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Abstract ：  The voltage-gated potassium channel Kv1.5 mediating the cardiac ultra-rapid 

delayed-rectifier (IKur) current in human cells reveals crucial role in atrial fibrillation. Therefore, the 

design of selective Kv1.5 modulators should be a key work for the treatment of pathophysiological 

conditions involving Kv1.5 activity. This review summarized the progresses of the molecular 

structures and functionality of different types of Kv1.5 modulators, mainly including clinical 

cardiovascular drugs and a number of active natural products by a summarization of currently 

widely used 91 compounds. Furthermore, we also discussed the contributions of Kv1.5 and 

regulation of the Structure-Activity Relationship (SAR) of synthetic Kv1.5 inhibitors, in human 

pathophysiology. SAR analysis is regarded as a useful strategy in the structural elucidation 

relating to the characteristics that improve compound-targeting Kv1.5. Herein, we present the 

previous works regarding the structural, pharmacological and SAR information of Kv1.5 

modulator, through which, to assist the identify and design of potent and specific Kv1.5 inhibitors 

in the treatment of diseases involving Kv1.5 activity. 
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Highlights 

 This review summarized the progress in models and mechanisms of multiple 

existing Kv1.5 modulators with a total for 96 compounds. 
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 A preliminary discussion about the Structure-Activity Relationship (SAR) of 

synthetic Kv1.5 inhibitors was also summarized. 

 This review provides evidence to design potent and selective Kv1.5 inhibitors 

for target specific treatment of diseases involving Kv1.5 activity. 
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Introduction 

The voltage-gated potassium channel Kv1.5 mediating IKur current in cells [1] is an 

attractive familial atrial fibrillation (AF) type 7 drug target because it is selectively 

expressed in human in atria but not in the ventricles of human cells [2]. AF is the 

most common cardiac arrhythmia facing physicians, afflicting 13% of men and 11% 

of women over 85 years of age. In atrial tissue from AF donors, inhibition of IKur 

extends the repolarization phase of the atrial cardiac action potential to provide 

desirable antiarrhythmic effects without the risk of drug-induced torsade de pointes. 

It is noteworthy that loss-of function Kv1.5 mutations have been associated with 

AF, and many companies are exploring IKur modulators for treatment of AF [3].  

The protein of Kv1.5 is encoded by KCNA5 gene with length of 602 amino acids 

in the sequence in mouse (Unitprot Entry: Q61762) and rat (Unitprot Entry: P19024) 

and 613 amino acids in the sequence in human (Unitprot Entry: P22460). According 

to the Basic Local Alignment Search Tool (BLAST) result, the sequence of Kv1.5 is 

similar to homology targets Kv1.1, Kv1.2 and Kv1.3 in majority regions and the 

different regions mainly focus on the start and end terminals of sequence (Figure 

1C and Figure 1D). The Kv1.5 channel belongs to the Shaker-type voltage-gated K+ 

channel family and comprises four pore-forming α-subunits, each containing six 

transmembrane segments, named S1-S6 [4, 5]. A pore region formed between the 

pore helix and S6 domain of each subunit contains the selectivity filter through 

which K+ ions flow across the plasma membrane [6, 7]. Up to now, the structure of 

Kv1.5 protein is still waiting for the identification, but alanine-scanning 

mutagenesis and homologous modeling studies have given us some amino acids 

including Thr 479, Ile 502, Val 505, Ile 508 and Val 512 that reside within the deep 

pore (Thr479-Val481) and lower S6 (Cys500-Val512) regions as putative binding 

sites for the open channel blockers [8-13] (Figure 1B), which not only helps us 

understand the drug targets more comprehensively, but also saves the time for the 
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development of potential clinical candidates in the future. In this perspective, we 

highlight recent advances in the discovery of small molecular as the modulators of 

Kv1.5 and discuss the SAR studies of currently synthetic Kv1.5 inhibitors.  

Thr 479 

Ile 502

Val 505

Ile 508

Val 512

NH2

484

512421

COOH

442

A

B

C

D  

Figure 1. (A) Schematic representation of hKv1.5 α-subunit with the sequence of S6 region listed; (B) 

Homologous model of Kv1.5 (Q61672) with the range of 67.2% for sequence of Kv1.5 getting from 

the SWISS-MODEL database, some of the residues are slightly different with the contents from 

published literatures; (C) BLAST result of KCNA5_HUMAN (P22460) obtaining from NCBI BLAST+ 

database; (D) Sequence alignment between KCNA1_HUMAN (Q09470), KCNA3_HUMAN (P22001), 

KCNA2_HUMAN (P16389) and KCNA5_HUMAN (P22460) acquiring from ESPript database. 

Summarization of models and mechanisms of Kv1.5 modulators  

Up to date, various kinds of Kv1.5 modulators have been disclosed, herein, we 

summarize the molecular structures and functionality of different types of Kv1.5 
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modulators with their chemical structure as follows (Table 1) (Figure 2). As shown 

in the Table 1, the existing Kv1.5 modulators can be divided into four categories: 

clinical cardiovascular drugs (1-14), other clinical drugs (15-28), drugs in 

development (29-37) and natural products (38-56). With the development of 

pharmacology, more and more experiment models including rats, HEK cells, CHO 

cells, Xenopus laevis oocytes and Ltk- cells have been used to evaluate the effect of 

Kv1.5 channel modulators, and the parameters containing mRNA expression, IKur, 

effective refractory period (ERP) and action potential duration (APD) were utilized 

to reveal the improvement degree of AF. In principle the Kv1.5 modulators can 

lengthen the time course of ERP and APD to protect heart from the harm of AF.  

