
HAL Id: hal-02865198
https://hal.sorbonne-universite.fr/hal-02865198v1

Preprint submitted on 11 Jun 2020 (v1), last revised 8 Oct 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strict monotonic trees arising from evolutionary
processes: combinatorial and probabilistic study

Olivier Bodini, Antoine Genitrini, Cécile Mailler, Mehdi Naima

To cite this version:
Olivier Bodini, Antoine Genitrini, Cécile Mailler, Mehdi Naima. Strict monotonic trees arising from
evolutionary processes: combinatorial and probabilistic study. 2020. �hal-02865198v1�

https://hal.sorbonne-universite.fr/hal-02865198v1
https://hal.archives-ouvertes.fr

STRICT MONOTONIC TREES ARISING FROM
EVOLUTIONARY PROCESSES:

COMBINATORIAL AND PROBABILISTIC STUDY

OLIVIER BODINI, ANTOINE GENITRINI, CÉCILE MAILLER, AND MEHDI NAIMA

Abstract. In this paper we introduce three new models of labelled random
trees that generalise the original unlabelled Schröder tree. Our new models can
be seen as models for phylogenetic trees in which nodes represent species and
labels encode the order of appearance of these species, and thus the chronology
of evolution. One important feature of our trees is that they can be generated
efficiently thanks to a dynamical, recursive construction.

Our first model is an increasing tree in the classical sense (labels increase
along each branch of the tree and each label appears only once). To better
model phylogenetic trees, we relax the rules of labelling by, e.g., allowing
repetitions in the two other models.

For each of the three models, we provide asymptotic theorems for different
characteristics of the tree (e.g. degree of the root, degree distribution, height,
etc), thus giving extensive information about the typical shapes of these trees.
We also provide efficient algorithms to generate large trees efficiently in the
three models. The proofs are based on a combination of analytic combinatorics,
probabilistic methods, and bijective methods (we exhibit bijections between
our models and well-known models of the literature such as permutations and
Stirling numbers of both kinds).
Keywords: Evolution process; Increasing trees; Monotonic trees; Analytic
Combinatorics; Uniform sampling.

Date: June 11, 2020.
This research is partially supported by the ANR project MetACOnc, ANR-15-CE40-0014. C.

Mailler aknowledges EPSRC for support through the fellowship EP/R022186/1.
1

2 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

Contents

1. Introduction 3
2. Increasing Schröder trees 6
2.1. The model and its context 6
2.2. Exact enumeration and relationship with permutations 9
2.3. Analysis of typical parameters 10
2.3.1. Quantitative analysis of the number of iteration steps 10
2.3.2. Quantitative characteristics of the root node 13
2.3.3. Quantitative analysis of the number of nodes of a given arity 16
2.3.4. Typical depth of the leftmost leaf 19
2.4. Bijection with permutations 20
2.5. Uniform random sampling 22
2.6. Analysis of the height of a typical increasing Schröder tree 23
3. Strict monotonic Schröder trees 25
3.1. The model and its context 25
3.2. Enumeration and relationship with ordered Bell numbers 26
3.3. Bijection with ordered Bell numbers 29
3.4. Analysis of typical parameters 29
3.4.1. Quantitative analysis of the number of iteration steps 30
3.4.2. Quantitative analysis of the number of internal nodes 31
3.4.3. Quantitative characteristics of the root node 33
3.4.4. Typical depth of the leftmost leaf 34
3.5. Uniform random sampling 37
4. Strict monotonic general trees 41
4.1. The model and its enumeration 42
4.2. Iteration steps and asymptotic enumeration of the trees 44
4.3. Analysis of typical parameters 47
4.3.1. Quantitative analysis of the number of internal nodes 47
4.3.2. Quantitative analysis of the number of distinct labels 48
4.3.3. Quantitative analysis of the height of the trees 49
4.3.4. Quantitative analysis of the depth of the leftmost leaf 50
4.4. Correspondence with labelled graphs 51
4.5. Uniform random sampling 53
5. Conclusion 54
References 55

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 3

1. Introduction

The aim of this paper is to introduce new combinatorial models for phyloge-
netic trees: the main idea is to add node labels in order to encode chronology
in the classical model introduced by Schröder trees in 1870 in the seminal paper
Vier Combinatorische Probleme [Sch70]. In this paper (see the fourth problem),
Schröder introduces a simple model of phylogenetic tree model, and enumerate this
class of trees by their number of leaves.

In biology, a phylogenetic tree is a classical tool to represent the evolutionary
relationship among species. At each branching node of the tree, the descendant
species from distinct branches have distinguished themselves in some manner and
are no more dependent: the past is shared but the futures are independent.

The main limitation of Schröder’s model of phylogenetic trees is that it does
not take into account the chronology between the different branching nodes. Since
then, probabilistic approaches have been developed to consider this chronology: in
particular in the context of binary trees, one can mention, e.g., the stochastic model
of Yule [Yul25] and its generalization by Aldous [Ald96].

However, to the best of our knowledge, there seems to have been no attempt to
combinatorially enrich Schröder’s original model in order to encode the chronology
of evolution: this is the aim of this paper. To do so, we consider labelled versions
of Schröder’s tree, where the labels represent the order at which branchings occur.
In Figure 1 we have represented on the left hand-side a classical Schröder trees of
size 50 (i.e. with 50 leaves), and, on the right hand-side, a labelled version of the
same tree: time is on the vertical axis, from top to bottom, and a node of label x
is placed at time x (the horizontal placement is irrelevant).

Discussion of related models: Increasing trees are classical in the literature: for
example, Bergeron, Flajolet and Salvy [BFS92] study several families of increasingly-
labelled trees, and, to do so, they develop some tools that are now classical in an-
alytic combinatorics. As an example, one of these classical tools is the integration
of the Greene operators. We refer the reader to [Drm09] where more recent results
on various families of increasing trees and the analytic combinatorics methods to
quantitatively study them are surveyed.

Beyond their combinatorial description, increasing trees can often be described as
the result of a dynamic construction: the nodes are added one by one at successive
integer-times in the tree (their labels being the time at which they are added). This
description sometimes allow to apply probabilistic method to prove theorems about
some characteristics such as the height of the tree, and it also often gives a very
efficient way to generate large trees from the considered class using simple, iterative
and local rules.

We illustrate this dynamical evolution on the simple case of recursive trees.
This simple model was originally designed as a simple model for the spread of
epidemics [Moo74]. Combinatorially, a recursive tree is a rooted non-plane (i.e. the
order of siblings is irrelevant) tree whose nodes are labelled from 1 to the number
of nodes in such a way that each label appears exactly once, and the labels in-
crease along all branches. We denote by Rn the class of all n-node recursive trees.
Now, consider a sequence of random trees (tn)n≥1 built recursively as follows: t0
has only one node, labelled by 1. Given tn−1, attach a new child labelled by n to
a node picked uniformly at random among the n − 1 nodes of tn−1. Then, it is

4 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

Figure 1. A Schröder tree: without chronological evolution (on
the left-hand side), and with chronological evolution (on the right-
hand side): the label of a node is represented as the distance from
this node to the root.

known that for all n ≥ 1, tn is a tree taken uniformly at random in Rn, the set of
all n-node recursive trees. Both analytic combinatorics and probabilistic methods,
as well as a bijection with permutations, have been used to understand the typi-
cal shape of a large recursive tree: it is known that the degree of the root grows
as lnn (see [Drm09, Sec. 6.1]), the height as c lnn (for an explicit constant c –
see [Pit94]), the proportion of nodes of arity k ≥ 0 converges to 2−k (see [Drm09,
Th. 6.8]). Although our three models of increasing Schröder trees are more involved,
our proofs rely on the same three methods used in the literature for the recursive
trees: analytic combinatorics, a dynamical evolution and probabilistic methods,
and bijections with classes of permutations.

Our main contributions: Although, as mentioned above, many variations of the
recursive tree have been studied, this paper (together with its short version [BGN19])
contains the first study of increasing versions of the classical model of Schröder. We
aim at defining an evolution process associating to a given Schröder tree structure

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 5

an evolution represented by an increasing labelling of its internal nodes. Further-
more we also focus on relaxing the labelling constraints by allowing repetitions of
labels. In the dynamical construction of the trees, allowing repetition of labels
mean allowing adding several nodes at once in the tree. Our generalisations can
be seen as natural discrete-time versions of the classical probabilistic model of Yule
trees (see, e.g., [SM01]) where the time between two branchings are exponentially
distributed.

This work is a part of a long-term over-arching project, in which we aim at
relaxing the classical rules of increasing labelling (described in, e.g., [BFS92]), by,
for example, allowing labels to appear more than once in the tree. The following
papers are part of this strand of research: [BGGW20, BGNS20] introduce and
study models of label trees with less-constrained increasing labelling rules, but also
other graphs structures like [BDF+16] focuses on increasingly-labelled “diamonds”
and [GGKW20] at a compacted structure that specifies classes of directed acyclic
graphs.

In this paper, we introduce three new different models of Schröder trees with
chronological evolution: the increasing Schröder trees, the strict monotonic Schröder
trees and the strict monotonic general trees. One important feature of these models
is that they can all be simulated efficiently. The first two models are based on some
increasingly labelling of Schröder trees, repetition of labels is allowed in the second
model. In the last model increases we increase the expressivity by allowing a new
type of internal nodes. For all of the three models, we prove asymptotic results
about important characteristics of a typical large tree of this class (e.g. root distri-
bution, number of nodes of arity 2, 3, etc, height of the tree, etc – see Table 1 where
our main results are summarised), and design an algorithm that generates a large
tree taken uniformly at random among all trees of a given size in the class. The
quantitative analysis of the three models and the design of the random samplers
rely on a combination of analytic combinatorics methods (see [FS09] for a sur-
vey), probabilistic methods (in particular methods developed by Devroye [Dev90]
to study the height of split trees), and bijective methods (we exhibit bijections be-
tween our classes of trees and classes of permutations, these are then useful for the
analysis of different characteristics and for the design of the generation algorithms).
In particular, we exhibit interesting relations between Striling numbers and param-
eters on trees such that the labelling of nodes, the number of internal nodes, and
the depth of a leaf.

Generic approach highlighted in the paper: Similarly to the recursive tree,
all of our three models have a generic constrained evolution process. The specificity
of each model is induced by small changes of the evolution process: we give here
a generic, non precise description of the evolution process, details specific to each
family of trees will be detailed in each section:

• Start with a single (unlabelled) leaf;
• Iterate the following process: at step ` (for ` ≥ 1), select a subset of leaves
and replace each selected leaf by an internal node with label ` attached to
an arbitrary sequence of leaves.

Note that the increasing labelling corresponds to the chronology of the construction
of the tree: internal nodes labelled by an integer ` were added at time `. Our three
models differ from each other by different constraints on the set of selected leaves:
in our first model, this subset is always of size 1, while it can be bigger in the other

6 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

two models. The difference between our second model and third model is that
internal nodes have arity at least 2 on the second model, while they can have arity
1 in the third model. Importantly, in all three models our Schröder trees can be
seen as phylogenetic trees of n species (n being the number of leaves): the labels of
internal nodes stand for the times at which different branches of the phylogenetic
trees split.

Number of trees Distinct labels Internal nodes Depth LM leaf Height

Increasing Schröder trees n!/2 n− lnn n− lnn lnn Θ(lnn)

Strict monotonic Schröder trees (n− 1)!/(2 (ln 2)
n
) 0.72 n n− 2 lnn lnn

Strict monotonic general trees c (n− 1)! 2(n−1)(n−2)/2 Θ(n) Θ(n2) Θ(n) Θ(n)

Table 1. Summary of the main analytic results of the paper:
behaviour of the characteristics of a large typical tree of each of
the three classes of labelled Schröder trees. The parameter n stands
for the size of the trees (i.e. their number of leaves) and the results
are asymptotic when n→ +∞. (LM stands for “leftmost” and c is
a positive constant.)

