sp(A) ∩ ΓG = ∅,

where ΓG =
{
z ∈ C, | Im(z)| ≥ λ0,Re(z) ≥ − 1

K| Im(z)|G(| Im(z)|)2

}
.

Finally, assuming further (1.17), there exists another constant K̃ ≥ K such that

‖(is Id−Ȧ)−1‖L(Ḣ) ≤ K̃ 〈λ〉G(|λ|)2, for all λ ∈ R,

Sp(Ȧ) ∩ Γ̃G = ∅, Sp(A) ∩ ΓG = {0},

where Γ̃G =
{
z ∈ C,Re(z) ≥ − 1

K̃〈Im(z)〉G(| Im(z)|)2

}
.

Proof of Theorem 2.9. The first two points are corollaries of (2.7) in Proposition 2.2 combined with
Lemma 2.8.

The last point comes from Sp(Ȧ) = Sp(A)\{0}, together with the general fact that
∥∥∥(z Id−Ȧ)−1

∥∥∥
L(H)

≥
1

dist(z,Sp(Ȧ))
(following from a Neumann series expansion). Hence, we have for λ ∈ R, |λ| ≥ λ0,

dist(iλ, Sp(Ȧ)) ≥
∥∥∥(iλ Id−Ȧ)−1

∥∥∥
−1

L(H)
≥
(
K|λ|G(|λ|)2

)−1
,

which, together with the localization of the spectrum in Lemma 2.6, proves the statement about the zone
free of spectrum. The proof concerning the compact zone follows the same way as Theorem 2.4.
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Step 2 is achieved as a consequence of Theorem 1.10 applied to the operator B = Ȧ.

Finally, Step 3 is a consequence of the following elementary lemma 2.10, linking the energy of solutions

to the abstract damped wave equation (1.13) to the norm of the semigroup
(
etȦ
)
t≥0

.

Lemma 2.10. For all j ∈ N∗, U0 ∈ D(Aj) such that Π0U0 6= U0, and associated solution u of (1.13), we
have

E(u(t))
1
2 |AjU0|2H

=
|etAU0|2H
|AjU0|2H

=
‖etȦU̇0‖2Ḣ
‖ȦjU̇0‖2Ḣ

, where U̇0 = (Id−Π0)U0.

In particular, setting fj(t) :=
∥∥∥etȦȦ−j

∥∥∥
L(Ḣ)

for j ∈ N∗, we have for all U0 ∈ D(Aj) and associated

solution u of (1.13),

E(u(t)) ≤ 1

2
fj(t)

2‖AjU0‖2H, for all t ≥ 0.

Proof. This is essentially [AL14, Lemma 4.4]. Recalling that AU0 = ȦU̇0, we have

E(u(t)) =
1

2

(
‖A 1

2 u(t)‖2H + ‖∂tu(t)‖2H
)
=

1

2
|etAU0|2H =

1

2
|etȦU̇0 +Π0U0|2H =

1

2
‖etȦU̇0‖2Ḣ,

‖ȦjU̇0‖2Ḣ = |AjU0|2H = ‖AjU0‖2H,

which yields the first statement. The second one follows from the fact that | · |H ≤ ‖·‖H.

As a consequence, we deduce the following decay.

Theorem 2.11. Let G : R+ → R+ be such that G(µ) ≥ c0 > 0 on R+, λ0 ≥ 1, and assume (1.16) and
(1.18). Assume further that G is nondecreasing and set M(λ) = 〈λ〉G(λ)2. Then, there exists c > 0 such
that for all j ∈ N∗, there is Cj > 0 such that for all U0 ∈ D(Aj) and associated solution u of (1.13),

E(u(t))
1
2 ≤ Cj

M
−1
log

(
t
cj

)j
∥∥AjU0

∥∥
H
, for all t > 0,

where Mlog is defined in (1.20).

Again, Mlog in the result can be replaced by M if it is polynomial at infinity, according to [BT10,
Theorem 2.4].

Proof. This is a direct corollary of Theorem 2.9, Theorem 1.10 applied to X = Ḣ and B = Ȧ, together
with Lemma 2.10.

We conclude this paragraph with the proofs of Theorems 1.1 and 1.2.

Proof of Theorems 1.1 and 1.2. Again, Corollary 1.9 implies the unique continuation property (1.8) (that

is (1.16) in the present context) together with (1.18) with G(µ) = Ceνµ
k

. With this estimate at hand,

Theorem 1.1 is an application of Theorem 2.11 with M(λ) = 〈λ〉G(λ)2 ≤ Ce2ν
+λk

(after having changed
the constants slightly), while Theorem 1.2 is implied by Lemma 2.6 and Theorem 2.9.