Although the structure of Kv1.5 protein has not been characterized yet, current 

researches can provide information for the development of Kv1.5 inhibitor 

according to Fragment-Based Drug Design and Structure-Based Drug Design. In 

regard to the design of Kv1.5 inhibitor, for the instance of the typical candidate 

vernakalant, in the pharmacophore model, both hydrogen bond receptor, 

hydrogen bond donor and hydrophobic groups should be present in the structure 

(Figure 2A) to paly a role in transmembrane effect to interact with the Kv1.5 

channel. From the potential binding domain of vernakalant in Kv1.5[8, 14] (Figure 

2B), we can see that the positively charged moiety bound in the cationophilic inner 

pore (mainly formed by electron-donating residues including alanine, leucine and 

valine) to form the a cationic “blocking particle” causing the block of potassium 

channel, additionally, the uncharged dimethoxyphenyl moiety of a vernakalant 

have a tendency to bind in hydrophobic subunit interfaces including residues Ile 

502 and Val 505. Functionally important residue isoleucine I502 in the inner helix 

S6 is exposed into the subunit interface of the pore module rather than into the 

inner pore. It is worth noting that mutations of Ile 502 decrease potency of 

vernakalant, flecainide and AVE0118, which are the ligands with long hydrophobic 

tail in the side chain of structure. 
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It seems that the introduction of heterocyclic rings including pyrrole 

(vernakalant, bepridil, clemizole and BMS-394136) and piperdine (lobeline, 

CD-160130, bupivacaine, paroxetine and donepezil ) is important because these 

moieties usually influence the acidifcation conditions of the molecules, which 

potentially protonated and thus positively charged drug may enter deeply into the 

channel pore in a voltage-dependent way [15]. 

A B  

Figure 2.(A) Pharmacophore model of vernakalant (cyan ball: hydrophobic center; yellow ball: 

aromatic center; green ball: hydrogen bond receptor; pink ball: hydrogen bond donor; red ball: 

ionizable positive ceter); (B) potential binding domain of vernakalant in Kv1.5 (H-bond is expressed 

as green dashed). 

Because of the definite curative effects and pharmacokinetic parameters 

proved by clinical trials, conventional drugs in new use trends to be a feasible way 

to develop new therapy. Multiple cardiovascular drugs not designed for targeting 

Kv1.5 have shown Kv1.5 inhibitory effect including quinidine (9) and diltiazem 

(10), however, theselectivity of these compounds on Kv1.5 is still needed to 

investigate.  

As for other clinical drugs, CNS agents including donepezil (15), which is 

generally used as anti-Alzheimer's agent, paroxetine (16), fluoxetine (17) and 

sertraline (18), which are usually used as antidepressant agent, bupivacaine (23), 

propofol (24), midazolam (25), tolbutamide (26) and benzocaine (27), which are 

utilized as anesthetic agents in common. hERGs (human Ether-à-go-go-Related 

Gene) are widely associated with CNS diseases [16-18], thus it is not strange that 

active CNS agents can effectively modulate Kv1.5 according to the homology of the 

protein. Especially the neurotransmitter acetylcholine, which is an important 

substance that modulates the acetylcholine-activated K+ current [19], however, only 
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the piperidine type acetylcholine inhibitor donepezil showed significant inhibitory 

effect on Kv1.5, the same phenomenon was not present in another inhibitor tacrine 

[15], suggesting the selectivity of the binding site of Kv1.5.  

Generally, Kv1.5 drugs in development are not going smoothly. The projects 

listed in the Table 1 have been discontinued till now. Effectiveness, toxicity and 

druggability should be taken into account at this stage.Persistence of investigation 

in this field is necessary because the listed compound like AZD-7009 (30) can not 

only alleviate the suffering of patients from intermittent AF but also play roles in 

relieving durative AF which continues attack more than 48 hours [20]. The major 

voltage-gated K+ channels expressed in the vasculature are Kv1.2, Kv1.5, Kv2.1, 

and Kv7.4/7.5[21].Kv1.3, another Shaker-related family Voltage-gated K+ channel, 

is closely related to the hERG channels regulated byKv11.1 [22], which are the 

important targets influencingprolong QT syndrome and torsade de pointes 

attributed to the gain-of-function mutationsbeing requested details of clinical 

candidates by drug regulatory authorities.Limitations in the ability of 

high-throughput screening methods to monitor the complex behavior ofhERG has 

restricted the discovery of activators.It is noteworthy that some inhibitors of Kv1.5 

channels listed in Table 1 are not specific Voltage-gated K+ channelfor Kv1.5, some 

of which also block Kv1.3 channels: e.g. 4-aminopiridine (2), nifedipine (6), 

diltiazem (10), tetraethylammonium (11), propofol (24) [23], resveratrol (52) [24] 

and correolide (55). Application of these drugs may result in side-effects related to 

the inhibition of Kv1.3 channels like immunosuppression, thus toxicity to 

hERG-related targets of Kv1.5 developing candidates should be paid more 

attentions. Additionally, in the field of immunization[25], nuclear factor erythroid 

2-related factor (Nrf2)-induced oxidative stress-inducible protein 

sequestosome1/p62 enhancesthe inhibition of pulmonary arterial Kv1.5 channels 

under acute hypoxia, and sequestosome1/p62-Kv1.3-integrin axis provides novel 

insight into the molecular mechanisms underlying redox-regulated cell signaling 
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in stress-induced biological response, which broaden the potential direction in the 

future. 

A variety of natural products have been proved to modulate Kv1.5, the 

exploration of novel skeleton could be helpful to the current dilemma. Among the 

isolated compounds, terpenoids (38-41), alakaloids (42-47) and flavonoids (48-50) 

are the main types. Terpenoids are widely reported to inhibit potassium channels 

[26-28], however, the stability and difficulty in preparation because of the lack of 

fluorescence group and the abundant in chiral carbon are worth worrying in the 

development. Alakaloids, as well as polypeptides like kaliotoxin (54) and marine 

drugs like tetrodotoxin, have been disclosed to exhibit ion channel activity, but the 

toxicity of this type of compounds is also needed to concern, after all, hERG 

toxicity has attached the attention of FDA and drugs like bepridil has been 

withdrawn because of the toxicity [29]. More preparation and modification works 

are waiting for possessing. Bioactive flavonoids are also proved to modulate Kv1.5 

channel, among them quercetin (50) is a minor compound to be activator of Kv1.5, 

with the tendency of developing flavonoids and phenols as health care products or 

food additives, this class of compounds may play a role in prevent against Kv1.5 

disease daily. 

