S. V. Murphy and A. Atala, 3D bioprinting of tissues and organs, vol.32, p.18, 2014.

M. Hospodiuk, M. Dey, D. Sosnoski, and I. T. Ozbolat, The bioink: A comprehensive review on 20 bioprintable materials, vol.35, pp.217-239, 2017.

F. P. Melchels, W. J. Dhert, D. W. Hutmacher, and J. Malda, Development and 22 characterisation of a new bioink for additive tissue manufacturing, J Mater Chem B, vol.2, issue.16, p.2282, 2014.

J. Malda, J. Visser, F. P. Melchels, T. Jungst, W. E. Hennink et al.,

. Hutmacher, Engineering hydrogels for biofabrication, Adv Mater, vol.26, issue.36, pp.5011-5039, 2013.

S. M. Bittner, B. T. Smith, L. Diaz-gomez, C. D. Hudgins, A. J. Melchiorri et al.,

A. G. Fisher and . Mikos, Fabrication and mechanical characterization of 3D printed vertical 29

E. O. Osidak, P. A. Karalkin, M. S. Osidak, V. A. Parfenov, D. E. Sivogrivov et al.,

E. V. Gryadunova, Y. D. Koudan, C. V. Khesuani, S. I. Ka, and S. V. Belousov,

T. E. Krasheninnikov, S. N. Grigoriev, E. A. Chvalun, V. A. Bulanova, and S. P. Mironov,

. Domogatsky, Viscoll collagen solution as a novel bioink for direct 3D bioprinting, J Mater Sci, vol.4

, Mater Med, vol.30, issue.3, p.31, 2019.

K. K. Moncal, V. Ozbolat, P. Datta, D. N. Heo, and I. T. Ozbolat,

, extrusion-based bioprinting of collagen, J Mater Sci Mater Med, vol.30, issue.5, p.55, 2019.

B. A. Nerger, P. T. Brun, and C. M. Nelson, Microextrusion printing cell-laden networks of type

, I collagen with patterned fiber alignment and geometry, vol.15, pp.5728-5738, 2019.

S. Rhee, J. L. Puetzer, B. N. Mason, C. A. Reinhart-king, and L. J. Bonassar, , p.10

, Spatially Heterogeneous Collagen Constructs for Cartilage Tissue Engineering

, Biomater Sci Eng, vol.2, issue.10, pp.1800-1805, 2016.

R. V. Iozzo and L. Schaefer, Proteoglycan form and function: A comprehensive 13 nomenclature of proteoglycans, Matrix Biol, vol.42, pp.11-55, 2015.

M. Baniasadi and M. Minary-jolandan, , p.15

, Materials (Basel), vol.8, issue.2, pp.799-814, 2015.

K. Gavenis, U. Schneider, U. Maus, T. Mumme, R. Muller-rath et al.,

. Andereya, Cell-free repair of small cartilage defects in the Goettinger minipig: which defect 18 size is possible?, Knee Surg Sports Traumatol Arthrosc, vol.20, issue.11, pp.2307-2321, 2012.

C. D. Reyes and A. J. García, Engineering integrin-specific surfaces with a triple-helical 20

, Journal of Biomedical Materials Research Part A, vol.65, issue.4, p.21, 2003.

S. Zhu, Q. Yuan, T. Yin, J. You, Z. Gu et al., Self-assembly of collagen-based 1 biomaterials: preparation, characterizations and biomedical applications, J Mater Chem B, vol.2, issue.18, pp.2650-2676, 2018.

N. Latifi, M. Asgari, H. Vali, and L. Mongeau, A tissue-mimetic nano-fibrillar hybrid injectable 4 hydrogel for potential soft tissue engineering applications, Sci Rep, vol.8, issue.1, p.1047, 2018.

C. Loebel, M. D'este, M. Alini, M. Zenobi-wong, and D. Eglin, Precise tailoring of tyramine-6 based hyaluronan hydrogel properties using DMTMM conjugation, Carbohydr Polym, vol.115, issue.7, pp.325-358, 2015.

B. Hoyer, A. Bernhardt, A. Lode, S. Heinemann, J. Sewing et al.,

. Gelinsky, Jellyfish collagen scaffolds for cartilage tissue engineering, Acta Biomater, vol.10, issue.2, pp.883-92, 2014.

M. S. Saravanan, J. Jayamani, G. Shanmugam, and B. Madhan, High concentration of 12 propanol does not significantly alter the triple helical structure of type I collagen, p.13

, Polymer Science, vol.293, issue.9, pp.2655-2662, 2015.

K. Kar, P. Amin, M. A. Bryan, A. V. Persikov, A. Mohs et al., Self-15 association of collagen triple helic peptides into higher order structures, J Biol Chem, vol.281, issue.44, pp.33283-90, 2006.