Plan of the paper: Each of the three main sections (Sections 2, 3 and 4) is
dedicated to one of our three new models of labelled Schröder trees. The organ-
isation inside each section is similar: after defining the model we show theorems
about different characteristics of the trees using analytic combinatorics and bijec-
tive methods. We then exhibit the associated dynamical evolution that generates
the considered class of trees, and use this evolution process to (a) design an effi-
cient random sampler for this class of trees and (b), in some cases, to prove some
probabilistic results about the height of a typical large tree from this class.

2. Increasing Schröder trees

The first model we are interested in is a generalisation of the Schröder tree, a
classical combinatorial structure that was originally introduced in the context of
phylogenetics [Sch70]. Our generalisation consists in labelling the internal nodes of
a Schröder tree – denote by ` their number – with the integers {1, . . . , `} with the
constraints that each label appears exactly once and a node’s label is larger than
the label of its parent; such a labelling of a tree is called “increasing”, we call such a
constrained-labelled Schröder tree an increasing Schröder tree. In the tree seen as
an evolutionary process, the labels can be interpreted as the order of appearance of
the different nodes (which, for example, stand for different species). Several classes
of increasingly-labelled trees have already been studied in the literature using an-
alytic combinatorics [FS09] methods, but these methods applied to the Schröder
tree would raise important technical problems. The novelty of our approach is to
use a dynamical description of the increasing Schröder tree inspired by its evolu-
tionary interpretation; this allows us to give the first analytical results about this
combinatorial structure.

2.1. The model and its context. In this paper, we define rooted trees as ge-
nealogical structures: the root is the unique common ancestor of all nodes of the
tree, each node except the root has exactly one parent (the root has no parent),

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 7

nodes that have no children are called leaves, nodes that have at least one child are
called internal nodes. The arity of a node is it’s number of children. We say that
a tree is plane if siblings (nodes that have the same parent) are ordered.

Definition 2.1.1 (see [FS09, p. 69]). A Schröder tree is a rooted plane tree whose
internal nodes all have arity at least 2. The size of a Schröder tree is its number of
leaves.

Note that a Schröder tree is an unlabelled combinatorial structure (neither the
leaves nor the internal nodes are labelled). In the context of analytic combinatorics
the combinatorial class S of Schröder trees is thus specified as

S = Z ∪ Seq≥2 S. (1)

Its combinatorial meaning is direct in the context of decomposable objects (see
Flajolet and Sedgewick [FS09] for a detailed introduction to the combinatorial
specification): An object from S is either a leaf (represented by the single atom Z,
of size 1), or it is composed of an internal node, parent of a sequence of at least
two elements from S. Not that, in the specification, the internal nodes are omitted
(because they are of size 0): the expression Seq≥2 S is a abbreviation of E×Seq≥2 S
where E stands for an atom of size 0 and Seq≥2 S is a sequence of at least two
elements from S.

Once the combinatorial specification is given, the classical symbolic method [FS09],
translates automatically the equation specifying the objects into a functional equa-
tion satisfied by the (ordinary) generating functions associated to the structures.
The generating function of S is defined as the formal series S(z) =

∑
n≥1 snz

n

where sn is the number of Schröder trees of size n (i.e. with n leaves). Using the
symbolic method on Equation (1), we get that

S(z) = z +
S(z)2

1− S(z)
. (2)

An elementary iteration allows us to extract the first coefficients of the sequence (sn)n∈N:

(0, 1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859, 2646723, 13648869, 71039373, . . .) .

Equation (2) implies that the generating function S is algebraic and in fact

S(z) =
1 + z −

√
1− 6z + z2

4
.

This is sufficient to get the following asymptotic equivalent of sn when n tends to
infinity:

sn =

√
3
√

2− 4

4
√
π

n−3/2
(

3− 2
√

2
)−n

(1 +O(1/n)) .

We refer the reader to [FS09, page 69] for a more detailed analysis of this generating
function S.

In the rest of the section we are interested in an increasingly-labelled variation
of Schröder trees.

Definition 2.1.2. An increasing Schröder tree has a Schröder tree structure and
its internal nodes are labelled with the integers between 1 and ` (where ` is the
number of internal nodes) in such a way that each label appears exactly once and
each sequence of labels in the paths from the root to any leaf is (strictly) increasing.

8 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

1

14 2

25 3 15

4 5

24 7

8

13

19 17

27 23 26

9 6

11

12

20

10

16

18 22

21

Figure 2. Two increasing Schröder trees

Increasing trees can, to a certain extent, be specified using the Greene operator
�? (see, for example, [FS09, page 139]), and the specification can then be translated
into an equation satisfied by the exponential generating function of the increasing
tree class. Since in our context the size of a tree is the number of its leaves while only
internal nodes are labelled, we need to introduce a second variable u to mark the
internal nodes. Let us denote by sn,` the number of increasing Schröder trees with n
leaves and ` internal nodes. Following standard methods in analytic combinatorics
we define a generating function that is ordinary for the leaf marks and exponential
for the internal node marks: we set S∗(z, u) =

∑
n,` sn,` z

n u`/`!. The specification
of this combinatorial class is

S∗ = Z ∪ U� ? Seq≥2 S∗.
Using the symbolic method [FS09], we obtain the following equation satisfied by
S∗(z, u):

S∗(z, u) = z +

∫ u

v=0

S∗(z, v)2

1− S∗(z, v)
dv.

Although this integral equation could be analysed further in order to get informa-
tion about increasing Schröder trees, this analysis would be very cumbersome; a
better approach is to see the Schröder tree as the result of an evolutionary pro-
cess. Another advantage of this new approach is that it extends to other families
of labelled Schröder trees for which there seems to be no (classical) specification,
even using the Greene operator: one such example is the family of strict monotonic
Schröder trees studied in Section 3.

In Figure 2 we have represented two increasing Schröder trees: both are gen-
erated uniformly at random among all increasing Schröder trees of the same size:

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 9

size 30 on the left, size 500 on the right. The left-hand-side tree has 27 internal
nodes (and 30 leaves). It is the same tree as the one represented in Figure 1, where
its chronological evolution is represented on the right-hand side: the internal node
labelled by ` is displayed on level ` − 1 (i.e. at distance ` − 1 from the root on
the vertical axis), for all ` ∈ {1, . . . , 27}. The right-hand-side one is drawn using
a circular representation, which is often used for phylogenetic trees: the labels are
omitted but as in Figure 1, the length of an edge is proportional to the difference of
the labels of the two nodes it connects. This right-hand-side tree has 492 internal
nodes (and 500 leaves).

Let us introduce an evolution process generating increasing Schröder trees:

• Start with a single (unlabelled) leaf;
• Iterate the following process: at step ` (for ` ≥ 1), select one leaf and
replace it by an internal node with label ` attached to an arbitrary sequence
of new leaves.

To make sure that this algorithm generates all increasing Schröder trees and
generates each tree exactly “once”; we define this evolution process more rigorously
as follows: The process takes as an input two sequences of integers (d`)`≥1 and
(u`)`≥1 such that u1 = 1 and for all ` ≥ 1, d` ≥ 2 and 1 ≤ u`+1 ≤

∑`
i=1 di− (`− 1)

and gives as an output a sequence (τ`)`≥0 of `-internal-node increasing Schröder
trees. The process is defined inductively as follows:

• Tree τ0 is the 1-node tree, without any internal node.
• Given τ`, we define τ`+1 as follows: we number the leaves of τ` in the

depth-first order (the choice of the ordering does not matter) from 1 to∑`
i=1 di−(`−1), and replace leaf number u`+1 by an internal node labelled

by `+ 1 to which d`+1 leaves are attached.

Note that, by construction, τ` is an increasing Schröder tree with ` internal nodes
for all ` ≥ 0, and the label of a node corresponds to the time in the evolution process
when this node became an internal node. In other words, the increasing labelling
corresponds to the chronology of the evolution process. Finally, note that the
evolution process indeed defines a bijection between the set of increasing Schröder
trees having p internal nodes and the set of all sequences (d`, u`)1≤`≤p such that
u1 = 1, and for all 1 ≤ ` ≤ p, d` ≥ 2 and 1 ≤ u`+1 ≤

∑`
i=1 di − (`− 1).

Recall that we define the size of a Schröder tree to be its number of leaves. It
is important to note that, because a Schröder tree with n − 1 internal nodes has
at least n leaves, the evolution process defines a bijection between the set of all
n-leaf Schröder trees and the set of all sequences (d(n)

` , u(n)

`)1≤`<n such that for all
1 ≤ ` < n, u(n)

1 = 1, d(n)

` ≥ 2, 1 ≤ u(n)

`+1 ≤
∑`
i=1 d

(n)

i − (`− 1), and
∑`
i=1 d

(n)

i = n.
By taking all trees of the same size together, we obtain the following induction

equation, enumerating increasing Schröder trees by size: if, for all n ≥ 0, tn is the
number of n-leaf Schröder trees, then t1 = 1 and, for all n ≥ 2,

tn =

n−1∑
`=1

` t`. (3)

2.2. Exact enumeration and relationship with permutations. Let T denote
the class of increasing Schröder trees. Using the evolution process, we get the

10 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

following specification for T :

T = Z ∪
(
ΘT × Seq≥1Z

)
. (4)

In this specification, Z stands for the leaves, and the operator Θ is the classical
pointing operator (see [FS09, page 86] for details). The specification is a direct
rewriting of the evolution process: a tree is either of size 1 (Z), or it has been built
by pointing a leaf in a smaller tree (ΘT) and replacing it by a sequence of at least
two leaves. Although the latter sequence is of length at least 2, we use the operator
Seq≥1(Z) instead of Seq≥2(Z) because the leaf that was pointed is reused as the
leftmost child of the new internal node.

The symbolic method translates this specification into a functional equation sat-
isfied by the generating function associated to the combinatorial class of increasing
Schröder trees. Note that although the increasing Schröder trees are labelled, this
labelling is transparent, i.e. it is possible to work with ordinary generating functions
(as opposed to exponential generating functions). This is because the size of an
increasing Schröder tree is its number of leaves, and the leaves are not labelled.
We define the ordinary generating function associated to T by T (z) =

∑
n≥1 tn z

n,
where tn is the number of increasing Schröder trees of size n. Using the symbolic
method (in particular, pointing at a leaf translates into a differential operator), we
get

T (z) = z +
z2

1− z
T ′(z). (5)

Writing (1 − z)T (z) = z(1 − z) + z2T ′(z) and extracting the n-th coefficient on
both sides of this equation, we get that for all n ≥ 3, tn = n tn−1: we get back
the recurrence exhibited earlier in Equation (3). Using the fact that t1 = t2 = 1,
we get that tn = n!/2 for all n ≥ 2 (this sequence (tn)n appears under the reference
OEIS A0017101). Note that the radius of convergence of the ordinary generating
series T (z) is 0; this series is thus purely formal.

2.3. Analysis of typical parameters. In this section, our aim is to describe the
shape of a typical increasing Schröder tree, i.e. a tree taken uniformly at random
among all increasing Schröder tree of a fixed size. To get information about this
shape, we focus on four characteristics of the tree: the number of internal nodes,
the arity of the root, the number of leaves that are children of the root, and the
number of binary nodes (node of arity 2). We show asymptotic theorems for these
characteristics in a typical increasing Schröder tree when the size goes to infinity.

2.3.1. Quantitative analysis of the number of iteration steps. In this section, we
show that although an increasing Schröder tree of size n can have between 1 and
n− 1 internal nodes, it typically has of order n− lnn internal nodes. This result is
particularly interesting to analyse the complexity of the evolutionary process: this
means that, on average, this evolutionary process takes of order n − lnn iteration
steps to generate a typical increasing Schröder tree of size n. In fact, our result is
stronger than just finding an equivalent for the average number of iterations since
we prove a central limit theorem for this quantity. To complete the picture we
also quantify the average number of nodes of a fixed degree. We will show that the

1Throughout this paper, a reference OEIS A· · · points to Sloane’s Online Encyclopedia of In-
teger Sequences www.oeis.org.

https://oeis.org/A001710
www.oeis.org

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 11

1
0 , 1
0 , 1, 2
0 , 1, 5, 6
0 , 1, 9, 26, 24
0 , 1, 14, 71, 154, 120
0 , 1, 20, 155, 580, 1044, 720

Table 2. Values of tn,k (the number of increasing Schröder trees
with n leaves and k internal nodes) for n ∈ {1, 2, . . . , 7}, and k ∈
{0, 1, . . . , n− 1}.

average number of binary nodes in a typical tree is n−2 lnn, the number of ternary
nodes is lnn and higher arity nodes have a constant mean.

