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Abstract. 

Glutamate is the major excitatory neurotransmitter in the brain, and photochemical 

release of glutamate (or uncaging) is a chemical technique widely used by biologists to 

interrogate its physiology. A basic prerequisite of these optical probes is bio-inertness 

before photolysis. However, all caged glutamates are known to have strong antagonism 

towards receptors of the -aminobutyric acid, the major inhibitory transmitter. We have 

developed the first caged glutamate probe that is inert towards these receptors at 

concentrations that are effective for photolysis with violet light. Pharmacological tests in 

vitro revealed that attachment of a fifth-generation (G5) dendrimer to the widely used 4-

methoxy-7-nitro-indolinyl(MNI)-Glu probe (i.e. “cloaking”) prevented such off-target 

effects, whilst not changing the photochemical properties of MNI-Glu significantly. G5-

MNI-Glu was used with “optofluidic” delivery to stimulate dopamine neurons of the 

ventral tegmental area of freely-moving mice in a conditioned place-preference protocol 

so as to mediate Pavlovian conditioning.  
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Significance statement. 

Caged glutamates are photolabile compounds that are widely used by neuroscientists. 

However these probes have off-target pharmacological side effects in that they block 

inhibitory neurotransmitter receptors. We develop a new caged glutamate molecule 

decorated with a large “dendrimer cloak” that prevents such blockade. This photoprobe 

is the first example of a caged glutamate that is fully biologically inert. We combine this 

compound with the newly developed technique of “optofluidics”. This method allows 

us deliver the probe with simultaneous photolysis in freely moving mice. Uncaging in 

the brain region involved in the reward pathway mediated Pavlovian conditioning 

during a behavioral test. This work forms useful paradigm for future experiments 

involving real-time phasic manipulation of the behavior of higher order animals 

 



 4 

Photochemical release of chemically protected biomolecules has been very widely used 

for control of cell signaling in vitro for over 40 years(1-7). The reason for this is that 

optical and chemical technologies form a powerful pair to enable biological 

experimentation. Well-defined structure-activity relationships of biomolecules allow 

synthetic organic chemists to create biologically inert probes that respond to light 

delivery(1). Optical technology can deliver light to broad areas to envelope many cells, 

or be used to focus and direct illumination to subcellular locations. Thus, molecules such 

as ATP, cAMP, IP3 and Ca2+ have all been released inside cells, and neurotransmitters on 

cells, to enable many hundreds of studies of cellular physiology and biochemistry in 

cultured cells(1, 8).  

 

In contrast, the delivery of light with chemical probes in vivo has proved challenging, 

thus limiting the use of photochemically responsive organic molecules in freely moving 

animals. Examples of uncaging ATP in drosophila(9) or photoswitching glutamate 

receptors in zebrafish(10) take advantage of the optical transparency of such species. 

However, application of this approach to rodents have been restricted mainly to head-

fixed animals(11-13). Recently, we have developed an “optofluidic” approach for control 

of rodent behavior with a synthetic photoswitch that circumvents many such 

limitations(14). Furthermore, other studies have described fabrication of novel head-

mounted(15) or tethered optofluidic(16) systems for drug and light delivery in freely 

moving mice.  

 

Glutamate uncaging has been used by neurophysiologists from when it was first 

realized in complex brain tissue in 1993(17). Since the first set of caged glutamate probes 

were developed by biochemists(18, 19), the idea that such molecules might have off-

target interactions with other receptors such as those for -aminobutyric acid (GABA)-A 

was not examined. Indeed the first examples of “second generation” nitroindolinyl-

caged glutamate probes were reported to be non-antagonistic towards GABA-A 

receptors(20). Thus, it came as a real surprise that probes such as 4-methoxy-7-nitro-

indolinyl(MNI)-Glu had such off-target antagonism(21). But since caged glutamates do 

not antagonise ionotropic glutamate receptors (20, 22) the off-target effects do not limit 
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the use of such probes for the study of these receptors in vitro(23). However, when MNI-

Glu was used in vivo we found that co-application of the Na channel blocker 

tetrodotoxin (TTX) was required in order to block undesirable side effects from GABA-A 

receptor antagonism(13). While the idea of reducing antagonism of caged 

neurotransmitters by decoration with a high density of negative charge seems very 

reasonable(24), in practice it has been found the improvements are, at best, modest(25). 