2.5 Damped plate equation

The plate equation actually fits into the “wave-type” framework. Indeed, the abstract plate equation

{
∂2
t u+A2u+BB∗∂tu = 0,

(u, ∂tu)|t=0 = (u0, u1),
(2.17)

is actually a particular case of the abstract equation (1.13) applied with the operator A2 (instead of A)
which is still nonnegative selfadjoint with compact resolvent. In this case, we define H2 = D(A), equipped
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with the graph norm ‖u‖H2
:= ‖(A2 + Id)

1
2u‖H , and its dual H−2 = (H2)

′ (using H as a pivot space)

endowed with the norm ‖u‖H−2
:= ‖(A2 + Id)−

1
2u‖H .

The natural space is then H = H2 ×H with the norm

‖(u0, u1)‖2H = ‖(A2 + Id)
1
2u0‖2H + ‖u1‖2H ,

and the seminorm
|(u0, u1)|2H = ‖Au0‖2H + ‖u1‖2H .

The associated energy is

EP (u(t)) =
1

2

(
‖Au‖2H + ‖∂tu‖2H

)
=

1

2
|(u, ∂tu)|2H.

In order to transfer the properties of A to A2, we will only need the following simple lemma.

Lemma 2.12. Assume (1.18) is satisfied. Then, we have

‖v‖H ≤ G(
√
λ)
(
‖B∗v‖Y + λ−1

∥∥(A2 − λ2)v
∥∥
H

)
, for all v ∈ D(A2), λ ≥ λ2

0. (2.18)

Proof. Since A is a nonnegative operator, we have
∥∥(A+ λ2)w

∥∥
H

≥ λ2 ‖w‖H for all w ∈ D(A). Applying

this to w = (A− λ2)v gives
∥∥(A2 − λ4)v

∥∥
H

≥ λ2
∥∥(A− λ2)v

∥∥
H

. This, combined with (1.18) implies

‖v‖H ≤ G(λ)
(
‖B∗v‖Y +

∥∥(A− λ2)v
∥∥
H

)
≤ G(λ)

(
‖B∗v‖Y +

1

λ2

∥∥(A2 − λ4)v
∥∥
H

)
. (2.19)

This is the expected result up to changing λ to
√
λ.

The previous Lemma implies that if (1.18) is satisfied, the assumptions of Theorem 2.11 are satisfied
for the operator A2 with GP (λ) = G(

√
λ). It directly gives the following result.

Theorem 2.13. Let G : R+ → R+ be such that G(µ) ≥ c0 > 0 on R+, λ0 ≥ 1, and assume (1.16)

and (1.18). Assume further that G is nondecreasing and set M(λ) = λG
(√

λ
)2

. Then, there exists c > 0
such that for all j ∈ N∗, there is Cj > 0 such that for all U0 ∈ D(Aj) and associated solution u of (2.17),

EP (u(t))
1
2 ≤ Cj

M
−1
log

(
t
cj

)j
∥∥∥Aj

PU0

∥∥∥
H
, for all t > 0,

where Mlog is defined in (1.20).

Proof of Theorem 1.5. Thanks to Corollary 1.9, (1.18) is true with G(µ) = C(µ+2)eν(µ+2)k . Theorem 1.5

is an application of Theorem 2.13 with M(λ) = λG(
√
λ)2 ≤ Ce2ν

+λk/2

(after having changed the constants
slightly).

2.6 Lower bounds: proof of Proposition 1.6

Proof of Proposition 1.6. According to [LL17, Proposition 1.14] (which relies on [BCG14, Section 2.3]),
since supp(b) ∩ {x1 = 0} = ∅, there exist C, c0 > 0 and a sequence (λj , ϕj) ∈ R+ × C∞(M) such that

Lϕj = λjϕj , ϕj |∂M = 0, ‖ϕj‖L2(M) = 1, λj → +∞, ‖ϕj‖L2(supp(b)) ≤ Ce−c0λ
k
2
j .

As a consequence, concerning the damped Schrödinger resolvent, we have

‖(AS − iλj)ϕj‖L2(M) = ‖(iL− b− iλj)ϕj‖L2(M) = ‖bϕj‖L2(M) ≤ ‖b‖L∞ Ce−c0λ
k
2
j .

This implies the second estimate in (1.11) with sj = λj .

15



Concerning the damped wave resolvent, recalling the definition of P (z) in (2.13), we write

∥∥∥P
(
i
√
λj

)
ϕj

∥∥∥
L2

=
∥∥∥
(
L− λj + i

√
λjb
)
ϕj

∥∥∥
L2

=
∥∥∥
√
λjbϕj

∥∥∥
L2

≤
√
λj ‖b‖L∞ Ce−c0λ

k
2
j .

With sj =
√
λj , this implies

∥∥P
(
isj
)
ϕj

∥∥
L2 ≤ sjCe−c0s

k
j , and using (2.16) in Lemma 2.8 proves the first

estimate in (1.11).

The last part of the Proposition follows from (1.11) together with the first implication in Theorem 1.10
(and, in case of damped waves, equivalence between the resolvents of A et Ȧ in (2.15) in Lemma 2.8).
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