Theorem 2.3.1. For all n ≥ 1, we denote by Xn the number of internal nodes
in a tree taken uniformly at random among all increasing Schröder trees of size n.
Then, asymptotically when n tends to infinity, ETn [Xn] ∼ n− lnn, VTn [Xn] ∼ lnn,
and

Xn − (n− lnn)√
lnn

d−−→ N (0, 1) in distribution.

To prove this theorem, we enrich the specification (4) with an additional param-
eter U marking the internal nodes:

T = Z ∪
(
U ×ΘZT × Seq≥1Z

)
,

where the operator ΘZ consists in pointing an element marked by Z. Remark here
we do not use the Greene operator: the increasing labelling is a consequence of our
point of view, we do not need to care about it. Using the symbolic method, this
implies that, if tn,k is the number of increasing Schröder trees with n leaves and k
internal nodes, tn(u) =

∑n−1
k=0 tn,k u

k, and T (z, u) =
∑
n≥1 tn(u) zn, then

T (z, u) = z +
uz2

1− z
∂zT (z, u), (6)

where ∂z denotes the partial differentiation according to z. Once again, we write
(1− z)T (z, u) = z(1− z) + uz2, and extract the coefficient of zn on both sides; let
us denoted by tn(u) =

∑n−1
k=0 tn,k u

k, then this gives t1(u) = 1, t2(u) = u and, for
all n > 2,

tn(u) = (1 + (n− 1)u) tn−1(u). (7)

Extracting the coefficient of uk on both sides of this last equation gives: t1,0 = 1,
tn,1 = 1 for all n > 1,

tn,k = tn−1,k + (n− 1) tn−1,k−1 for all 0 < k < n,

and tn,k = 0 otherwise. The first values of tn,k are listed in Table 2. Note that, for
all n ≥ 1, tn,n−1 is the number of increasing binary trees (see [FS09, page 143] for
details).

12 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

From Equation (7), we easily deduce a closed form for tn(u): for all n ≥ 2, we
have

tn(u) = u

n−1∏
`=2

(1 + `u). (8)

This is a shifted version of the sequence OEIS A145324, which is related to Stirling
cycle numbers. Our proof of Theorem 2.3.1 relies on the following lemma, which is
a straightforward consequence of Equation (8).

Lemma 2.3.2. Let SCn(u) =
∏n−1
i=0 (u + i) be the generating functions of the re-

spective rows of the Stirling Cycle numbers (see [FS09, page 735]), which enumerate
all permutations of a set of size n that decompose into k cycles (i.e. Stirling num-
bers of the first kind). If we set t̂n(u) =

∑n
k=1 tn,k u

n−k, which is the row-reversed
generating function, then

t̂n(u) =
SCn(u)

1 + u
= u

n−1∏
`=2

(u+ `).

Proof of Theorem 2.3.1. One could apply Hwang’s quasi-powers theorem [Hwa98],
but since we have an explicit formula for tn(u), we decide instead to apply Lévy’s
continuity theorem directly. By Lemma 2.3.2, we have that, if X̄n = n − Xn, for
all ξ ∈ R,

E
[
e
iξ· X̄n−lnn√

lnn

]
=

1

tn
e−iξ

√
lnnt̂n

(
e

iξ√
lnn

)
=

2

n!
e
−iξ
√

lnn+ iξ√
lnn ·

Γ
(
n+ e

iξ√
lnn

)
Γ
(

2 + e
iξ√
lnn

)

=
2 + o(1)

Γ(3 + o(1))

(
n− 1 + e

iξ√
lnn

)n+e
iξ√
lnn− 1

2

ene−iξ
√

lnn

en−1+e
iξ√
lnn nn+ 1

2

,

where we have used Stirling’s formula. Note that

lim
n→∞

e1−e
iξ√
lnn

= 1,

and Γ(3) = 2, which implies that

E
[
e
iξ· X̄n−lnn√

lnn

]
= (1 + o(1))

(
n− 1 + e

iξ√
lnn

)n+e
iξ√
lnn− 1

2

e−iξ
√

lnn

nn+1/2

= (1 + o(1))
ne

iξ√
lnn

n

(
1 +O

(
1

n
√

lnn

))n− 1
2 +e

iξ√
lnn

e−iξ
√

lnn

= (1 + o(1))
ne

iξ√
lnn e−iξ

√
lnn

n
.

https://oeis.org/A145324

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 13

Since

ne
iξ√
lnn

= exp
(

(lnn)e
iξ√
lnn

)
= exp

(
(lnn)

(
1 +

iξ√
lnn
− ξ2

2 lnn
+O

(
(lnn)−

3/2
)))

=
n →∞

neiξ
√

lnn−ξ2/2,

we get

E
[
e
iξ· X̄n−lnn√

lnn

]
= (1 + o(1)) e−

ξ2/2,

which, by Lévy’s continuity theorem concludes the proof; recall that X̄n = n −
Xn. �

2.3.2. Quantitative characteristics of the root node. In this section, we study two
parameters of the root of a typical increasing Schröder tree: the total number of
its children (i.e. its arity), and the number of its children that are leaves.

Theorem 2.3.3. Let An be the arity of the root of a tree taken uniformly at random
among all increasing Schröder trees of size n. For all n ≥ 2, k ≥ 2, we have

P(An = k) =
2k

(k + 1)!
.

And the second result is:

Theorem 2.3.4. Let Ln be the number of children of the root that are leaves in
a tree taken uniformly at random among all increasing Schröder trees of size n.
Asymptotically when n tends to infinity,

E[Ln] =
2e

n
+ Θ (1/(n·n!)) and V[Ln] =

2e

n
+ Θ (1/n2) .

Theorem 2.3.3 is a direct consequence of the following lemma.

Lemma 2.3.5. If tn,k is the number of increasing Schröder trees whose root has
arity k, then t1,0 = 1, for all n ≥ 0, tn,1 = 0 and for all n ≥ 2, 2 ≤ k ≤ n− 1,

tn,k =
k n!

(k + 1)!
, and tn,n = 1.

Indeed, this lemma together with the fact that tn = n!/2, imply, for all 2 ≤ k < n,

P(An = k) =
2k

(k + 1)!
,

which concludes the proof of Theorem 2.3.3.
We refer the reader to Table 3 where the first values of tn,k are listed. The

sequences (tn(u))n≥1 and (tn,k)2≤k<n are related to the sequences OEIS A094112
and OEIS A092582, which enumerate some families of permutations (the former
enumerates a family of permutations avoiding some pattern, the second permuta-
tions with initial cycle of a given size). Since the number of increasing Schröder
trees of size n ≥ 2 is equal to n!/2, it is natural to expect some links between this
family of trees and permutations: in Section 2.4 we exhibit a bijection between the
two families.

https://oeis.org/A094112
https://oeis.org/A092582

14 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

1, 0
0, 0, 1
0, 0, 2, 1
0, 0, 8, 3, 1
0, 0, 40, 15, 4, 1
0, 0, 240, 90, 24, 5, 1
0, 0, 1680, 630, 168, 35, 6, 1

Table 3. Values of tn,k, the number of size-n increasing Schröder
trees of root-arity k, and 0 ≤ k ≤ n ∈ {1, . . . , 7}.

Proof of Lemma 2.3.5. In this proof, the variable U marks the arity of the root (we
re-use the same notation as in the previous section, but with a different meaning;
this is done to avoid having too many different notations). Using the evolution
process, we get that

T = Z ∪
(
U × Z × Seq≥1(U × Z)

)
∪
(
ΘZ(T \ Z)× Seq≥1Z

)
.

Indeed, the root is either a leaf (Z), or it is an internal node to which is attached a
sequence of at least 2 leaves (U ×Z×ΘZ(Z)×Seq≥1(U ×Z)), or the tree is larger,
i.e. the last step in the evolution process was replacing another leaf by an internal
node to which is attached a sequence of non-marked leaves (ΘZ(T \Z)×Seq≥1Z).
Using the symbolic method, we thus get that

T (z, u) = z +
u2z2

1− uz
+

z2

1− z
∂z (T (z, u)− z) .

In the same way as before, through a direct extraction [zn](1 − zu)(1 − z)T (z, u),
we prove that t1(u) = 1, t2(u) = u2, and for all n > 2,

tn(u) = (u− 1) un−1 + n tn−1(u).

This implies t1,0 = 1, tn,n = 1 for all n ≥ 1, tn,k = n tn−1,k for all 1 ≤ k ≤ n − 1,
and tn,k = 0 for all k > n, which concludes the proof. �

The proof of Theorem 2.3.4 is a little more involved.

Proof of Theorem 2.3.4. The operators needed for the specification are not so clas-
sical so we prefer to directly write the differential equation satisfied by T (z, u) =∑
n,k tn,k u

kzn, where tn,k is the number of size-n increasing Schröder trees with
k leaves attached to the root. Like in the proof of Theorem 2.3.5 at each step we
must remove the tree reduced to the leaf, i.e. T \Z. So let us introduce the function
V (z, y) = T (z, y)− z. Thus we get

T (z, u) = z+
u2z2

1− uz
+

z2

1− z
∂uV (z, u)

z
+

z2

1− z

(
∂zV (z, u)− u

z
∂uV (z, u)

)
. (9)

Indeed, by looking at the last step in the evolution process, four possibilities occur:
- the tree is reduced to a leaf z, i.e. the evolution process did not already start
- the tree contains a single internal node to which a sequence of at least 2 leaves is
attached (u

2 z2

1−uz), i.e. the evolution process has gone through one step only,
- in the last step of the evolution process, a leaf of the root has been replaced by
an internal node to which a sequence of leaves is attached (z2

1−z
∂uV (z,u)

z), in fact,
leaves attached to the root are marked as zu, the differentiation by u followed by

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 15

the division by z gives the result,
- in the last step of the evolution process, a leaf that is not attached to the root
has been selected and replaced by an internal node attached to at least two leaves:

z2

1− z

(
∂zV (z, u)− u

z
∂uV (z, u)

)
.

The second term removes the trees built in the first one where a leaf attached to
the root has been selected. As an example, take a tree counted by z`+rur, thus
containing ` leaves such that r of them are attached to the root. The operation
gives (`+ r)z`+r−1ur − u

z r z
`+rur−1 and thus gives exactly `z`+r−1ur.

After some simplifications and multiplications by (1− uz)(1− z) we get

(1− uz)(1− z) V (z, u) = u2z2(1− z) + z2(1− uz)
(
∂zV (z, u)− u

z
∂uV (z, u)

)
.

By extracting the coefficient of zn from the latter equation, we directly get that,
for all n ≥ 4,

vn(u) = (n+ u) vn−1(u)− u(n− 1) vn−2(u)− (u− 1) v′n−1(u) + u(u− 1) t′n−2(u),

and v1(u) = 0, v2(u) = u2 and v3(u) = 2u2 + u3.
To evaluate the average number of leaves attached to the root we must compute

the limit of the ratio v′n(u)/vn(u) when n tends to infinity and evaluate it for u = 1.
Differentiating the last equation we get

v′n(u) = vn−1(u) + (n+ u− 1) v′n−1(u)− (u− 1) v′′n−1(u)

−(n− 1) vn−2(u) + (2u− (n− 1)u− 1) v′n−2(u) + u(u− 1) v′′n−2(u).(10)

We thus define the sequence of the average values mn = v′n(1)/vn(1) and get for
n ≥ 4

mn = mn−1 −
n− 2

n(n− 1)
mn−2,

with m1 = 0,m2 = 2 and m3 = 5/3. In order to analyse the sequence of real values
mn we introduce an alternative sequence `n such that `n = n mn and thus we
obtain for all n ≥ 1, we get, for all n ≥ 4,

`n =

(
1 +

1

n− 1

)
`n−1 −

1

n− 1
`n−2, (11)

and `1 = 0, `2 = 4 and `3 = 5. Finally, we set en = 2
∑n−1
i=0 1/i! for all n ≥ 1,

and prove by induction that, for all n ≥ 1, `n = en. First note that `n = en for
n = {1, 2, 3}. Now take n ≥ 4 and assume that for all i < n we have `i = ei. Using
the fact that en = en−1 + 2/(n−1)!, and Equation (11), we have

`n − en = `n−1 +
1

n− 1
(`n−1 − `n−2)− en

= `n−1 − en−1 +
1

n− 1

(
`n−1 − `n−2 −

2

(n− 2)!