Synthetic Kv1.5 inhibitors and SAR investigations  

In this part, we collated the information about chemical synthesis, pharmacological 

properties and SAR investigations in the published literatures ranging from 2003 to 

2019 and summarized them with a timeline clue. The previous work was briefly 

introduced in the description about the potential synthetic derivatives and 

chemical structure of compounds and the SAR studies were listed in the 

corresponding figures in the perspective of medicinal chemistry. As we can see, 

multiple scaffolds including 5-methoxypsoralen (60and 68), tetrahydroindolone 

(62-65), benzopyran sulfonamides (70-72), dihydropyrazolopyrimidine (73 and81) 
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and phenylquinazoline(90-92).
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Table 1. Active KV 1.5 modulators. 

No

. 
Name CAS Status Model Mechanism Ref. 

Clinical cardiovascular drugs 

1   
3,4-Diaminopyridine 

54-96-6 Approved 
Smooth muscle 

cells 

Blocking hKv1.5 current with a threshold fur activation 

near -45 mV. 
[30] 

2   
4-Aminopyridine 

504-24-5 Approved HEK cells 

Inhibiting hKv1.5 current after long-term treatment, 

abbreviating the prolongation of action potential 

duration in chronic AF. 

[31] 

3  

 
Vernakalant 

794466-70-9 

Approved, 

investigation

al 

HEK cells 

Selective blocking Kv1.5 channel by interacting with 

important residues including Thr 479, Thr 480, Ile 502, 

Val 505, and Val 508 

[32] 

4  

 
Amiodarone 

1951-25-3 

Approved, 

investigation

al 

Papillary muscles 

or single 

ventricular cells  

Decreasing the amount of mRNA for Kv1.5. [33] 

5  

 
Flecainide 

54143-55-4 
Approved, 

withdrawn 

Xenopus laevis 

oocytes  

Producing open-channel block of Kv1.5 with sensitively 

interacting with key residues including Asp 469, Val 481 

and Ile 502 in the S6 region of Kv1.5. 

[34] 
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No

. 
Name CAS Status Model Mechanism Ref. 

6  

 
Nifedipine 

21829-25-4 Approved HEK cells 

Blocking hKv1.5 channels with Kdof 6.3 μM, affected by 

mutations like Arg 487 similar to those known to affect 

outer pore C-type inactivation. 

[35] 

7  
 

Propafenone 

54063-53-5 Approved Ltk- cells 

Inhibiting hKv1.5 current with Kdvalue of 9.2 μM, 

showing time-dependent and dose-dependent manners 

simultaneously. 

[36] 

8  

 
5-Hydroxy-propafenone 

86384-10-3 - Ltk- cells 

Inhibiting hKv1.5 current with Kdvalue of 4.4 μM, 

showing time-dependent and dose-dependent manners 

simultaneously. 

[36] 

9  

 
Quinidine 

56-54-2 

Approved, 

investigation

al 

HEK cells 

Producing a voltage-dependent block between +30 and 

+120 mV (Kd at +60 mV = 7.2 μM) with an equivalent 

electrical distance in the steady state. 

[37] 

10  

 
Diltiazem 

42399-41-7 

Approved, 

investigation

al 

CHO cells 

Blocking hKv1.5 channels, in a frequency-dependent 

manner exhibiting a biphasic dose-response curve (IC50: 

4.8 nM and 42.3 μM) by binding to the open and the 

inactivated state of the channels. 

[38] 
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No

. 
Name CAS Status Model Mechanism Ref. 

11  

 
Tetraethylammonium 

66-40-0 

Experimental

, 

investigation

al 

BT-474 breast 

cancer cell 
Blocking hKv1.5 channels in a delayed rectifier manner [39] 

12  

 
Clofilium 

68379-03-3 - CHO cells 

Inhibiting hKv1.5 current with concentration-dependent 

acceleration of the apparent channel inactivation in both 

outside-out and inside-out patches. 

[40] 

13  

 
Chromanol 293B 

163163-23-3 - CHO cells 

Blocking hKv1.5 current stereoselectively, the results 

showed that (-)-[3R, 4S] was more potent than the 

(-)-enantiomer. 

[41] 

14  

 
Bepridil 

64706-54-3 
Approved, 

withdrawn 
HEK cells 

Inhibiting the hKv1.5 channel current with the IC50 value 

of 6.6 μM. 
[42] 

Other clinical drugs 

15  

 
Donepezil 

120014-06-4 Approved HEK cells 

Resulting in a rapid and reversible block of Kv1.5 

currents (IC50: 72.5μM) with a significant delay in the 

duration of activation and deactivation, and the outer 

mouth region was proved to be the target site. 

[15] 



Biomolecules 2019, 9, x FOR PEER REVIEW 13 of 47 

13 

 

No

. 
Name CAS Status Model Mechanism Ref. 

16  

 
Paroxetine 

61869-08-7 

Approved, 

investigatio

nal 

CHO cells 

Slowing the deactivation time course, resulting in a tail 

crossover phenomenon when the tail currents, recorded 

in the presence and absence of paroxetine, were 

superimposed. 

[43] 

17  

 
Fluoxetine 

54910-89-3 

Approved, 

vet 

approved 

Human PASMCs  

Protecting against big endothelin-1 induced 

anti-apoptosis and rescued Kv1.5 channels in human 

pulmonary arterial smooth muscle cells. 

[44] 

18  
 

Sertraline 

79617-96-2 Approved CHO cells 

Reducing Kv1.5 whole-cell currents in a reversible 

dose-dependent manner and accelerated the decay rate 

of inactivation of Kv1.5 currents without modifying the 

kinetics of current activation. 

[45] 

19  

 
Cortisone 

53-06-5 Approved Xenopus oocytes 
Suppressing the amplitude of Kv1.5 channel current 

with IC50 value of 50.2 μM. 
[46] 

20  

 
Hydrocortisone 

50-23-7 

Approved, 

vet 

approved 

Xenopus oocytes 
Suppressing the amplitude of Kv1.5 channel current 

with IC50 value of 33.4 μM. 
[46] 
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. 
Name CAS Status Model Mechanism Ref. 

21  

 
Spironolactone 

52-01-7 Approved Male Wistar rats 
Shorting the APD90 and increasing the expression of 

Kv1.5. 
[47] 

22  

 
Celecoxib 

169590-42-5 

Approved, 

investigatio

nal 

Ltk- cells 

Blocking hKv1.5 channels with an IC50 of 26.2 μM for the 

peak current and 5.5 μM for the current at the end of a 

250 ms pulse to +60 mV.  