Indeed one negative charge is as (in)effective as four(26-28). These data suggested to us 

that a completely novel means of reducing GABA-A antagonism was required. So in 

2017 we advanced the idea of “enveloping” the caged neurotransmitter with a 

“dendrimer cloak” to prevent probe binding to GABA-A receptors. Thus, a cloaked 

caged GABA was found to have approximately 90-fold lower antagonism than its non-

cloaked analogue(29). Here we describe the application of cloaking technology to caged 

glutamate. We show that at concentrations that are very effective for one-photon (1P) 

photolysis, a cloaked caged glutamate (1) is essentially inert, and can be used for 

photorelease of glutamate in vitro and in vivo. Importantly, we show that the new probe 

can be used with an optofludic device(14) to control rodent learning in a conditioned 

place preference protocol.  

 

Results. 

 

The synthesis of 1 started with 2(30), using the pendant carboxylate to attach an azide 

functionality via condensation aminopropylchloride to give 3, followed by halogen 

replacement by reaction with sodium azide, to give 4 (Fig. 1). The nitro functionality was 

installed by reaction of 4 with Claycop to give fully protected caged glutamate 5. This 

intermediate was then conjugated with the dendrimer. A 5th generation (G5) polyester 

dendron with an alkyne focal point and a neutral hydroxyl periphery was used for 

copper(I)-catalyzed azide-alkyne “click” cycloaddition to give fully protected G5-MNI-

Glu 6, which could be purified using flash chromatography on silica gel. Brief treatment 

of 6 with trifluoacetic acid yielded the target cloaked caged glutamate compound, 1, in 

essentially quantitative yield. Importantly, and unlike MNI-Glu, which requires HPLC 
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for use with brain slices(22), this compound can be applied to slices for hours without 

any apparent toxic effects towards neurons (see below). 

 

Photolysis of 7-nitroindolinyl-protected acids has been well characterized, and is known 

to give the uncaged acid and nitrosoindole in essentially quantitative yields(31-34). The 

change in UV-visible absorption spectrum of the aromatic chromophore correlates 

quantitatively with acid release(32), so can be used to follow the uncaging reaction and 

thus measure the quantum yield of photolysis. Therefore, when individual solutions of 

either MNI-Glu or G5-MNI-Glu were irradiated at the reaction isosbestic point using 

365-nm light, the time-course of the change of the latter occurred at a rate that was 87% 

of the former (Fig. 1, box), corresponding to a quantum yield of photolysis of 0.057 

(using the MNI-Glu quantum yield of 0.065(35)). Encouraged by these results, we tested 

the physiological efficacy of G5-MNI-Glu in vitro on neurons in acutely isolated brain 

slices. 

 

Pyramidal neurons from the CA1 region of the hippocampus were filled with a 

fluorescent dye via a patch pipette, and imaged using 2-photon microscopy (Fig. 2a). 

This allowed us to direct a violet laser (410 nm) to the edge of the cell body using 

galvanometer control. Local perfusion of a solution of G5-MNI-Glu (1 mM) from a 

pipette position just above the surface of the brain slice delivered the caged compound 

to the selected cell. Irradiation produced robust inward currents from three points that 

were highly reproducible in size (Fig. 2b). These currents are similar in size to those 

evoked by photolysis of MNI-Glu (bath applied at 0.66 mM) on the same microscope in 

a different study(36). Similar results were detected when voltages were recorded (Fig. 

2c). Next we tested the lateral resolution from 1P laser uncaging on cells. When the laser 

was moved in 1 m increments away from the cell body, similar to previous reports(21), 

the signals on single trails were barely detectable above noise at a distance of 4-5 m 

(Fig. 2d,e). Cellular responses were found to be graded with laser power, in a linear 

manner, consistent with 1P uncaging(36, 37) (Fig. 2f,g). In a final set of experiments 

using G5-MNI-Glu with CA1 neurons we established uncaging at single spines 

performed in a similar manner to MNI-Glu (SI Appendix Fig. S1). To prepare for use of 
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G5-MNI-Glu in vivo, we also tested uncaging on midbrain dopamine neurons using full 

illumination with light from a 385-nm LED. For these experiments the patch-clamped 

cell was positioned in the middle of the field of view, and light was delivered through 

the epi-fluorescent port of the microscope. Photolysis again produced an inward current 

(Fig. 2h).  