)
= `n−1 − en−1 +

1

n− 1
(`n−1 − en−1 − (`n−2 − en−2)) = 0,

16 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

and thus `n = en, which concludes the induction argument. Since, by definition of
en, en = 2e + Θ(1/n!), and since en = `n = nmn = nE[Ln], we get

mn = E[Ln] =
2

n

n−1∑
i=0

1

i!
=

n→∞

2e

n
+ Θ (1/(n·n!)) (12)

We now estimate the variance of Ln; to do so, we use the following identity (see,
e.g., [FS09, p. 159]):

V[Ln] = E[Ln(Ln − 1)] + E[Ln]− (E[Ln])
2 (13)

Since we already have estimated ELn, we only need to estimate E[Ln(Ln − 1)] =
v′′n(1)/vn(1), which we denote by kn. Differentiating Equation (10) we get that, for
all n ≥ 4,

kn = kn−1 −
1

n

(
kn−1 −

n− 3

n− 1
kn−2

)
+

2

n

(
mn−1 −

n− 2

n− 1
mn−2

)
,

where we recall that mn = v′n(1)/vn(1) = E[Ln]. The first terms of (kn)n≥1 are
k1 = 0, k2 = 2 and k3 = 2. For all n ≥ 1, set rn = n(n−1)kn. Using Equation (12),
we get that, for all n ≥ 4,

rn = rn−1 +
1

n− 2
(rn−1 − rn−2) +

4

(n− 2)!
,

with the initial values r1 = 0, r2 = 4 and r3 = 12. Finally, for all n ≥ 3, we set

ẽn = 4

n−1∑
i=2

i− 1

(i− 2)!
= 4

n−1∑
i=3

1

(i− 3)!
+ 4

n−1∑
i=2

1

(i− 2)!
,

and ẽ1 = 0, ẽ2 = 4. By induction, one can prove that, for all n ≥ 1, rn = ẽn, which
implies

kn = E[Ln(Ln − 1)] =
rn

n(n− 1)
=

4

n(n− 1)

n−1∑
i=3

1

(i− 3)!
+

4

n(n− 1)

n−1∑
i=2

1

(i− 2)!

=
8e

n2
+ Θ (1/n3) .

Using this last estimate together with equations (13) and (12), we get

VLn =
n→∞

2e

n
+ Θ (1/n2) . �

2.3.3. Quantitative analysis of the number of nodes of a given arity. In this section,
we prove asymptotic results for the number of nodes of a given arity in a typical
increasing Schröder tree, starting with binary nodes:

Theorem 2.3.6. Let Bn be the number of binary nodes (nodes of arity 2) in a tree
taken uniformly at random among all increasing Schröder trees of size n. Asymp-
totically when n tends to infinity, we have

E[Bn] = n−2 lnn+2γ− 7

3
+O(1/n), and V[Bn] = 4 lnn+4 γ− 2

3
π2− 17

6
+O(1/n),

where γ is the Euler-Mascheroni constant. Moreover, in distribution when n →
+∞,

Bn − (n− 2 lnn)

2
√

lnn
→ N (0, 1).

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 17

In other words, almost all internal nodes are binary, only a proportion of order
2 lnn/n of internal nodes are at least ternary. In the following theorem, we show
that, on average, half of all non-binary nodes are ternary.

Theorem 2.3.7. Let C(`)
n be the number of nodes of arity ` ≥ 3 in a tree taken

uniformly at random among all increasing Schröder trees of size n. Asymptotically
when n tends to infinity, we have

EC(3)

n = lnn+O(1), and EC(4)

n ∼ c`,
for some positive constants (c`)`≥4; and, for ` = 4, we have c4 = 23/90.

Proof of Theorem 2.3.6. Here the specification is easy to exhibit, and its translation
via the symbolic method is direct (in this proof, U marks the binary nodes):

T = Z ∪
(
ΘZT ×

(
U × Z ∪ Seq≥2Z

))
;

T (z, u) = z +

(
u z2 +

z3

1− z

)
∂zT (z, u).

The method we use to analyse this differential equation is similar to [CHY00]. For
all n ≥ 3,

tn(u) = (1 + u(n− 1))tn−1(u) + (1− u)(n− 2)tn−2(u), (14)

with t1(u) = 1, t2(u) = u, and t3(u) = 1 + u2. Once again (see also Lemma 2.3.2)
we take the row-reversed generating function t̂n(u) =

∑n
k=1 tn,k u

n−k = tntn(1/u).
From Equation (14), we get that, for all n ≥ 4,

t̂n(u) =
n+ u− 1

n
t̂n−1(u) +

u(u− 1)(n− 2)

n(n− 1)
t̂n−2(u), (15)

with t̂2(u) = u and t̂3(u) = (2u+u3)/3. Let us now define F (z, u) =
∑
n≥2 nt̂n(u)zn;

this generating function satisfies the following differential equation:

z (1− z) ∂zF (z, u) =
(
1 + uz − u(1− u)z2

)
F (z, u) + 2uz2 (1− u(1− u)z) ,

with initial condition ∂2
zF (z, u)|z=0 = 4u. This last equation gives

F (z, u) = 2uz exp (u(1− u)z) (1−z)−1−u2

∫ z

0

(1− u(1− u)t) (1−t)u
2

exp (−u(1− u)t) dt.

Let φ(z, u) = (1− u(1− u)z) (1− z)u2

e−u(1−u)z; with this definition, we get

F (z, u) = (1− z)−1−u2

(g(u) + E(z, u)) ,

where,

g(u) = 2ueu(1−u) (1− z)−1−u2
∫ 1

0

φ(t, u) dt

and,

E(z, u) =
(
z eu(1−u)z

)
− eu(1−u)

∫ 1

0

φ(t, u) dt− zeu(1−u)z

∫ 1

z

φ(t, u) dt.

Therefore, asymptotically when n→ +∞,

nt̂n(u) =
g(u)

Γ (1 + u2)
nu

2

(1 +O(1/n))

uniformly for all u such that |u−1| ≤ δ for some δ > 0. This thus falls into the scope
of the quasi-powers framework and Theorem IX.8 [FS09, p. 645] is applicable with

18 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

B(u) = exp (2u) and βn = lnn, which concludes the proof (the mean and variance
expansions can be calculated automatically using, e.g., a computer software such
as Maple). �

Proof of Theorem 2.3.7. We first look at ternary nodes: the specification (with U
marking ternary nodes) is given by

T = Z ∪
(
ΘZT ×

(
Z ∪ U × Z2 ∪ Seq≥3Z

))
which implies

T (z, u) = z +

(
z2 + u z3 +

z4

1− z

)
∂zT (z, u),

and thus, for all n ≥ 4:

tn(u) = ntn−1(u) + (u− 1)(n− 2)tn−2(u) + (n− 3)(1− u)tn−3(u),

with t1(u) = 1 and t2(u) = 1. Differentiating this equation, we get that, for all
n ≥ 5,

t′n(u)|u=1 = nt′n−1(u)|u=1 +
(n− 2)(n− 2)!

2
− (n− 3)(n− 3)!

2
.

This thus implies that, for all n ≥ 5,

E[C(3)

n] = E[C(3)

n−1]+
(n− 2)

n(n− 1)
− (n− 3)

n(n− 1)(n− 2)
=

10

24
+

n∑
`=5

(
(k − 2)

k(k − 1)
− (k − 3)

k(k − 1)(k − 2)

)
.

since E[C(3)

4] = 10/24. Using again the fact that
∑n
k=1

1
k = lnn + O(1) and∑n

k=1
1
k2 = O(1) when n tends to infinity, we get

E[C(3)

n] = lnn+O(1),

as claimed.
We reason similarly for ` = 4 (U now marks nodes of arity 4):

T = Z ∪
(
ΘZT ×

(
Z ∪ Z2 ∪ U × Z3 ∪ Seq≥4Z

))
;

T (z, u) = z +

(
z2 + z3 + u z4 +

z5

1− z

)
∂zT (z, u).

Thus, for all n ≥ 4, we have

tn(u) = ntn−1(u) + (u− 1)(n− 3)tn−3(u) + (n− 4)(1− u)tn−4(u),

with t1(u) = 1 and t2(u) = 1, which, after differentiating at u = 1 and dividing by
tn gives

E[C(4)

n] = E[C(4)

n−1] +
(n− 3)

n(n− 1)(n− 2)
− (n− 4)

n(n− 1)(n− 2)(n− 3)
,

with E[C(4)

5] = 12/120. A simple look to this recurrence shows that it converges to a
constant since it is a modified geometric sum. Solving the recurrence we obtain,

E[C(4)

n] =
23

90
− 13

6n
− 1

6 (n− 2)
+

4

3 (n− 1)
,

which proves the statement for ` = 4.
Let us now treat the general ` ≥ 5 case (U now marks nodes of arity `):

T = Z ∪
(
ΘZT ×

((
∪`−2
i=1Z

`
)
∪ U × Z`−1 ∪ Seq≥4Z

))
;

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 19

T (z, u) = z +

((
`−1∑
i=2

zi

)
+ u z` +

z`+1

1− z

)
∂zT (z, u).

This implies that, for all n ≥ `:

tn(u) = ntn−1(u) + (u− 1)(n− `+ 1)tn−`+1(u) + (n− `)(1− u)tn−`(u),

with tn(u) = 1 for all n < `. Therefore, we get

E[C(`)

n] = E[C(`)

n−1] +
(n− `+ 1)

n(n− 1) · · · (n− `+ 2)
− (n− `)
n(n− 1) · · · (n− `+ 1)

= E[C(`)

`] +

n∑
k=`+1

(
(k − `+ 1)

k(k − 1) · · · (k − `+ 2)
− (k − `)
k(k − 1) · · · (k − `+ 1)

)
.

Since (
(k − `+ 1)

k(k − 1) · · · (k − `+ 2)
− (k − `)
k(k − 1) · · · (k − `+ 1)

)
∼

k→∞

1

k`−2
,

which implies that, for all ` ≥ 4,

lim
n→∞

E[C(`)

n] = E[C(`)

`]+

∞∑
k=`+1

(
(k − `+ 1)

k(k − 1) · · · (k − `+ 2)
− (k − `)
k(k − 1) · · · (k − `+ 1)

)
< +∞.

All these recurrences converges to constants that get smaller and smaller when `
increases. �

Note that the constants c` are computable by solving the simple recurrences for
each case; Table 3 gives a summary of the typical number of nodes for the smallest
arities.

2-ary 3-ary 4-ary 5-ary 6-ary 7-ary 8-ary 9-ary 10-ary

EC(`)
n n− 2 lnn lnn 23

90
1
32

107
25200

47
86400

101
1587600

229
33868800

659
1005903360

Figure 3. The asymptotic number of `-ary nodes

2.3.4. Typical depth of the leftmost leaf. In this section, we prove a central limit
theorem for the depth of the leftmost leaf in a typical increasing Schröder tree; this
gives us a lower bound for the height of a typical increasing Schröder tree:

Lemma 2.3.8. Let Yn be the depth of the leftmost leaf in a tree taken uniformly at
random among all increasing Schröder trees of size n. For all n ≥ 1, Yn = n−Xn,
where Xn is the number of internal nodes in a typical increasing Schröder tree of
size n (see Theorem 2.3.1), and thus, we have convergence in distribution when n
tends to infinity:

Yn − lnn√
lnn

d−−→ N (0, 1).

Note that the choice of the leftmost leaf is arbitrary, although it has the advan-
tage that the specification is straightforward. Table 4 exhibits the smallest values
of (tn,k).

20 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

Proof. We directly look at the differential equation satisfied by T (z, u), where u
marks the internal nodes that belong to the leftmost path (between the root and
the leftmost leaf).