B. R. Williams, R. A. Gelman, D. C. Poppke, and K. A. Piez, Collagen fibril formation. Optimal in 18 vitro conditions and preliminary kinetic results, J Biol Chem, vol.253, issue.18, pp.6578-85, 1978.

O. F. Gardner, M. Alini, and M. J. Stoddart, Mesenchymal Stem Cells Derived from Human, vol.20

, Methods Mol Biol, vol.1340, pp.41-52, 2015.

C. Loebel, T. Stauber, M. D'este, M. Alini, M. Zenobi-wong et al., , p.22

D. Petta, A. R. Armiento, D. Grijpma, M. Alini, D. Eglin et al., 3D bioprinting of a 1 hyaluronan bioink through enzymatic-and visible light-crosslinking, Biofabrication, vol.10, issue.4, p.44104, 2018.

A. Frayssinet, D. Petta, C. Illoul, B. Haye, A. Markitantova et al.,

C. D'este and . Helary, Extracellular matrix-mimetic composite hydrogels of cross-linked 5

, hyaluronan and fibrillar collagen with tunable properties and ultrastructure, Carbohydr Polym, vol.6, p.116042, 2020.

M. Binner, L. J. Bray, J. Friedrichs, U. Freudenberg, M. V. Tsurkan et al., Cell-8 instructive starPEG-heparin-collagen composite matrices, Acta Biomater, vol.53, pp.70-80, 2017.

K. V. Nguyen-ngoc and A. J. Ewald, Mammary ductal elongation and myoepithelial migration 10 are regulated by the composition of the extracellular matrix, J Microsc, vol.251, issue.3, pp.212-235, 2013.

A. D. Nocera, R. Comin, N. A. Salvatierra, and M. P. Cid, Development of 3D printed fibrillar 12 collagen scaffold for tissue engineering, Biomed Microdevices, vol.20, issue.2, p.26, 2018.

D. F. Duarte-campos, M. Rohde, M. Ross, P. Anvari, A. Blaeser et al.,

J. S. Yam, H. Mehta, P. Fischer, M. Walter, and . Fuest, Corneal bioprinting utilizing collagen-15 based bioinks and primary human keratocytes, J Biomed Mater Res A, vol.107, issue.9, pp.1945-1961, 1953.

D. Petta, D. W. Grijpma, M. Alini, D. Eglin, and M. D'este, Three-Dimensional Printing of a 18

, Tyramine Hyaluronan Derivative with Double Gelation Mechanism for Independent Tuning of 19

, Shear Thinning and Postprinting Curing, ACS Biomater Sci Eng, vol.4, issue.8, pp.3088-3098, 2018.

A. Sundarakrishnan, H. Zukas, J. Coburn, B. T. Bertini, Z. Liu et al., , p.21

Q. Dasgupta, L. D. Black, and D. L. Kaplan, Bioengineered in Vitro Tissue Model of Fibroblast, p.22

, Activation for Modeling Pulmonary Fibrosis, ACS Biomater Sci Eng, vol.5, issue.5, pp.2417-2429, 2019.

H. Kim, J. Jang, J. Park, K. P. Lee, S. Lee et al., , p.24

, Shear-induced alignment of collagen fibrils using 3D cell printing for corneal stroma tissue 25 engineering, Biofabrication, vol.11, issue.3, p.35017, 2019.

J. Lin, Y. Shi, Y. Men, X. Wang, J. Ye et al., Mechanical Roles in Formation of, p.27

, Oriented Collagen Fibers, vol.26, issue.2, pp.116-128, 2020.

A. Kamada, A. Levin, Z. Toprakcioglu, Y. Shen, V. Lutz-bueno et al.,

M. B. Mohammadi, R. Linder, T. P. Mezzenga, and . Knowles, Modulating the Mechanical 30

, Performance of Macroscale Fibers through Shear-Induced Alignment and Assembly of 31

, Protein Nanofibrils, Small, vol.16, issue.9, p.1904190, 2020.

M. K. Hausmann, P. A. Ruhs, G. Siqueira, J. Lauger, R. Libanori et al.,

. Studart, Dynamics of Cellulose Nanocrystal Alignment during 3D Printing, ACS Nano, vol.12, issue.7, pp.6926-6937, 2018.

M. Kopf, D. F. Campos, A. Blaeser, K. S. Sen, and H. Fischer,

, printable agarose-collagen blend allows encapsulation, spreading, and attachment of human 2 umbilical artery smooth muscle cells, Biofabrication, vol.8, issue.2, p.25011, 2016.