[48] 

23  

 
Bupivacaine 

38396-39-3 

Approved, 

investigatio

nal 

Ltk- cells 

Blocking the open of hKv1.5 channels stereoselectively, 

the results showed the Kdvalue for R(+)-enantiomer (4.1 

μM) 6-fold more potent than the S(-)-enantiomer (27.3 

μM).  

[49, 

50] 

24  
 

Propofol 

2078-54-8 

Approved, 

investigatio

nal, vet 

approved 

CHO cells 

Inducing a time-dependent decline of the hKv1.5 current 

(IC50: 62.9 μM) during depolarizing steps and slowed the 

time course of tail current decay upon repolarization.  

[4] 

25  

 
Midazolam 

59467-70-8 Approved HEK cells 

Inhibited Kv1.5 current (IC50: 17 μM) without influence 

on the half-maximal activation voltage of Kv1.5 

channels. 

[51] 
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. 
Name CAS Status Model Mechanism Ref. 

26  
 

Tolbutamide 

64-77-7 

Approved, 

Investigatio

nal 

insulin-secreting 

INS-1 cells 

Activating Kv1.5 channel and the activation of secretion 

can be counteracted by an excessive stimulation of Kv 

channels in INS-1 cells which shortened the Ca2+ signal 

and confines insulin secretion. 

[52] 

27  
 

Benzocaine 

94-09-7 Approved Ltk- cells 

Blocking hKv1.5 channels in a voltage-dependent 

manner and modified the voltage-dependence of 

channel activation 

[53] 

Drugs in development 

28  

 
Clemizole hydrochloride 

1163-36-6 

 

Phase 2 

Clinical 
HEK cells 

Decreasing IKs and human Kv1.5 channel current at 

doses of 3 and 10 μM at voltages ranging from -14.3 to 

+34.7 mV. 

[54] 

29  

 
AVE-1231 

767334-89-4 

Phase 1 

discontinue

d 

CHO cells 

Inhibiting hKv1.5 current with IC50 value of 3.6 μM, 

blocked early atrial K+ channels and prolonged atrial 

refractoriness with no effects on electrocardiography 

intervals and ventricular repolarization. 

[55] 

30  

AZD-7009 

864368-79-6 

Phase 2 

discontinue

d 

CHO cells 
Blocking hKv1.5 current with IC50 value of 27 μM with a 

slight decrease at higher frequency. 
[56] 



Biomolecules 2019, 9, x FOR PEER REVIEW 16 of 47 

16 

 

No

. 
Name CAS Status Model Mechanism Ref. 

31  

 
BMS-394136 

343246-73-1 

Phase 1 

discontinue

d 

Mouse fibroblast 

L929 cells 

Showing excellent activity in blocking Kv1.5 (IC50: 0.05 

μM) and very good selectivity over hERG, sodium and 

L-type calcium ion channels. 

[57] 

32  

 
BMS-919373 

1272353-82-8 

Phase 1 

Discontinu

ed 

Mammalian L-929 

cells 

Blocking hKv1.5 current with IC50 value of 0.05 μM with 

an acceptable in vitro selectivity and liability profile and 

a good pharmacokinetic profile across species. 

[58] 

33  

 
MK-0448 

875562-81-5 

Phase 1 

discontinue

d 

HK2BN9 cells 

Blocking Kv1.5 current in an expression system and 

concentration-dependently elevated the plateau phase of 

atrial action potentials (APs). 

[59] 

34  
XEN-D0103 

(Undisclosed structure) 
1410180-16-3 

Phase 2 

discontinue

d 

CHO cells 

Prolongating action potential duration (APD) and 

suppressed APs at high stimulation rates in sinus 

rhythm (SR), paroxysmal AF (pAF) tissue. 

[60] 

35  

 
LY294002 

154447-36-6 
Experiment

al 
CHO cells 

Acting directly on hKv1.5 currents as an open channel 

blocker with key interacting residues located in the pore 

region (Thr 480, Arg 487) and the S6 segment (Ile 502, Ile 

508, Leu 510, Val 516). 

[9] 
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. 
Name CAS Status Model Mechanism Ref. 

36  

SSR149744C 

752253-75-1 - CHO cells 
Inhibiting several potassium currents including IKr, IKs, 

IK(ACh) and IKv1.5 at the doses of 0.01-30 μM. 
[61] 

37  

 
CD-160130 

1034194-07-4 - HEK cells 
Inhibiting hKv1.5 current slightly when specially 

blocked the Kv11.1 channel. 
[62] 

Natural products Type  

38  

 
Debromoaplysiatoxin A 

2334247-91-3 Terpenoid CHO cells Blocking Kv1.5 with an IC50 value of 6.94 μM. [63] 

39  

 
Debromoaplysiatoxin B 

2334247-94-6 Terpenoid CHO cells Blocking Kv1.5 with an IC50 value of 0.30 μM. [63] 
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. 
Name CAS Status Model Mechanism Ref. 

40  

 
Resiniferatoxin 

57444-62-9 Terpenoid C6 glioma cells  
Inhibiting the hKv1.5 current in time and 

dose-dependent manners 
[64] 

41  

 
Torilin 

13018-10-5 Terpenoid Ltk- cells 

Inhibiting the hKv1.5 current in time and 

voltage-dependent manners, with an IC50 value of 2.51 

μM at +60 mV, accelerated the inactivation kinetics of 

the hKv1.5 channel, and slowed the deactivation kinetics 

of the hKv1.5 current, resulting in a tail crossover 

phenomenon. 

[65] 

42  

 
Guanfu base A 

1394-48-5 Alkaloid guinea pigs 
Blocking I-Kv1.5 slight with the ratio of 20.6% at the 

dosage of 200 μM. 
[66] 

43  
 

Lobeline 

90-69-7 Alkaloid HEK cells 

Accelerating the decay rate of Kv1.5 inactivation, 

decreasing the current amplitude at the end of the pulse 

in a concentration-dependent manner with a IC50 value 

of 15.1 μM. 

[67] 
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44  

 
Ajmaline 

4360-12-7 Alkaloid Xenopus oocytes 

Inhibiting Kv1.5 with an IC50 of 1.70 μM in Xenopus 

expression system, resulting in a mild leftward shift of 

Kv1.5 activation curve. 