T (z, u) = z + ∂z

(
T (z, u)

z

)
z3

1− z
+ T (z, u)

uz

1− z
.

Indeed, the tree is either a unique leaf (which is thus also the leftmost leaf) at
height zero (z), or at the last step of the evolution process, we have selected a leaf
that is not the leftmost one and replaced it by a sequence of at least two leaves
(∂z(T (z, u)/z) z3

1−z), or we have replaced the leftmost leaf by an internal node and
a sequence of at least two leaves (T (z, u) uz

1−z). We rewrite this equation as

(1− uz)T (z, u) = z(1− z) + z2∂zT (z, u),

and thus, identifying the coefficient of zn on both sides gives that

tn(u) = (u+ n− 1)tn−1(u) (∀n ≥ 3),

t1(u) = 1, and t2(u) = u. This implies that, for all n ≥ 3,

tn(u) = u

n−1∏
i=2

(u+ i) =
1

1 + u
SCn(u),

where SCn(u), defined in Lemma 2.3.2, is the generating function of all size n
permutations with k cycles. Therefore, using Lemma 2.3.2, we get that Yn = n−Xn

in distribution, where Xn is the number of internal nodes in a typical increasing
Schröder tree, which concludes the proof, by Theorem 2.3.1. �

1
0 , 1
0 , 2, 1
0 , 6, 5, 1
0 , 24, 26, 9, 1
0 , 120, 154, 71, 14, 1
0 , 720, 1044, 580, 155, 20, 1

Table 4. The values of tn,k, the number of increasing Schröder
trees of size n trees whose leftmost leaf has depth k, for all 0 ≤
k < n ∈ {1, 2, . . . , 7}.

2.4. Bijection with permutations. The fact that the number of increasing Schröder
trees of size n is equal to tn = n!/2 hints at the existence of a relationship between
our model of increasing trees and a subclass of permutations. In this section, we
aim at exhibiting this relationship.

We denote by σ = (σ1, . . . , σn) the size-n permutation that sends i to σi ∈
{1, . . . , n} for all i ∈ {1, . . . , n}. For all k ∈ {1, . . . , n}, we denote by σ−1(k)
the pre-image of k by σ, and sometimes call σ−1(k) the “position” of k in the
permutation σ.

We now define recursively a mapM between HP, the class of permutations such
that 1 appears before 2, and the class T of increasing Schröder trees.

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 21

The only element of HP of size 2 is the permutation (1, 2); we set its image to
be the tree whose root is labelled by 1 and has two (unlabelled) leaf-children. Now
assume that we have defined M(σ) for all permutations σ ∈ HP of size at most
n− 1 for some n ≥ 2 and let σ be a size-n permutation in HP. We distinguish two
cases according to the pre-image of n by σ; we denote by σ̂i = σi if σi < σn and
σ̂i = σi − 1 otherwise. For example, if σ = (4, 1, 5, 2, 3), then σ̂ = (3, 1, 4, 2); σ̂ can
be seen as the permutation induced by σ on {1, . . . , n− 1}.

• If σn = n then, we setM(σ) to be the treeM(σ̂) in which we add a new
rightmost leaf to the internal node with the largest label.

• If σn = k < n, then, we buildM(σ) as follows: create a new binary node ν
labelled with the smallest integer that does not appear as a label inM(σ̂)
and attach two new leaves to this internal node. Insert this tree in M(σ̂)
by placing ν in the k-th leaf (we assume, for example, that the leaves are
ordered in the depth-first order) ofM(σ̂).

(1, 2) M−−→ (1, 2, 3) M−−→
(4, 1, 2, 3) M−−→

(4, 1, 2, 5, 3) M−−→ (4, 1, 2, 5, 3, 6) M−−→

(4, 1, 2, 5, 3, 6, 7) M−−→

(4, 1, 2, 5, 3, 8, 6, 7)
M−−→

Figure 4. A size-8 example of the mappingM

In Figure 4 we present the mapping on an example. Remark that we have ordered
the steps reversely to understand the process in a constructive way.

Theorem 2.4.1. The mapM is a one-to-one correspondence between HP and T .

Proof. First note that the image by M of a permutation of size n is a Schröder
tree of size n: indeed, at each iteration we remove exactly one element from the
permutation and add exactly one leaf to the tree by either adding a leaf to the
node with largest label or by removing one leaf and adding two new ones. Since the
number of permutations of size n in HP is equal to the number of Schröder trees of
size n, it is enough to prove thatM is injective to conclude the proof. The mapping
is injective since by induction at each iteration we remove the greatest element of
the permutation and the following actions are performed on the resulting tree in a
non-ambiguous manner. This concludes the proof. �

22 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

2.5. Uniform random sampling. In this section, we present an algorithm that
samples a Schröder tree uniformly at random among all Schröder trees of a given
size. Our aim is to use this algorithm to generate trees of large size (typically
several thousands of leaves): we thus provide a detailed analysis of the complexity
of our sampler.

Note that the uniform sampling of structures with increasing labelling constraints
is not so classical in the context of analytic combinatorics. Martínez and Mo-
linero [MM03, Mol05] focus on the recursive method: using and generalising recur-
sive and unranking generation methods, they give a method that, given a combina-
torial specification, automatically outputs a uniform generation algorithm and its
complexity analysis. Using a different approach based on Boltzmann generation,
Bodini, Roussel and Soria [BRS12] give an algorithmic framework to develop Boltz-
mann samplers in the context of specifications that lead to differential equation of
the first order. The paper [BDF+16] show that this framework can be extended to
the context of differential equations of higher order; in particular, they apply this
method to the generation of diamonds satisfying differential equations of order 2.

The bijection presented in Section 2.4 immediately gives an algorithm that sam-
ples a tree uniformly among all Schröder trees of size n: first sample a permutation
uniformly at random among all permutations of size n in HP, and then build its
image by M. While there exists fast algorithms to sample permutations (see for
example [BBHT17]), it is not clear how to make the application ofM efficient.

Instead, we use the bijectionM as a basis for a direct probabilistic construction.
Indeed, one can sample a uniform bijection uniformly at random in HP by doing
the following recursive procedure: if n = 2, then return σ(2) = (2, 1). If n ≥ 3,
assume we have sampled σ(n−1) uniformly among all permutations of size n − 1.
Draw an integer kn uniformly at random in {1, . . . , n}, and set σ(n)

n = kn, and

σ(n)

i =

{
σ(n−1)

i if σ(n−1)

i < kn

σ(n−1)

i + 1 otherwise.

One can indeed check that σ(n) is uniformly distributed among all permutations of
size n in HP. Executing this random sampling of σ(n) simultaneously withM (note
that, for all n ≥ 3, σ(n−1) = σ̂(n), where the notation σ̂ is defined in the definition
ofM) is the idea of our sampler:

Algorithm 1 Increasing Schröder Tree Builder
1: function TreeBuilder(n)
2: if n = 1 then
3: return the single leaf
4: T = the root labelled by 1 and attached to two leaves
5: ` = 2
6: for i from 3 to n do
7: k = rand_int(1, i)

8: if k = i then
9: Add a new leaf to the last added internal node in T
10: else
11: Create a new binary node at position k in T
12: with label ` and attached to two leaves
13: ` = `+ 1

14: return T
The function rand_int(a, b) returns uniformly at random an integer in {a, a+ 1, . . . , b}.

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 23

Using the adequate data structures, as for example by keeping an array of point-
ers to all leaves and another one to the last inserted internal node, each insertion
in the tree under construction is done in constant time. We thus get

Theorem 2.5.1. The function TreeBuilder(n) in Algorithm 1 is a uniform
sampling algorithm for size-n trees. Asymptotically, it operates in O(n) operations
on trees and necessitates O(n lnn) random bits.

2.6. Analysis of the height of a typical increasing Schröder tree. The prob-
abilistic construction used in our uniform sampler allows us to prove the following
result.

Theorem 2.6.1. For all n ≥ 2, let Hn be the height of a tree taken uniformly at
random among all increasing Schröder trees of size n. Asymptotically when n tends
to infinity,

P
(
Hn

lnn
∈ [1− ε, γ + ε]

)
→ 1,

where γ = inf{c > 0: c − 1 + c ln(2/c) < 0} ≈ 4.311. This implies, in particular
that E[Hn] = Θ(lnn) when n tends to infinity.

Definition 2.6.2. Given a sequence of integers d = (di)i≥1, we define the random
d-ary tree (τ (d)

n)n≥0 recursively as follows: τ (d)

0 is reduced to its root, given τ (d)

`−1,
we build τ (d)

` as the tree obtained by picking a leaf uniformly at random in τ (d)

`−1 and
replacing it by a node to which d` leaves are attached.

Lemma 2.6.3. Let D = (D`)`≥1 be the sequence of integer-valued random variables
defined by:

• P(D1 = k) = 2k/(k + 1)! for all k ≥ 2, and
• if, for all ` ≥ 1, we denote by D̄` =

∑`
i=1Di, then,

P(D`+1 = k|D1, . . . , D`) =
(D̄` + 1)!(k − 1 + D̄`)

(k + D̄`)!
.

Then, for all ` ≥ 1, the tree τ (D)

` given its size is equal in distribution to an increas-
ing Schröder tree taken uniformly at random among all trees of that size.

Proof. This follows from Theorem 2.5.1. Indeed, note that the degree of the last
inserted internal node increases as long as the random integer k = ki (see line 7 of
Algorithm 1) drawn in the i-th loop is not equal to i. Note that this happens with
probability 1/i. For example, the degree of the root starts at 2, we draw the first
integer k3 ∈ {1, 2, 3} and if k3 6= 3, then we can conclude that D1 = 2, otherwise,
we know that D1 ≥ 3 and we need to look at k4. Therefore, P(D1 = 2) = 2/3, as
claimed, and P(D1 ≥ 3) = 1/3. Iterating this argument, we get that

P(D1 ≥ k) =

k∏
i=3

P(ki = i) =

k∏
i=3

1

i
=

2

k!
,

and thus

P(D1 = k) = P(D1 ≥ k)− P(D1 ≥ k + 1) =
2

k!
− 2

(k + 1)!
=

2k

(k + 1)!
,

as claimed.

24 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

By definition of our sampling algorithm, we know that the (` + 1)-th internal
node is inserted into the tree during the loop number i = D1 + · · ·+D`+1 = D̄`+1.
Therefore, we get

P(D`+1 = 2|D1, . . . , D`) = P(ki+1 6= i+ 1) = 1− 1

D̄` + 2
, as claimed,

and

P(D`+1 ≥ 3|D1, . . . , D`) =
1

D̄` + 2
.

Iterating this argument, we get that, for all k ≥ 3,

P(D`+1 ≥ k|D1, . . . , D`) =

D̄`+k−1∏
j=D̄`+2

P(kj = j) =

D̄`+k−1∏
j=D̄`+2

1

j
=

(D̄` + 1)!

(D̄` + k − 1)!
.

This concludes the proof because

P(D`+1 = k|D1, . . . , D`) = P(D`+1 ≥ k|D1, . . . , D`)− P(D`+1 ≥ k + 1|D1, . . . , D`)

=
(D̄` + 1)!

(D̄` + k − 1)!
− (D̄` + 1)!