 

Having shown previously that the unsubstituted G5-OH dendrimer has no detectable 

antagonism in the mM range(29), we used the effect on miniature inhibitory 

postsynaptic currents (mIPSCs) as means to test the GABA-A receptor antagonism of 

G5-MNI-Glu. The probe was bath-applied to brain slices in four successively increasing 

concentrations (0.25, 0.50. 0.75 and 1.0 mM), followed by wash out of the recording 

chamber. The mIPSCs from CA1 neurons were recorded in the presence of TTX (to block 

action potentials, APV (to block NMDA receptors) and CNQX (to block non-NMDA 

receptors). Over the entire concentration range there was no significant reduction in the 

amplitude of the mIPSCs (Fig. 3a; student t-test; P > 0.05; n = 3 cells), suggesting no 

antagonism of GABA-A receptors. Overall there was no significant reduction in the 

frequency of the mIPSCs either (Fig. 3b; student t-test; P > 0.05; n = 3 cells), except at 0.25 

mM there was a slight increase (Fig. 3c; student t-test; P = 0.0098; n = 3 cells). Fig. 3c 

shows representative recordings of mIPSCs at the beginning and end of one such 

experiment, with mIPSCs from the highest [G5-MNI-Glu] tested shown. These data 

suggested to us that G5-MNI-Glu could be useful for glutamate uncaging in experiments 

where the balance of excitation and inhibition is important, for example in freely 

behaving animals. Thus, we tested the new probe during Pavlovian conditioning, using 

“optofludic” uncaging in the ventral tegmental area (VTA), a midbrain region with 

dopaminergic nuclei critically involved in reward-related behaviors. 

 

Stimulation of dopamine neurons in the VTA is critical for behavioral learning in 

conditioned place preference tests(38, 39). Classical methods such as electrical 

stimulation or infusion of drugs of abuse have been used to induce reinforcement. Thus, 

a simple conditioned place preference test is a very robust means to assay whether 

uncaging of glutamate can cause increase in firing of dopamine neurons in vivo so as to 
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encode learning or experience. Using the stereotaxic coordinates for the VTA (see 

Supplemental Information), we positioned unilaterally optofluidic devices on 11 mice. 

The cannulas were then lowered carefully to be above the VTA so as to allow drug and 

light delivery without mechanically disturbing the brain region itself (Fig. 4a). Two to 

three weeks after surgical implantation, mice were subjected to a conditioned place-

preference protocol in which they were allowed to explore two chambers for a 900 s 

period on day 1 (pretest). Each environment is novel and neutral in this behavioral test, 

however the walls and floors are distinct so can be distinguished subsequently. On days 

2-4 mice were placed on each side for 600 s, and 1 was infused continuously at 2.5 mM 

during these periods (pairing, i.e. the conditioning period). However, only on one side 

was light applied (390 nm, 10 mW, 200 ms, 2 Hz). Note we have previously shown that 

there is a 5-fold dilution of caged glutamate during uncaging experiments in vivo(13), 

implying that there was approximately 0.5 mM G5-MNI-Glu available for uncaging in 

the mouse brain.  On day 5 (test), both chambers are available for exploration, and the 

residence of the mouse is recorded (Fig. 4c). For the pairing days, a light guide and tube 

were connected to the cannula (Fig. 4a), but not during the pretest and test days. The 

residence times for each mouse on the pretest day 1 was compared to the test day 5 (Fig. 

4d). Overall, we found there was a significant increase in residency time in the chamber 

associated with uncaging compared to the other chamber for the 11 mice tested, 

indicating behavioral conditioning (Fig. 4d, P > 0.05, paired, non-parametric Wilcoxon 

rank test). Since G5-MNI-Glu is inert up to 1 mM (Fig. 3), and the neuronal response 

from uncaging is linear (Fig. 2), our data imply one could use a wide variety of energies, 

and concentrations to achieve similar effects. 