[68] 

45  

 
Papaverine 

58-74-2 Alkaloid Ltk- cells 

Blocking hKv1.5 channels and native hKv1.5 channels in 

a concentration-, voltage-, state-, and time-dependent 

manner. 

[69] 

46  

 
Tetrahydropalmatine 

2934-97-6 Alkaloid HEK cells 

Blocking Kv1.5 currents dose-dependently with an IC50 

value of 53.2 μM, inhibited the delayed rectifier effect of 

Kv1.5 resulting in a potential left shift of the inactivation 

curve. 

[70] 

47  

 
Aconitine 

302-27-2 Alkaloid 
Xenopus laevis 

oocytes 

Producing a voltage-, time-, and frequency-dependent 

inhibition of Kv1.5 (IC50: 0.796 μM). 
[71] 
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48  

 
Myricetin 

529-44-2 Flavonoid HEK cells 
Inhibiting Ikur and the expression of hKv1.5 in a dose-, 

time- and frequency-dependent manner. 
[72] 

49  

 
Trimethylapigenin 

5631-70-9 Flavonoid HEK cells 

Suppressing hKv1.5 current in HEK 293 cell line (IC50: 

6.4 μM)and the ultra-rapid delayed rectify K+ currentIKur 

in human atrial myocytes (IC50: 8.0 μM) by binding to 

the open channels and showed a use- and 

frequency-dependent manner. 

[73] 

50  

 
Quercetin 

117-39-5 Flavonoid 
Xenopus 

laevisoocytes 

Activating hKv1.5 channels (EC50: 37.8 μM) by 

interacting with key residue Ile 502 in S6 region. 
[74] 

51  

 
Acacetin 

480-44-4 Flavonoid HEK cells 

Blocking open hKv1.5 channels by binding to their S6 

domain influenced by the interaction of V505A, I508A, 

and V512A. 

[75] 

52  
 

Resveratrol 

501-36-0 Phenol Human PASMCs 

Reducing the expression of Kv1.5 mRNA to reverse 

monocrotaline-induced pulmonary vascular and cardiac 

dysfunction. 

[76] 
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53  
 

Decursin 

5928-25-6 Coumarin Ltk− cells 

Inhibiting hKv1.5 current in a concentration- and use- 

dependent manner, with an IC50 value of 2.7 μM at +60 

mV, accelerated the inactivation kinetics of the hKv1.5 

channel, resulting in a tail crossover phenomenon. 

[77] 

54  Kaliotoxin 145199-73-1 
Polypeptid

e 
T cell Inhibiting hKv1.5 current in a dose dependent manner. [64] 

55  

 
Correolide 

190017-00-6 
Nor-triterp

enoid 
CHO cells 

Inhibiting Kv1.5 with an IC50 of 1.77 μM and influenced 

by the mutations T480A, V505A, I508A, as well as 

V516A. 

[78] 

56   
Taurine 

107-35-7 Amino acid Male Wistar rats Down-regulating the mRNA expression level of Kv1.5. [79] 
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(86-88) have been reported to be effective in inhibiting Kv1.5, suggesting potential 1 

directions for the investigation about the Kv1.5 inhibitors in the future. It is 2 

noteworthy that researches from Bristol-Myers Squibb paid great efforts in this 3 

field with a lot of data about pharmacology and pharmacokinetics of active 4 

compounds in blocking Kv1.5, increasing the possibility that we human beings 5 

conquer the diseases targeting Kv1.5.  6 

 7 

Figure 3.SAR of biphenyl derivatives. 8 

In 2003, Peukert and co-workers [80] synthesized a series of ortho, 9 

ortho-disubstituted bisaryl compounds as blockers of the Kv1.5 channel. Among 10 

the derivatives, the most potent compounds 57(IC50: 0.7 μM) and58(IC50: 0.16 11 

μM)inhibited the Kv1.5 channel with sub-micromolar half-blocking concentrations 12 

and displayed 3-fold selectivity over Kv1.3 and no significant effect on the HERG 13 

channel and sodium currents (Figure3).  14 

 15 

Figure 4.SAR of anthranilic amides. 16 

In 2004, Peukert et al. [81] synthesized several anthranilic amides as novel 17 

blockers of the Kv1.5 channel. The most hopeful analogue 59 showed moderate 18 

Kv1.5 inhibition (IC50: 0.7 μM) with good oral bioavailability, however, no 19 

significant effect on the IKr current of 59was detected (Figure4). 20 
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 21 

Figure 5.SAR of phenoxyalkoxypsoralen analogues. 22 

Inspired from the precursor 5-methoxypsoralen isolated from Rutagraveolens, 23 

Schmitz and colleagues [82] prepared a series of phenoxyalkoxypsoralen analogues 24 

and evaluated their voltage-gated ion channel blocker potency. The most potent 25 

and “druglike” compound of this series, 5-(4-phenoxybutoxy) psoralen (PAP-1, 60), 26 

blocks Kv1.3 in a use-dependent manner, with a Hill coefficient of 2 and an EC50 of 27 

2 nM, by preferentially binding to the C-type inactivated state of the channel. 28 

PAP-1 is 23-fold selective over Kv1.5, 33- to 125-fold selective over other Kv1 29 

family channels, and 500- to 7500-fold selective over Kv2.1, Kv3.1, Kv3.2, Kv4.2, 30 

HERG, calcium-activated K channels, Na, Ca and Cl channels. PAP-1 does not 31 

exhibit cytotoxic or phototoxic effects, is negative in the Ames test, and affects 32 

cytochrome P450-dependent enzymes only at micromolar concentrations (Figure 33 

5). 34 

 35 

Figure 6.SAR of (2-phenethyl-2H-1,2,3-triazol-4-yl)(phenyl) methanones. 36 

In 2006, Blass et al. [83] synthesized a cluster of 37 

(2-phenethyl-2H-1,2,3-triazol-4-yl) (phenyl) methanones and examined for utility 38 

as Kv1.5 channel blockers for the treatment of atrial fibrillation. The results showed 39 

that O substitution in the 4-position of the acetophenone-derived portion of the 40 
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scaffold is highly favored, and the most active compound 61blockaded Kv1.5 for 41 