(D̄` + k)!
=

(D̄` + 1)!(D̄` + k − 1)

(k + D̄`)!
,

as claimed. �

Proof of Theorem 2.6.1. For this proof, we use the fact that the increasing Schröder
tree is equal in distribution to the random D-ary tree (see Lemma 2.6.3). For the
lower bound, we use Lemma 2.3.8 and the fact that, almost surely for all ` ≥ 1,
H` ≥ YD̄`+1, where we recall that Yn is the depth of the leftmost leaf in an n-leaf
uniform increasing Schröder tree and D̄` =

∑`
i=1Di. By Lemma 2.3.8, we have

that, for all ε > 0,

P(Hn ≤ (1− ε) lnn) ≤ P(Yn ≤ (1− ε) lnn) ≤ P
(
Yn − lnn√

lnn
≤ −ε

√
lnn

)
→ 0,

when n tends to infinity, which concludes the proof for the lower bound.
The proof for the upper bound is an adaptation of Devroye [Dev90] in
which the case of regular trees is treated (in regular trees, nodes have all the same

degree they are also known as random k-ary trees). We denote byN1(n), . . . , ND1
(n)

the sizes of the subtrees of the root of τ (D)
n ; a straightforward adaptation of [Dev90,

Lemma 2] gives that, conditionally on D1,

P((n−m+ 2)S1 ≥ x) ≤ P(N1(n) ≥ x) ≤ P(nS1 ≥ x), (16)

where S1 is the minimum of D1 − 1 i.i.d. random variables uniform on [0, 1]. We
reason conditionally on the sequence D of random degrees, and denote by PD the
law under this conditioning. We denote by S1, . . . , SD1 the spacings induced on
[0, 1] by a sample of D1 − 1 i.i.d. random variables uniform on [0, 1]. Using the
fact that the sizes of the subtrees of the root, N1(n), . . . , ND1

(n) all have the same
distribution, we get

PD(Hn ≥ k) ≤
D1∑
i=1

PD(HNi(n) ≥ k − 1) = D1PD(HN1(n) ≥ k − 1)

≤ D1PD(HnS1
≥ k − 1),

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 25

where we have used Equation (16) in the last inequality. We now iterate this
identity: we denote by I(n) = n

∏k
i=1 S(Di), where, for all d ≥ 2, S(d) is the

minimum of d− 1 i.i.d. random variables uniform on [0, 1]. We get

PD(Hn ≥ k) ≤

(
k∏
i=1

Di

)
PD

(
HI(n) ≥ 0

)
=

(
k∏
i=1

Di

)
PD

(
n

k∏
i=1

S(Di) ≥ 1

)
,

because a tree has height at least 1 as soon as it has at least one internal node. We
now use Chebychev’s inequality, which implies that, for all α ≥ 1,

PD(Hn ≥ k) ≤

(
k∏
i=1

Di

)
nαED

[
k∏
i=1

S(Di)
α

]
= nα

k∏
i=1

(
Γ(Di + 1)∏Di−1
i=1 (α+ i)

)
.

See [Dev90, Equation (1)] for the last equality. For all α ≥ 1, and for all d ≥ 2, we
have

ln Γ(d+ 2)−
d∑
i=1

ln(α+ i) = ln Γ(d+ 1)−
d−1∑
i=1

ln(α+ i) + ln(d+ 1)− ln(α+ d)

≤ ln Γ(d+ 1)−
d−1∑
i=1

ln(α+ i).

Therefore, since Di ≥ 2 almost surely for all i ≥ 1, we get

PD(Hn ≥ k) ≤ nα
k∏
i=1

(
Γ(3)

α+ 1

)
= nα

(
2

α+ 1

)k
.

This expression is minimized for α = k/ lnn − 1; taking k = c lnn and α = c − 1,
we get that, for all c > 0,

PD(Hn ≥ c lnn) ≤ nc−1+c ln(2/c).

If we take c > γ where γ = inf{c > 0: c− 1 + c ln(2/c) < 0}, then
PD(Hn ≥ c lnn) →

n→∞
0,

which concludes the proof for the upper bound. �

3. Strict monotonic Schröder trees

3.1. The model and its context. In this section we introduce and study a gener-
alisation of the increasing Schröder trees, which we call strict monotonic Schröder
trees. The main difference between the two models is that in strict monotonic
Schröder trees, several internal nodes can be labelled by the same integer as long
as they are not on the same ancestral line:

Definition 3.1.1. A strict monotonic Schröder tree is a classical Schröder tree
structure whose internal nodes are labelled by the integers between 1 and ` (for
some ` ≥ 1), in such a way that each integer in {1, . . . , `} appears at least once in
the tree and the sequence of labels in the path from the root to any leaf is (strictly)
increasing.

Remark that the trees are qualified by “strict” in the sense that the sequence of
labels along the paths from the root to any leaf is strictly increasing.

26 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

1

8 2

15 3 9

4 4

14 5

6

8

12 10

16 14 15

6 5

7

8

12

6

10

11 13

12

Figure 5. Two strict monotonic Schröder trees

In Figure 5 we show two strict monotonic trees: the left-hand-side one is of size 30
with 16 distinct labels, the right-hand-side one is of size 500 (sampled uniformly
at random among all trees of size 500), with 495 internal nodes labelled with 372
distinct labels.

Because of the possible repetition of labels, this class of labelled trees cannot be
directly specified using the classical analytic combinatorics operators for labelled
structures. However, the following recursive construction allows us to specify the
class of strict monotonic Schröder trees using operators for unlabelled structures.
Every strict monotonic Schröder tree can be built as follows:

• Start with a single (unlabelled) leaf.
• At step each step ` (for ` ≥ 1), select a non-empty subset of leaves and
replace each of them by an internal node with label ` attached to a sequence
of at least two leaves.

3.2. Enumeration and relationship with ordered Bell numbers. Using the
iterative construction described above, we deduce the following specification for the
class G of all strict monotonic Schröder trees:

G = Z ∪
(
G[Z → (Z ∪ Seq≥2Z)]

)
\ G.

Note that again the labelling is transparent and does not appear directly in the
specification. The combinatorial meaning of this specification is the following: A
tree of G is either a single leaf, or it is obtained by taking an already constructed
tree in G, and replace each leaf by either a leaf (i.e. no change) or an internal node
attached to a sequence of at least two leaves. Furthermore we omit the case where
no leaf is changing (this is why we subtract the set G). Note that subtracting G

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 27

is important, otherwise some integer values could be absent in the final tree. For
example, if there is no change at step 2 but then the evolution continues, then 2
would not appear in the final tree but larger integers would appear as labels.

Using the symbolic method, we can translate this specification into a functional
equation (with substitution) for the ordinary generating series:

G(z) = z +G

(
z +

z2

1− z

)
−G(z) = z +G

(
z

1− z

)
−G(z). (17)

From this equation we extract the recurrence for the number gn of strict monotonic
Schröder trees with n leaves: we get

gn = [zn]G(z) = [zn]

(
z +G

(
z +

z2

1− z

)
−G(z)

)
= δn,1 + [zn]

∑
`≥1

g`

(
z

1− z

)̀
− gn

= δn,1 − gn +
∑
`≥1

g`[z
n−`]

(
1

1− z

)̀
.

We use Kronecker’s notation: δn,1 = 1 if n = 1 and 0 otherwise. The last coefficient
extraction is similar to the integer composition (see [FS09, Example I.3, p. 44]).
This implies

gn =

1 if n = 1,
n−1∑̀
=1

(
n−1
`−1

)
g` otherwise. (18)

The first coefficients are equal to a shift of the sequence of ordered Bell numbers
(also called Fubini numbers or surjection numbers) referenced as OEIS A000670:

(gn)n∈N = (0, 1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247563, 1622632573, . . .) .

We recall that the n-th ordered Bell number counts the number of ordered partitions
of a set of size n, where an ordered partition of a set S is an ordered sequence of
disjoint subsets of S whose union is equal to S. Ordered Bell numbers are specified
by

B = Seq (Set≥1Z) . (19)

Motivated by this remark, we define in Section 3.3 a bijection between the set of
strict monotonic Schröder trees and the set of ordered partitions.

Following the approach developed by Pippenger in [Pip10] for ordered Bell num-
bers, we compute the exponential generating function of G, i.e. we apply the Borel
transform on G(z). But first let us recall some basic properties of the latter trans-
form. The Borel transform, which B denotes, takes as an argument an ordinary
generating function and gives as its image the corresponding exponential generating
series. More precisely, for all real-valued sequence (an)n≥0, we set

B

∑
n≥0

anz
n

 =
∑
n≥0

an
zn

n!
.

Note that if tn ≤ ρn n! for n sufficiently large then BT (z) is analytic around 0. It
is easy to check that:

https://oeis.org/A000670

28 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

Fact 3.2.1. For all ordinary generating function f = f(z), we have

(i) B [zf(z)] =

∫ z

0

B(f)(t)dt and (ii) B [f ′(z)] = (B[f(z)])′ + z(B[f(z)])′′.

Proposition 3.2.2. The exponential generating function enumerating strict mono-
tonic Schröder trees is

BG(z) =
1

2
(z − ln (2− ez)) .

Proof. Using Equation (18) and the fact that g0 = 1, we obtain

gn = δn,1 +

n−1∑
`=1

(
n− 1

`− 1

)
g`.

Adding gn to both sides (multiplied by
(
n−1
n−1

)
= 1 on the right-hand side) gives

2gn = δn,1 +

n∑
`=1

(
n− 1

`− 1

)
g`.

This recurrence can be directly used to derive an equation for the exponential
generating function of G:

2BG(z) = z +
∑
n≥1

n∑
`=1

(
n− 1

`− 1

)
g`
zn

n!
,

which is the classical equation satisfied by the ordered Bell numbers. Following the
approach of [Pip10], we differentiate the equation with respect to z and get

2(BG(z))′ = 1 +
∑
n≥1

n∑
`=1

(
n− 1

`− 1

)
g`

zn−1

(n− 1)!
.

Since the sum is the convolution of BG′(z) with exp(z), we get

(BG(z))′ =
1

2− ez
,

which implies BG(z) = (z − ln (2− ez)) /2 as claimed. �

Recall that ordered Bell numbers are specified by B = Seq(Set≥1Z) and thus
have exponential generating function B(z) = 1/(2− ez). This directly implies that
our sequence (gn)n≥0 is equal to the sequence of ordered Bell numbers shifted by
one, since B(z) is the derivative of BG(z). This link between strict monotonic trees
and ordered Bell numbers has the interesting following consequence: we have shown
that the (shifted) ordinary generating function of the ordered Bell numbers satisfies
Equation (17). As far as we can tell, this was not known before.

The asymptotic behaviour of ordered Bell numbers is known (see, e.g., [FS09, p.
109]): if we denote by bn the n-th ordered Bell number, then

bn =

n∑
`=0

`!

{
n

`

}
∼

n→∞

n!

2 (ln 2)
n+1 ,

where the
{
n
`

}
’s are the Stirling partition numbers (also called Stirling numbers of

the second kind, see [FS09, Appendix A.8]). They count the number of ways to
partition a set of n objects into k non-empty subsets.

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 29

The number bn is equal to the number gn+1 of strict monotonic Schröder trees
of size n+ 1, which implies that, for all n ≥ 1,

gn =

n−1∑
`=0

`!

{
n− 1

`

}
∼

n→∞

(n− 1)!

2 (ln 2)
n .

3.3. Bijection with ordered Bell numbers. Since the number of strict mono-
tonic Schröder trees of size n+ 1 is equal to the number of ordered partitions of a
set of size n, it is natural to try to find an explicit bijection between the two classes.
In this section, we exhibit such a bijection.

To describe precisely the bijection we need the following definitions and no-
tations. Recall that the the subsets of an ordered partitions are ordered but
the elements inside each subset are not. In the following, we denote by p =
(p1, p2, . . . , p`) the ordered partition of ordered subsets p1, . . . , p`; for example,
({3, 4}, {1, 5, 7}, {2, 6}) 6= ({2, 6}, {3, 4}, {1, 5, 7}). We denote by |pi| the size of
the i-th subset of p, and by |p| =

∑`
i=1 pi its total size (i.e. the number of ele-

ments of ∪`i=1pi). Let a = {α1, α2, . . . , αr} (with r ≥ 1) be a subset of N; without
loss of generality, we can assume that α1 < α2 < . . . < αr. A run of a is a
maximal sequence (αi, αi+1, . . . , αj) (1 ≤ i ≤ j ≤ r) of consecutive integers, i.e.
(αi, αi+1, . . . , αj) = (αi, αi + 1, . . . , αi + j − i), αi−1 < αi − 1 and αj+1 > αj + 1.
We define the function runs as the function that lists all the runs of a subset: for
example, runs({3, 4}) = ({3, 4}) and runs({1, 3, 6, 7}) = ({1}, {3}, {6, 7}).