 

Discussion. 

 

With the recent introduction of single piece, highly flexible implantable optofluidic 

probes(16), or even more sophisticated entirely head-mounted devices for wireless 

photopharmacology(15), the need for photo-activatable drugs will increase for such 

devices to be used widely. Such probes will enable precise phasic delivery of drugs via 

optofluidics in a manner that complements the tonic delivery normally realized by slow 
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infusion into the rodent brain. To test the feasibility of development of such caged 

compounds for in vivo use we selected glutamate as the “drug” test bed. First, the 

pharmacological concentration demand for glutamate is very high, as the target 

receptors have very low affinities for the neurotransmitter (ca. 10-100 micromolar), and 

our new caged glutamate probe was effective in the 0.25-1.0 millimolar range (Fig. 2). 

Secondly, caged glutamate probes have well known off-target side effects(21, 40), 

providing scope for testing our new cloaking method for reduction of such. The cloaked 

caged compound, G5-MNI-Glu, showed no GABA-A receptor antagonism up to 1 mM 

(Fig. 3). Thirdly, in principle, uncaging glutamate allowed the new probe to be used in a 

well-defined behavioral assay, one that could be validated by comparison with other 

temporally well-defined methods. In vivo uncaging of glutamate on dopamine neurons 

in the VTA produced a robust behavioral effect (Fig. 4), one that equaled other well-

established approaches(14, 39). Our data suggest that cloaked caged compounds might 

provide one general method for delivery of caged pro-drugs with optofludics. In 

particular, we could imagine caged receptor-specific antagonists using such technology. 

Often such drugs are quite lipophilic, and the addition of aromatic caging chromophores 

only exacerbate this problem. Another benefit of cloaking is that dendrimers are highly 

biocompatible and soluble in physiological buffer(41, 42). Photopharmacology is a topic 

of intense current interest(43-48), our work is the first example of using optofluidic 

delivery of a caged compound in freely moving rodents, and thus describes a useful 

paradigm for this type of experiment with future caged probes that will allow phasic 

manipulation of the behavior of higher order animals. 

 

Methods. 

 

Chemical synthesis and photochemistry.  

 

See SI Appendix online for full synthetic procedures. The quantum yield for photolysis 

of 1 was measured by comparison with the rate of photolysis with MNI-Glu. The rate of 

change of absorption of 0.1 mM solutions of MNI-Glu and 1 in HEPES buffer (40 mM, 
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pH 7.4, 100 mM KCl) were measured in a 1-cm cuvette during photolysis with a 365-nm 

LED (Thorslabs, Newton, NJ, USA).  

 

Physiology. 

 

All animal experiments were approved and performed according institutional IACUC 

rules. Brain slices were prepared acutely from C57BL/6J mice as described in(49). Brain 

slices were transferred to the recording chamber and perfused with carbogenated 

artificial cerebral spinal fluid (ACSF) at RT. Whole-cell recordings were made from 

hippocampal CA1 pyramidal or midbrain dopamine neurons. Patch pipettes with a 

resistance of 3-5 MΩ were filled with different internal solutions. For uncaging 

experiments, cells were patch-clamped at -60 mV. For mIPSC recordings, cells were 

clamped at +10 mV and recorded in the presence of 1 µM TTX, 10 µM CNQX and 50 µM 

D-AP5 applied via the perfusion system, and analyzed in LabVIEW (National 

Instruments). 

Laser uncaging on CA1 neurons was performed on an Olympus BX61 

microscope fitted with a Prairie Technologies Ultima dual-galvo scan head and Vision II 

Ti:Sapphire laser, a continuous-wave 410-nm laser,  and an EPC10 amplifier. Dopamine 

neurons were characterized in current clamp mode as described(14). Whole-cell 

recordings were performed using an Axoclamp 200B amplifier. LED uncaging used full 

field illumination through the epi-fluorescence pathway(36) with a 385-nm LED (100 ms, 

pE-2, CoolLED), with a light output of 6.5 mW, corresponding to 5 mW/mm2 at the 

focal plane. 