99% at the concentration of 1 μM(Figure 6).  42 

 43 

Figure 7.SAR of tetrahydroindolone-derived carbamates. 44 

Fluxe and co-workers [84] synthesized multiple tetrahydroindolone-derived 45 

carbamates as the potent Kv1.5 blockers. The most promising analogues 62 and 46 

63exhibited strongest Kv1.5 inhibitory effect with IC50 values of 67 and 21 nM, 47 

respectively. They were also very selective over hERG (>450 fold) and L-type 48 

calcium channels (> 450 fold) (Figure7). 49 

 50 

Figure 8.SAR of tetrahydroindolonederived semicarbazones. 51 

Subsequently, Wu et al. [85] designed and synthesized tetrahydroindolone 52 

derived semicarbazones as selective Kv1.5 blockers. Compounds 64 and 65showed 53 

good selectivity for blockade of Kv1.5 (IC50: 0.13 μM for two compounds), 54 

moreover, in an anesthetized pig model, compounds 64 and 65increased atrial ERP 55 

about 28%, 18%, respectively, in the right atrium without affecting ventricular ERP 56 

(Figure8).  57 
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 58 

Figure 9.SAR of diisopropyl amide derivaitives. 59 

Based on a diisopropyl amide scaffold, a series of potent Kv1.5 ion channel 60 

antagonists were synthesized by Nanda and colleagues [86]. The most active 61 

derivative 66, which was a single active enantiomer of the diastereomerically pure 62 

racemic analog, exhibited significant atrial-selective effects in an in vivo model (IC50: 63 

150 nM) (Figure 9).  64 

 65 

Figure 10.SAR of isoquinoline-3-nitriles. 66 

Trotter and co-workers [87] design and synthesized a group of 67 

isoquinoline-3-nitriles as orally Kv1.5 antagonists for the treatment of AF. The 68 

ethanolamide derivative67exhibited improved potency (Kv1.5 HT-Clamp IC50: 60 69 

nM), excellent selectivity versus hERG, and good pharmacokinetic properties. Rat 70 

EP experiments confirmed that the compound potently increased ARP without 71 

significant effects on AVRP (Figure 10). 72 

 73 

Figure 11.SAR of psoralen derivatives. 74 
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In 2007, Eun et al. [88] synthesized multiple psoralen derivatives as hKvl.5 75 

channel blocker. Among them, compound68 was the most potent in blocking 76 

hKv1.5 (IC50: 27.4 nM), much stronger than the lead compound psoralen. 77 

Compound 68accelerated the inactivation kinetics of the hKvl.5 channel, slowed 78 

the deactivation kinetics of hKv1.5 current resulting in a tail crossover 79 

phenomenon. Compound 68inhibited hKvl.5 current in a use-dependent manner 80 

(Figure 11). 81 

 82 

Figure 12.SAR of thiazolidine derivatives. 83 

Jackson and co-workers [89] prepared several classes of thiazolidine-based 84 

Kv1.5 blockers. The most promising analogue69 derived from 85 

3,4-dimethylacetophenone exhibited the strongest inhibitory effect with an IC50 86 

value of 69 nM(Figure 12).  87 

 88 

Figure 13.SAR of benzopyran sulfonamides. 89 

Lloyd et al. [90] synthesized a series of benzopyran sulfonamides and 90 

determined Kv1.5 potassium channel blocking effects. Among the productions, 91 

derivative 70exhibited the most significant activity (IC50: 57 nM), and the moderate 92 

inhibition (35%) of hERG at the concentration of 10 μM (Figure 13).  93 
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 94 

Figure 14.SAR of thiazolidine derivatives. 95 

In 2008, the benzopyran sulfonamides derivatives were further investigated [91]. 96 

Compound 71and 72were considered as the most active derivatives in the two 97 

series of compounds with IC50 values for 46 and 378 nM in the inhibition of current 98 

in L-929 cells model, respectively. Additionally, at the concentration of 1 μM, 99 

compound 72displayed the most significant inhibitory effect in current in L-929 100 

cells with the inhibitory ratio for 89% (Figure 14).  101 

 102 

Figure 15.SAR of dihydropyrazolopyrimidine derivatives. 103 

Vaccaro and co-workers [90] synthesized a series of 104 

dihydropyrazolopyrimidine analogues as Kv1.5 inhibitor. The most promising 105 

compound 73showed the best potential in of suppressing Kv1.5, with inhibitory 106 

effects on HERG (69%) and INa10 (42%) at the concentration of 10 μM (Figure 15). 107 

 108 

Figure 16.SAR of aryl sulfonamido tetralin derivatives. 109 

In 2008, Gross and co-workers [92] synthesized aryl sulfonamido tetralin as 110 

Kv1.5 inhibitor according to the basis of previous work. Among the productions, 111 
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compound 74exhibited remarkable Kv1.5 inhibition with IC50 value for 90 nM, in 112 

addition, moderate hERG inhibition was detected at the dose of 10 μM (39%), 113 

indicating the potential of further development of clinical candidates (Figure 16). 114 

 115 

Figure 17. SAR of imidazolidinone derivatives. 116 

According to the structure of marketed drugs amiodarone and vernakalant, 117 

Blass et al. [93] synthesized a series of imidazolidinone derivatives as a potential 118 

treatment for atrial arrhythmia. KVI-020/WYE-160020 (75) exhibited the efficacy in 119 

clinically relevant models of AF and mechanistic models of the cardiac action 120 

potential with acceptable pharmacokinetic and pharmaceutical properties. The 121 

pharmacology IC50 values for compound 75 in Kv1.5, hERG, Nav1.5, Cav1.3, 122 

Cav1.2, Kv1.1, Kv1.3 and Kv4.3 for 0.48, 15.1, > 30, 23.4, > 30, 2.66, 1.41 and 3.87 μM 123 

invitro, respectively (Figure 17). 124 

 125 

Figure 18. SAR of pyrazolodihydropyrimidines. 126 

In 2010, Lloyd and co-workers [58] developed a series of 127 

pyrazolodihydropyrimidines as potent and selective Kv1.5 blockers based on the 128 

previous studies. The most promising analogue BMS-394136 (76) displayed 129 

excellent activity in blocking Kv1.5 (IC50: 50 nM) and very good selectivity over 130 

hERG, sodium and L-type calcium ion channels with good pharmacokinetic 131 

parameters (Figure 18). 132 
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 133 