An ordered partition p = (p1, . . . , p`) is called incomplete if and only if ∪`i=1pi 6=
{1, 2, . . . , |p|}: e.g. the partition ({3, 4}, {1, 5, 7}) is incomplete due to the fact that
∪`i=1pi = {1, 3, 4, 5, 7} 6= {1, 2, 3, 4, 5}. We define the normalization of a parti-
tion p (either incomplete or not), denoted by norm(p), as the ordered partition of
{1, . . . , |p|} that keeps the relative order between the elements. For example, if
p = ({3, 4}, {1, 5, 7}), then norm(p) = [{2, 3}, {1, 4, 5}].

We are now ready to describe our bijection: we first define the mapping M’, which
associates a strict monotonic Schröder tree to each (possibly incomplete) ordered
partition p = (p1, . . . , p`). Before starting we fix an arbitrary order for the leaves
in the tree once and for all (for example, the one given by the postorder traversal
of the tree). Then The tree M’(p) is the result of the following recursive procedure:

• At time zero, consider a tree with one internal node labelled by 1 to which
are attached |p1|+ 1 leaves.

• At each time 2 ≤ i ≤ `, we denote by p′1, . . . , p
′
i the ordered subsets of

the renormalization of (p1, . . . , pi), i.e. norm((p1, . . . , pi)) = (p′1, . . . , p
′
i).

We denote by r1, . . . , rj the runs of p′i, i.e. runs(p′i) = (r1, . . . , rj); recall
that each of r1, . . . , rj is a set of successive integers, possibly reduced to a
singleton and iterate the following process: for k from 1 to j, take the leaf
whose index is the first element of rk and replace it with an internal node
with label k attached to |rk|+ 1 leaves.

In Figure 6 we show how to construct M′(p) when p = ({3, 4}, {1, 5, 7}, {2, 6}).
The resulting strict monotonic Schröder tree is of size 8. It is straightforward to
check that M’ is indeed a bijection.

3.4. Analysis of typical parameters. In this section, we give information about
the shape of a typical strict monotonic Schröder tree: more precisely, we prove limit

30 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

norm(({3, 4})) = ({1, 2}) M′−→

norm(({3, 4}, {1, 5, 7})) = ({2, 3}, {1, 4, 5}) M′−→

norm(({3, 4}, {1, 5, 7}, {2, 6})) = ({3, 4}, {1, 5, 7}, {2, 6}) M′−→

Figure 6. The constructive bijection between an ordered parti-
tion and a strict monotonic Schröder tree

theorems for the number of distinct labels, the number of internal nodes and the
arity of the root in a tree picked uniformly at random among all strict monotonic
Schröder trees of size n (i.e. with n leaves).

3.4.1. Quantitative analysis of the number of iteration steps. The main novelty
of strict monotonic Schröder trees compared to increasing Schröder trees is that
repetitions of labels are allowed: it is thus natural to ask how many repetitions
there are in a typical strict monotonic Schröder tree. To answer this question, on
can mark iterations by adding a new variable u in Equation (17):

G(z, u) = z + u G

(
z

1− z
, u

)
− u G(z, u),

which implies

gn,k =

1 if n = 1 and k = 0,
n−1∑̀
=1

(
n−1
`−1

)
g`,k−1 otherwise, (20)

with n being the size and k the number of iteration steps (i.e. the number of
distinct labels). In Figure 7, we show the first values of (gn,k) that are stored in
OEIS A019538.

This recurrence is analogous to the one relating ordered Bell numbers and Stirling
partition numbers (see Equation (18)).

https://oeis.org/A019538

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 31

1,
0, 1,
0, 1, 2,
0, 1, 6, 6,
0, 1, 14, 36, 24,
0, 1, 30, 150, 240, 120,
0, 1, 62, 540, 1560, 1800, 720

Figure 7. Distribution of (gn,k)k for n ∈ {1, . . . , 7}

Theorem 3.4.1. The number of strict monotonic Schröder trees of size n with
exactly k distinct labels is given by

gn,k = k!

{
n+ 1

k

}
.

We denote by XGn the number of distinct labels in a tree picked uniformly at random
among all strict monotonic Schröder trees of size n: for all n ≥ 1, XGn is a random
variable such that P(XGn = k) = gn,k/

∑n
k=1 gn,k. Then, asymptotically when n

tends to infinity,
XGn − n

2 ln 2√
(1−ln 2)n
(2 ln 2)2

d−−→ N (0, 1).

The analysis of the limiting distribution is classical in the quasi-powers frame-
work established by Hwang [Hwa98]; see [FS09, p. 645, 653] for details and appli-
cations.

Proof. Recall that gn,k = k!
{
n+1
k

}
is the number of ordered partitions of a set of

size n having k non-empty parts. It is known (see, e.g. [Ben73, Example 3.4]) that,
if Kn is the number of parts in an ordered set partition of size n, then

Kn − n
2 ln 2√

(1−ln 2)n
(2 ln 2)2

d−−→ N (0, 1),

in distribution. This concludes the proof since Kn has the same distribution as XGn
for all n ≥ 1. �

3.4.2. Quantitative analysis of the number of internal nodes. In this model the
number of internal nodes is different from the number of distinct labels that appear
in the tree: this is because one integer can label several internal nodes. It is thus
natural to ask how many internal nodes a typical strict monotonic Schröder trees of
size n (i.e. with n leaves) has. The specification marking both leaves (with variable
z) and internal nodes (with variable u) is

G(z, u) = z +G

(
z +

uz2

1− z
, u

)
−G(z, u). (21)

We recall that the substitution z → z + uz2

1−z means that at each iteration each
leaf can be left as it is (z → z) or expanded into an internal node attached to an
arbitrary number of leaves (z → z2

1−z). A new internal, marked with the variable u,
is created only in the second case.

32 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

1,
0, 1,
0, 1, 2,
0, 1, 5, 7,
0, 1, 9, 31, 34,
0, 1, 14, 86, 226, 214
0, 1, 20, 190, 874, 1946, 1652

Figure 8. Distribution of (gn,k)k for n ∈ {1, . . . , 7}

For all 1 ≤ n and 1 ≤ k ≤ n− 1, we denote by gn,k the number strict monotonic
Schröder trees with n leaves and k internal nodes: Figure 8 shows the values of
(gn,k)1≤k≤n−1 for n ∈ {1, 2, . . . , 7}. This triangle of integers is not yet stored in
OEIS. However, its diagonal is equal to OEIS A171792. In fact in the diagonal the
numbers corresponds to the number of strict monotonic trees with n leaves and
n− 1 internal nodes, i.e. binary strict monotonic trees: this class of trees is studied
in [BGGW20].

Theorem 3.4.2. If we denote by IGn the (random) number of internal nodes in a
tree picked uniformly at random among all strict monotonic Schröder trees of size n,
then, asymptotically when n tends to infinity,

E[IGn] =
n→∞

n− (ln 2)(lnn) +
π2

12
− 1 + (ln 2)

(
−γ +

ln 2

2
+ ln ln 2

)
+ o(1),

where γ is the Euler-Mascheroni constant.

Proof. For all n ≥ 1, we denote by hn =
∑n−1
k=1 kgn,k, and let H be the ordinary

generating function of (hn)n≥1; we have

H(z) =

(
∂G(z, u)

∂u

)
|u=1

.

The ratio hn/gn is equal to the expected number of internal nodes in a tree taken
uniformly at random among all strict monotonic Schröder trees of size n; we are
thus interested in the asymptotic behaviour of this ratio. Differentiating according
to u and then substituting u by 1 in Equation (21) gives

H(z) =
z2

1− z
G′
(

z

1− z

)
+H

(
z

1− z

)
−H(z), (22)

because (
∂G(z, u)

∂z

)
|u=1

= G′(z).

Since Equation (22) is similar to Equation (17), we apply the same method as in
the proof of Proposition 3.2.2. We first derive

(BH(z))
′

=
1

2− ez

(
B
[
z2

1− z
G′
(

z

1− z

)])′
.

Then using Equation (17) we deduce(
B
[
z2

1− z
G′
(

z

1− z

)])′
= −z +

z2

2
+ 2

(
B
[
z2(1− z)G′ (z)

])′
.

https://oeis.org/A171792

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 33

Furthermore since for any function F we have BzF (z) =
∫ z

0
BF (t)dt, we can sim-

plify the equation into

(BH(z))
′

=
1

2− ez

(
−z +

z2

2
+ 2

∫ z

0

BG′(t) dt− 2

∫ z

0

∫ t

0

BG′(u) dudt

)
.

Then, since
∫ z

0
BG′(t)dt = z(BG(z))′, we obtain

(BH(z))
′

=
1

2− ez

(
−z +

z2

2
+ 2z(BG(z))′ − 2

∫ z

0

t(BG(t))′dt

)
=

1

2− ez

(
−z +

z2

2
+

2z

2− ez
− 2

∫ z

0

t

2− et
dt

)
=

1/2

1− ez/2

(
−π

2

12
+

(ln 2)2

2
− z

(
1− ln(1− ez/2)− 1

1− ez/2

)
+ Li2(ez/2)

)
,

where Li2 is the dilogarithm function, defined in [FS09, section VI.8.]. Using its
asymptotic development at 1, we get

(BH(z))
′ ∼
z→ln 2

1

2 ln 2

1

(1− z/ ln 2)2

−
(

1

2 ln 2
− π2

24 ln 2
+

ln 2

4
− ln 2 + ln ln 2 + ln (1− z/ ln 2)

2

)
1

1− z/ ln 2

− 1

2
− 7 ln 2

24
+
π2

48
+

(ln 2)2

8
+

ln 2 ln ln 2

4
+O

(
ln

(
1

1− z/ ln 2

))
.

By using classical transfer theorems we obtain the result by extracting the (n−1)-th
coefficient of (BH(z))

′ and dividing it by the n-th coefficient of BG(z). �

3.4.3. Quantitative characteristics of the root node. In this section, we look at the
arity of the root in a typical strict monotonic Schröder tree. We denote by AGn the
arity of the root in a tree picked uniformly at random among all strict monotonic
Schröder trees of size n, and by pn its probability generating function:

pn(u) =
∑
k≥0

P(AGn = k) uk.

Theorem 3.4.3. Asymptotically when n tends to infinity, AGn converges in dis-
tribution to a (shifted) zero-truncated Poisson law with parameter ln 2, i.e. for all
u ≥ 0,

pn(u) →
n→∞

ueu ln 2 − u.

This implies that E[AGn]→ 2 ln 2 + 1 when n tends to infinity.

Proof. Thanks to the bijection of Section 3.3, we know that AGn is equal to the size
of the first subset in an ordered partition picked uniformly at random among all
ordered partitions of {1, . . . , n−1}. We denote by P the class of ordered partitions,
1 is the empty partition, Z is a singleton, and U marks the elements in the first
subset. Here the specification is defined in the context of labelled object, thus the
associated generating functions are exponential (see [FS09] for notation details):

P = 1 + Set
≥1

(UZ) ? Seq(Set
≥1
Z).

34 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

Using the symbolic method for exponential generating function, we get

P (z, u) = 1 +
euz − 1

2− ez
.

Thus, if we set

p̃n(u) =
[zn]P (z, u)

[zn]P (z, 1)
,

for all n ≥ 0, then

[zn]P (z, u) →
n→∞

1

2
(2u − 1) (ln 2)

−n−1
.

This implies that, for all u ≥ 0,

p̃n(u) →
n→∞

2u − 1.

Note that, by definition, p̃n(u) is the probability generating function of the size
Sn of the first subset in an ordered partition picked uniformly at random among
all ordered partitions of {1, . . . , n− 1}. Because of the bijection of Section 3.3, we
know that AGn and Sn−1 have the same distribution, implying that pn(u) = up̃n(u).
This concludes the proof. �

3.4.4. Typical depth of the leftmost leaf. In this section, we prove a central limit
theorem for the depth of the leftmost leaf in a typical strict monotonic Schröder
tree:

Proposition 3.4.4. Let Y Gn be the depth of the leftmost leaf in a tree taken uni-
formly at random among all increasing Schröder trees of size n. In distribution
when n tends to infinity, we have

Y Gn − lnn√
lnn

d−−→ N (0, 1).