M. Betsch, C. Cristian, Y. Y. Lin, A. Blaeser, J. Schoneberg et al.,

D. F. Fischer and . Duarte-campos, Incorporating 4D into Bioprinting: Real-Time Magnetically

, Directed Collagen Fiber Alignment for Generating Complex Multilayered Tissues

, Healthc Mater, vol.7, issue.21, p.1800894, 2018.

Y. Yang, Z. Chen, X. Song, Z. Zhang, J. Zhang et al., , vol.8

, Biomimetic Anisotropic Reinforcement Architectures by Electrically Assisted Nanocomposite 9 3D Printing, Adv Mater, vol.29, issue.11, 2017.

L. Ouyang, R. Yao, Y. Zhao, and W. Sun, Effect of bioink properties on printability and cell 11 viability for 3D bioplotting of embryonic stem cells, Biofabrication, vol.8, issue.3, p.35020, 2016.

I. L. Kim, S. Khetan, B. M. Baker, C. S. Chen, and J. A. Burdick, Fibrous hyaluronic acid 13 hydrogels that direct MSC chondrogenesis through mechanical and adhesive cues, p.14

, Biomaterials, vol.34, issue.22, pp.5571-80, 2013.

A. D. Doyle, N. Carvajal, A. Jin, K. Matsumoto, and K. M. Yamada, Local 3D matrix 16 microenvironment regulates cell migration through spatiotemporal dynamics of contractility-17 dependent adhesions, Nat Commun, vol.6, p.8720, 2015.

T. L. Jenkins and D. Little, Synthetic scaffolds for musculoskeletal tissue engineering: cellular 19 responses to fiber parameters, NPJ Regen Med, vol.4, p.15, 2019.

S. Yang, X. Shi, X. Li, J. Wang, Y. Wang et al., Oriented collagen fiber membranes 21 formed through counter-rotating extrusion and their application in tendon regeneration, p.22

, Biomaterials, vol.207, pp.61-75, 2019.

R. Mohan, N. Mohan, and D. Vaikkath, Hyaluronic Acid Dictates Chondrocyte Morphology 24 and Migration in Composite Gels, Tissue Eng Part A, vol.24, pp.1481-1491, 2018.

E. Amann, P. Wolff, E. Breel, M. Van-griensven, and E. R. Balmayor, Hyaluronic acid 26 facilitates chondrogenesis and matrix deposition of human adipose derived mesenchymal 27 stem cells and human chondrocytes co-cultures, Acta Biomater, vol.52, pp.130-144, 2017.

Y. Wang, Y. Xiao, S. Long, Y. Fan, and X. Zhang, Role of N-Cadherin in a, Niche-Mimicking, vol.29

, Microenvironment for Chondrogenesis of Mesenchymal Stem Cells In Vitro

, Biomaterials Science & Engineering, 2020.

H. Rogan, F. Ilagan, and F. Yang, Comparing Single Cell Versus Pellet Encapsulation of 32

, Mesenchymal Stem Cells in Three-Dimensional Hydrogels for Cartilage Regeneration, p.33

, Tissue Eng Part A, vol.25, pp.1404-1412, 2019.

B. D. Markway, G. K. Tan, G. Brooke, J. E. Hudson, J. J. Cooper-white et al., , p.35

, Enhanced chondrogenic differentiation of human bone marrow-derived mesenchymal stem 36 cells in low oxygen environment micropellet cultures, Cell Transplant, vol.19, issue.1, pp.29-42, 2010.

X. Jiang, X. Huang, T. Jiang, L. Zheng, J. Zhao et al., The role of Sox9 in collagen 1 hydrogel-mediated chondrogenic differentiation of adult mesenchymal stem cells

, Biomater Sci, vol.6, issue.6, pp.1556-1568, 2018.

C. G. Pfeifer, A. Berner, M. Koch, W. Krutsch, R. Kujat et al., , p.4

, Higher Ratios of Hyaluronic Acid Enhance Chondrogenic Differentiation of Human MSCs in a 5

, Hyaluronic Acid-Gelatin Composite Scaffold, vol.9, 2016.

V. Moulisova, S. Poveda-reyes, E. Sanmartin-masia, L. Quintanilla-sierra, and M. ,

G. G. Salmeron-sanchez and . Ferrer, Hybrid Protein-Glycosaminoglycan Hydrogels

, Promote Chondrogenic Stem Cell Differentiation, vol.2, issue.11, pp.7609-7620, 2017.

J. Yang, Y. Liu, L. He, Q. Wang, L. Wang et al., Icariin 10 conjugated hyaluronic acid/collagen hydrogel for osteochondral interface restoration, Biomater, vol.11, pp.156-167, 2018.