Figure 19. SAR of heteroarylsulfonamides. 134 

In 2012, Benjamin Blass[94] prepared several heteroarylsulfonamides as Kv1.5 135 

inhibitors. The active analogues 77, 78and 79 exhibited 100% inhibition of Kv1.5 136 

using stably transfected HEK293 cells and the FLIPR potassium ion channel assay, 137 

suggesting a good potential for further investigation (Figure 19). 138 

 139 

Figure 20. SAR of dihydropyrazolo[1,5-a]pyrimidine derivatives. 140 

Finlay and colleagues [95] prepared several dihydropyrazolo[1,5-a]pyrimidine 141 

derivatives. Among the synthetic compounds, 80showed potential to be a selective 142 

IKurinhibitor with Kv1.5 IC50 for 0.15 μM and hERG for IC50> 10 μM. Furthermore, 143 

favorable pharmacokinetic properties in rats and dogsof 80were determined, 144 

80was identified with less than 1% GSH adduct formation with an improved PK 145 

profile and equivalent PD efficacy to the lead compound (Figure 20). 146 

 147 
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Figure 21. SAR of trifluoromethylcyclohexyl triazole analogues. 148 

In 2013, triazolo and imidazo were introduced into the active scaffold 149 

dihydropyrazolopyrimidine[96]. Trifluoromethylcyclohexyl triazole analogue 150 

81was identified as a potent and selective Kv1.5 inhibitor (IC50: 133 nM) with an 151 

acceptable PK and liability profile. Compound 81demonstrated an improved rat 152 

PK profile and was advanced to the rat PD model (Figure 21).  153 

 154 

Figure 22. SAR of indole derivatives. 155 

With the help of pharmacophore model, Guo et al. [97] designed and 156 

synthesized a series of indole derivatives as potent Kv1.5 inhibitors. The most 157 

promising compound 82displayed significant INa, HEK 293 hKv1.5 and CHO hERG 158 

inhibitory activities with IC50 values of 52.6, 0.51 and 418.35 μM, respectively, 159 

which displayed remarkable selectivity and ameliorating effects on AERP and 160 

VERP (Figure 22). 161 

 162 

Figure 23. SAR of diphenylphosphinic amides and diphenylphosphine oxides. 163 

Olsson and co-workers [98] possessed design and pharmacological evaluation 164 

of multiple potential hits targeting on Kv1.5. The compound 83 performed best in 165 

vitro activity with Kv1.5 IC50 of 0.08 μM in diphenylphosphinic amide and 166 

diphenylphosphine oxide analogues (Figure 23). However, both hERG and IKs 167 

active and of 83 were detected and was judged unsuitable for in vivo testing, 168 
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conversely, the derivative 84 was regarded as the hopeful compound for further 169 

development with Kv1.5 IC50, IKs, Ceu20, QTmax change values for 1 μM, >33%, 0.6 170 

μM, <10%, respectively. 171 

 172 

Figure 24. SAR of lactam sulfonamides. 173 

In 2014, the subsequent study was updated [99], a series of lactam sulfonamide 174 

derivatives were prepared and evaluated the Kv1.5 inhibitory potency. The most 175 

promising candidate 85 inhibited Kv1.5 with an IC50 value of 0.21 μM, andcaused a 176 

marked increase in the atrium ERP with a Ceu20 of 0.35 μM, which was at the same 177 

order of magnitude as the IC50 value from the human cellular assay. The human 178 

hERG channel was blocked by compound 85 with an IC50 value of 30 μM, 179 

indicating a 140-fold margin of the hERG and Kv1.5 in vitro values. No measurable 180 

change was noted in the QT-interval in the rabbit experiments, which also 181 

indicated a good margin to block of the hERG channel. The compound 85 was well 182 

tolerated in rabbits with no signs of the CNS-like side effects observed for other 183 

Kv1.5 blockers (Figure24). 184 

 185 

Figure 25. SAR of phenethylaminoheterocycles. 186 

Johnson et al. [100] synthesized phenethylaminoheterocycles and assayed for 187 

inhibition of the Kv1.5 potassium ion channel as a potential approach to the 188 

treatment of atrial fibrillation. Combination of the indazole with a 189 

cyclohexane-based template gave the most promising derivative 86(Kv1.5 IC50: 138 190 

nM) which demonstrated significant prolongation of AERP in the rabbit 191 
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pharmacodynamic model(Figure 25).  192 

 193 

Figure 26. SAR of 1-aryloxyethyl piperazine derivatives. 194 

Guo and colleagues [101] prepared a series of 1-aryloxyethyl piperazine 195 

derivatives as Kv1.5 potassium channel inhibitors. The most potent compound 196 

87exerted significant activity on hKv1.5 (IC50: 0.72 μM), balanced Log D and 197 

permeability. In addition, comparable in vivo potency with sotalol and 198 

dronedarone and remarkable safety in rats of compound 87was detected as well 199 

(Figure 26). 200 

 201 

Figure 27. SAR of isoindolinones. 202 

In 2016, Kajanus et al. [102] synthesized multiple isoindolinone compounds as 203 

Kv1.5 blockers. The most potent compounds 88and 89exhibited inhibitory effect 204 

with the IC50 values of 0.4 and 0.7 µM on Kv1.5, respectively. The above mentioned 205 

two compounds were found to have desirable in vivo PK properties in mouse 206 

model (Figure 27). 207 

 208 

Figure 28. SAR of phenylquinazoline derivatives. 209 
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Finlay and co-workers [103] explored phenylquinazoline derivatives as Kv1.5 210 

inhibitors. 5-phenyl-N-(pyridin-2-ylmethyl)-2-(pyrimidin-5-yl)quinazolin-4-amine 211 