Mice (C57BL/6JRj) were implanted unilaterally with a chronic multiple-

fluid/optical injector (Doric Lenses Inc., Canada) at coordinates: from bregma, in mm: 

AP = 3.1 – 3.3; ML = 0.5 – 0.6; DV = 4. The guides (length = 4 mm from skull surface, OD 

= 450 – 650 m) combined a fluid injection needle (protruding to 4.5 mm from skull 

surface) for delivering G5-MNI-Glu and an optic fiber (200 m core, NA=0.66, 

protruding to 4.3 mm from skull surface) for light delivery coupled to a ceramic ferrule 

(1.25 mm). Between experiments, a plug was used to close the cannula and seal the 
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implant. The implant was attached to the skull with dental cement (SuperBond, Sun 

Medical). 

The conditioned place preference (CPP) apparatus used a Y-maze (Imetronic, 

France) with one closed arm, and two other arms with manually operated doors. Two 

rectangular chambers (11x25 cm), with different cues (texture and color), were separated 

by a central neutral triangular compartment (side of 11 cm). One pairing compartment 

had grey textured floor and walls and the other smooth black and white striped walls 

and floor. See SI Appendix online for a detailed description of the full physiological 

procedures. Data Availability Statement: All data discussed in the paper will be made 

available to readers. 
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Figure 1. Synthesis and photochemistry of G5-MNI-Glu. Reagents and conditions: a) 3-

chloropropylamine, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride; b) 

NaN3; c) Claycop, (AcO)2O; d) Cu(II)SO4, Na ascorbate; e) Trifluoroacetic acid. Box: 

change in absorption spectra of MNI- and G5-MNI-Glu when irradiated at 365 nm. 
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Figure 2. Uncaging on cells in vitro. 

G5-MNI-Glu was locally perfused onto neurons in acutely isolated brain slices from 

glass pipettes positioned just above the slice surface. Arrows indicate the timing of using 

a 410 nm laser and 1.3 mW (a-g), or 385-nm LED (h). (a) Two-photon fluorescent image 

of a patch-clamped CA1 neuron filled with Alex594. (b) Currents evoked from CA1 

neurons from laser irradiation (5 ms) at 3 points around the soma. (c) Changes in 

membrane potential evoked under the same conditions as (b). (d,e) Currents evoked by 

moving the laser focus laterally with 1-micron steps. (f) Photo-evoked currents produced 

by increasing the uncaging period. (g) Evoked current increased linearly with energy (r2 
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= 0.99). (h) Current evoked by photolysis (full field LED illumination) on a VTA 

dopamine neuron. The grey bar illustrates the perfusion period. 
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Figure 3. G5-MNI-Glu is non-antagonistic against GABA-A receptors. 

Miniature inhibitory postsynaptic currents (mIPSCs) from CA1 neurons were recorded 

in presence of 0, 0.25, 0.50, 0.75 and 1.0 mM G5-MNI-Glu. The probe was applied in a 

circulating solution (10 mL) bathing each brain slice. Cells were monitored for 20 min, 

after an initial period of 4 min. The final wash with normal buffer lasted 20 min. (a,b) 

Normalized amplitude and frequency for each concentration (n = 3 cells). (c) 

Representative mIPSCs recordings with [G5-MNI-Glu} = 0 (red) and 1 mM (dark blue), 

followed by washout (i.e. 0 mM, pink). 
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Figure 4. Optofluidic uncaging in freely moving mice. 

(a) Cartoon of optofluidic device in the mouse brain. (b) Outline of the conditioned-place 

preference protocol: “pretest” on day 1 (d1) when implanted mice explore both 

chambers freely for 900 s; “pairing” (d2-4) when G5-MNI-Glu was infused with or 

without light; “test” (d5) when mice were allowed to explore the re-connected chambers 

freely for 900 s (no infusion, no light). (c) Representative trajectories of a mouse before 

conditioning (pretest) and after conditioning (test). (d) Average (black) of the time spent 

in the reinforced chamber (G5-MNI-Glu + light) before (pretest) and after (test) after 

pairing. Individual mice (11) shown in grey.  
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