(90) was identified as a potent and ion channel selective inhibitor (Kv1.5 IC50: 90 212 

nM, hERG inhibition: 43% at 10 μM) with robust efficacy in the pre-clinical rat 213 

ventricular effective refractory period (VERP) model and the rabbit atrial effective 214 

refractory period (AERP) model (Figure 28). 215 

 216 

Figure 29. SAR of phenylquinazoline sulfonamide derivatives. 217 

Subsequently in 2017, Gunaga et al. [58]modified the structure of 91with a 218 

series of analogues and evaluated the IKur inhibitory effect. 219 

5-[5-phenyl-4-(pyridin-2-ylmethylamino)-quinazolin-2-yl] 220 

pyridine-3-sulfonamide (92) was identified as the lead compound in this series 221 

with good selectivity over hERG (Kv1.5 IC50: 50 nM, hERG IC50: 1.9 μM). 222 

Compound 91exhibited robust effects in rabbit and canine pharmacodynamic 223 

models and an acceptable cross-species pharmacokinetic profile which was then 224 

advanced as a clinical candidate. Further optimization of 91to mitigate 225 

pH-dependent absorption resulted in identification of the corresponding 226 

phosphoramide prodrug (92) with an improved solubility and pharmacokinetic 227 

profile(Figure 29). 228 

 229 

Figure 30. SAR of oroidin derivatives. 230 

According to the skeleton ofAgelas alkaloids clathrodin, oroidin and hymenidin, 231 
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Zidar and colleagues [104] synthesized multiple derivatives as inhibitors of the 232 

voltage-gated potassium channels. The most potent inhibitor was the 233 

(E)-N-(3-(2-amino-1H-imidazol-4-yl)allyl)-4,5-dichloro-1H-pyrrole-2-carboxamide 234 

(93) with IC50 values between 1.4 and 6.1 mM against Kv1.3, Kv1.4, Kv1.5 and 235 

Kv1.6 channels (Kv1.5 IC50: 6.1 μM) (Figure 30). 236 

 237 

Figure 31. SAR of oroidin MK-1832. 238 

Wolkenberg et al. [105] told the story of the development of prospective 239 

candidate MK-1832 (94)(Figure 31). Based on the structure of MK-0448, a cluster 240 

of derivatives were synthesized and tested the Kv1.5 inhibitory effect and in vivo 241 

and in vitro toxicity. MK-1832 (94) was considered to be best derivative with 242 

pharmacological parameters including Kv1.5, Ikur, Ikr(hERG) IC50 values for 29, 11, 243 

128000 nM, resepectively, and pharmacokinetic parameters including dog in vivo 244 

atrial refractory period EC10 for 14 nM and threshold change in ventricular 245 

refractory period > 25 μM. 246 

 247 

Figure 32. SAR of 1,2-bis(aryl)ethane-1,2-diamines. 248 

In 2019, Kajanus and colleagues [106] prepared potassium channel blocking 249 

1,2-bis(aryl)ethane-1,2-diamines active as antiarrhythmic agents. The most 250 

promising analogue 95displayed significant nanomolar potency in blocking Kv1.5 251 
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in human atrial myocytes (IC50: 1.7 μM, IKur IC50: 60 nM) and based on the PD data, 252 

the estimated dose to man was 700 mg/day (Figure 32). 253 

 254 

Figure 33. SAR of aplysiatoxin derivatives. 255 

Recently, natural products with novel structural motif as Kv1.5 inhibitor also 256 

gain progress in this field. In the sequence of the isolation of 257 

compounddebromoaplysiatoxin A (38) and debromoaplysiatoxin B (39) [63], Tang 258 

and co-workers [14] identified other novel aplysiatoxin derivatives from the marine 259 

cyanobacterium Lyngbya sp. Among them, compound oscillatoxin E (96) with the 260 

hexane-tetrahydropyran of a spirobicyclic system skeleton exhibited the strongest 261 

Kv1.5 inihibition (IC50: 0.79 μM) in the CHO cells at HP of -80 mV (Figure 33). 262 

Conclusion 263 

Herein the target and the pharmacological properties with structural, 264 

pharmacological and SAR information of Kv1.5 modulators have been discussed. 265 

Detailed descriptions of pharmacology parameters and SAR studies provide an 266 

actionable path forward for medicinal chemists to optimize the structure of Kv1.5 267 

modulators. Further experiments should improve the PK and safety after the 268 

effectiveness is proved. Design and development of potential and selective Kv1.5 269 

modulators are important and challenging tasks. Based on the existing 270 

pharmacophoric requirements and potential protein structure parsed in the future, 271 

novel effective Kv1.5 modulators may be designed and prepared [107, 108]. 272 

However, gaps exist in the scientific studies on Kv1.5 modulators: Firstly, the 273 

selectivity of existing Kv1.5 modulators remain to investigate, and more specific 274 
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modulators aiming at Kv1.5 channel are needed in the future. Secondly, from the 275 

point of application, the market of AF is relatively small, the sales condition of 276 

marked anti-AF agents is not satisfactory as a whole, thus more depth 277 

pharmacological investigations of roles that Kv1.5 paly are required in the future. 278 

Moreover, the definite structure of Kv1.5 protein is still vacant, difficulties and 279 

potential fallacy are still consisting in the design of modulators only estimating by 280 

the pocket of homologous models.  281 

SAR investigation is crucial for the development of novel promising clinical 282 

candidates. It is anticipated that the information compiled in this review article not 283 

only updates researchers with the recent reported pharmacology and SAR of Kv1.5 284 

modulators, but also motivates them to design and synthesize promising Kv1.5 285 

modulators with improved medicinal properties. 286 
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Ceu20: unbound steady-state plasma concentration; 298 

CHO cells: Chinese Hamster Ovary cells; 299 

CNS: Central nervous system; 300 

EDGs: Electron donating groups; 301 

EWGs: Electron withdrawing groups; 302 

HEK cells: Human Embryonic Kidney 293 cells;  303 

hERG: human Ether-à-go-go-Related Gene;  304 

hKv1.5 channels: human Kv1.5 channels; 305 

Human PASMCs: Human Pulmonary Arterial Smooth Muscle Cells; 306 

IKur cardiac ultra-rapid delayed-rectifier;  307 

IC50:50% inhibitory concentration; 308 

Ile: Isoleucine; 309 

Nrf2: nuclear factor erythroid 2-related factor; 310 

SAR: Structure-Activity Relationship； 311 

Thr: Threonine; 312 

Val: Valine; 313 

VERP: ventricular effective refractory period. 314 
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