The depth of the leftmost leaf is a lower bound for the height (since the height of
a tree is the maximal depth of its leaves), and it has the advantage of being easier to
specify and analyse than the height itself. Note that the choice of the leftmost leaf
is arbitrary (i.e. choosing another leaf would lead to the same result), but it has the
advantage that the specification is straightforward. Recall that, in Section 2.3.4,
we proved a similar central limit theorem for the depth of the leftmost leaf in a
typical increasing Schröder tree.

In this section, the variable U marks the depth of the leftmost leaf. Using the
evolution process, we get that

G(z, u) = z +

(
G(y, u)

y

)
|y= z

1−z

·
(
z +

uz2

1− z

)
−G(z, u).

At each iteration step we start by chopping off the leftmost leaf (this corresponds
to G(y, u)/y). Each of the other leaves either stays unchanged or is replaced by an
internal node to which is attached a sequence of at least two leaves (this corresponds
to substituting y by z/(1− z)). Finally we put back the leaf that has been chopped
off and there we have 2 choices, either it stays unchanged (z) or it is replaced by
an internal node with at least two leaves attached to it (z2/(1− z)) in which case
we multiply by u because the depth of the leftmost leaf has been increased by one.

Iterating this specification, we can calculate the first coefficients (see Table 5):
they are equal to the first coefficients of a shifted version of OEIS A129062. From

https://oeis.org/A129062

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 35

the specification it is possible to derive a recurrence relation on the coefficients gn,k.
We have g1,0 = 1 and for all n ≥ 2 and 1 ≤ k ≤ n− 1,

gn,k =

n−1∑
`=k+1

g`,k

(
n− 2

`− 2

)
+

n−1∑
`=k

g`,k−1

(
n− 2

`− 1

)
. (23)

This equation can be interpreted combinatorially using the evolution process (this
reasoning is similar to the one leading to Equation (18).): At each iteration step,
the height of the leftmost leaf either stays unchanged or increases by 1. Therefore
each tree in Gn,k, the set of all strict monotonic Schröder trees whose leftmost leaf
is at depth k, was, before the last iteration, either a tree of G`,k of a tree of G`,k−1,
for some ` < n. There are

(
n−2
`−1

)
to expand a tree of G`,k−1 into a tree of Gn,k in

one iteration step: it is the number of ways to partition the n leaves of the size-n
tree into ` parts of size at least one (when a part is of size 1, the corresponding
leaf in the `-size node stays unchanged, otherwise, it becomes an internal node of
out-degree the size of the part) in a way that the first part is of size at least 2 (the
left-most leaf becomes an internal node attached to two leaves). Similarly, there are(
n−2
`−2

)
number of ways to expand a tree of G`,k into a tree of Gn,k in one iteration

step: it is the number of ways partition the n leaves of the size-n tree into ` parts
of size at least one such that the first part is of size 1.

Rather than trying to solve the above recurrence we exhibit an interesting rela-
tionship between the depth of leftmost leaf and the cycles of ordered Bell numbers.
In fact, it is well-known that, in the symbolic method, sequences are in one-to-one
correspondence with sets of cycles:

Seq ∼= Set ◦Cyc . (24)

In Section 3.3 we exhibited a bijection between strict monotonic Schröder trees and
ordered Bell numbers. This bijection thus implies that

G(Z) ∼= Seq (Set≥1Z)

∼= Set (Cyc (Set≥1Z)) .

To prove Proposition 3.4.4, we first exhibit the bijection S between the two latter
sets. To do so, we first need to define better our notations: for example, since
the order in a set is not relevant, i.e. {1, 3, 2} = {1, 2, 3} = {3, 2, 1}, we choose to
always use the representation {i1, . . . , im} such that i1 < i2 < · · · < im. Similarly,
a cycle of sets, e.g. ({3, 4}, {1, 5, 6}, {2}), is invariant by cyclic permutation of its
elements, i.e.

C = ({2, 4}, {1, 5, 6}, {3}) = ({1, 5, 6}, {3}, {2, 4}) = ({3}, {2, 4}, {1, 5, 6}).
In the following we choose to always use the representation such that the first ele-
ment in the cycle contains 1: for our example, C = ({1, 5, 6}, {3}, {2, 4}). Finally,
given a set of cycles, we choose the representation in which the cycles are in decreas-
ing lexicographic order: to each cycle, we associate the string of integers obtained
from reading its elements from left to right, for example to ({1, 5, 6}, {3}, {2, 4}), we
associate 156324, and then order the cycles of sets according to this order. For ex-
ample, the set {({1, 2, 4}, {3}), ({1, 3}, {2, 4, 5})} has 2 cycles, the list of the string
of the first one is 1243, the string of the second one is 13245. Since 3 > 2, the
canonical representation of this set of cycles is

{({1, 3}, {2, 4, 5}), ({1, 2, 4}, {3})}.

36 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

We are now ready to define the mapping S: take S a set of cycles of sets of
integers (in its canonical representation), and we denote by X(S) the string of
integers read from left to right in this canonical representation. E. g. if S =
{({1, 3}, {2, 4, 5}), ({1, 2, 4}, {3})}, then X(S) = 132451243. Now define X̂(S) as a
string of zeros of the same length as X(S), and c = 1, and for all i between 1 and
the maximum integer in S, go through the string X(S) from right to left, i.e. for
all j from length(X(S)) down to 1, if the digit in j-th position is a 1, replace the
j-th digit in X̂(S) by c and increase c by 1. In our example, we eventually obtain
X̂(S) = 264891375. We denote by s1, . . . , sm as the sizes of the sets of the cycles of
S (in the order of the canonical representation); in our example, there are m = 4
sets in total (in the two cycles) and their sizes are 2, 3, 3, 1. Define S(S) as the
ordered partition having m parts of respective sizes s1, . . . , sm and such that the
elements of the first part are the first s1 digits of X̂(S), the elements of the second
part are the following s2 digits of X̂(S) and so on. On our example, we get

S(S) = ({2, 6}, {4, 8, 9}, {1, 3, 7}, {5}).

Lemma 3.4.5. The mapping S is a one-to-one map from Set(Cyc(Set≥1Z))
onto Seq(Set≥1Z).

Proof. Given an ordered partition, i.e. a sequence os sets S1, . . . , Sm. Denote by k
the first integer in S1 (since we use the canonical representation, it is also the
smallest integer in S1). And denote by ij the integer such that Sij contains
j, for all 1 ≤ j ≤ k − 1. Note that 1 = ik < ik−1 < . . . < i1, and define
C1 = (S1, . . . , Sik−1−1), C2 = (Sik−1

, . . . , Sik−2
), until Ck = (Si1 , . . . , Sm). And set

S−1((S1, . . . , Sm)) = {C1, . . . , Ck}. One can check that this is indeed the inverse of
S, which concludes the proof. �

Recall that, in Section 3.3, we have defined M′, a bijection from the set of ordered
partitions onto the set of strict monotonic Schröder trees. Therefore, M′ ◦ S is a
bijection from the Set(Cyc(Set≥1Z)) onto the set of strict monotonic Schröder
trees.

Lemma 3.4.6. If X ∈ Set (Cyc (Set≥1Z)), then the number of cycles of X is
equal to the depth of the leftmost leaf of M′ ◦ S(X).

Proof. If X contains m cycles, then the integers 1, 2, . . . ,m appear in reverse order
and in different sets sm, sm−1, . . . , s1 of the ordered partition S(X): si is the set
containing the integer i for all 1 ≤ i ≤ m. Moreover sm is the first set in S(X)
because the cycles are ordered in the canonical order. In the mapping M′, sm will
form the root of the tree. Then sm−1 will create a node in the leftmost leaf, then
sm−2 will create a node in the leftmost leaf and so on until s1 is added to create a
last node on the leftmost leaf. Thus the depth of the leftmost leaf is m. �

Proposition 3.4.7. The exponential generating function of gn,k is

G(z, u) =
∑
n≥0

∑
k≥0

gn,ku
k z

n

n!
=

z∫
0

(
1

2− ex

)u
dx.

Proof. From the discussion above, since the depth of the leftmost leaf is the number
of cycles we get a direct specification by marking the cycles in the following

D = Set (U Cyc (Set≥1Z)) .

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 37

1
0 1
0 2 1
0 6 6 1
0 26 36 12 1
0 150 250 120 20 1
0 1082 2040 1230 300 30 1

Table 5. Values of gn,k, the number of n strict monotonic
Schröder trees of size n with leftmost leaf at depth k, for all
0 ≤ k ≤ n ∈ {1, . . . , 7}.

Therefore D(z, u) = exp
(
u ln

(
1

1−(exp(z−1))

))
. The number of trees of size n is the

number of ordered Bell numbers of size n−1, so we integrate the last expression. �

The discussion above also leads to the following identity

Proposition 3.4.8. For all n ≥ 2 and 1 ≤ k ≤ n− 1,

gn,k =

n−1∑
m=0

{
n− 1

m

}[
m

k

]
.

Where
[
n
k

]
are Stirling Cycle numbers (also known as Stirling numbers of the first

kind). They count the number of cycles of size k in a permutation of size n.

Proof. The proof is a direct consequence of the previous construction. The number
of trees of size n with leftmost leaf at depth k can be constructed by looking at set
partitions of size n − 1 elements into i subsets for all possible sizes of i which is
counted by

{
n−1
i

}
then for each partition of size i we see how many cycles of size

k we can build with it. �

Proof of Proposition 3.4.4. We can make the calculations on the bivariate generat-
ing function D(z, u) which enters the scope of quasi-powers framework. Theorem
IX.11 in [FS09, p. 669] is applicable. The exponent α(u) = u is analytic and
α(1) = 1 and it satisfies α′(1)+α′′(1) = 1 6= 0. So D(z, u) is asymptotically Gauss-
ian with mean and variance as announced. Finally the shift that we have between
the size of trees and the ordered partitions does not affect the first orders since
ln (n+ 1) ∼ lnn. �

3.5. Uniform random sampling. To sample uniformly at random a strict mono-
tonic Schröder tree of size n, we could choose a two-step algorithm. First we sample
uniformly an ordered partition of the set {1, . . . , n− 1} and then with the use the
bijection of Section 3.3 we transform it into a strict monotonic Schröder tree. But
here, in this section, we prefer to present a direct algorithm that generates uniformly
a strict monotonic Schröder tree, i.e. without the intermediate step of generating
another combinatorial object like an ordered partition.

The global approach for our algorithmic framework deals with the recursive gen-
eration method adapted to the analytic combinatorics point of view in [FZVC94].
But in our context we note that we can obtain for free (from a complexity view) an
unranking algorithm. This fact is sufficiently rare to mention it: usually unranking

38 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

algorithm are less efficient than recursive generation ones. Unranking algorith-
mic has been developed in the 70’s by Nijenhuis and Wilf [NW75] and then has
been introduced to the context of analytic combinatorics by Martínez and Mo-
linero [MM03]. Here the idea is not to draw uniformly an object, but first to
define a total order over the objects under consideration (in our context, strict
monotonic Schröder trees) and then an integer (named the rank) is chosen to build
deterministically the associated object. Obviously if the rank is uniformly chosen
among all possible ranks, then the unranking algorithm is nothing else than a uni-
formly random sampler. But the unranking approach gives also a way for obtaining
an exhaustive sampler, just by iterating the sampling over all possible ranks (the
reader can refer to the paper [BDGV18] for an example of both methods: recursive
generation and unranking).

For both types of algorithms (unranking or recursive generation) some pre-
computations are done (only once before the sampling of many objects). We com-
pute (and store) the numbers of trees of sizes from 1 to n. This calculation is be
done with a quadratic complexity (in the number of arithmetic operations) using
the recursive formula for (gn)n≥1 (see Equation (20)). This complexity is only
achieved if we first compute and memorize all values of (i!)1≤i≤n.

Then it only remains to build the tree of rank r recursively. If r is sampled
uniformly at random in {0, 1, . . . , gn− 1} the algorithm is a uniform sampler and if
r is deterministically chosen, then the algorithm is a classical unranking algorithm.
To do this, we recall that (see Equation (18)), for all n ≥ 1,

gn =

(
n− 1

n− 2

)
gn−1 +

(
n− 1

n− 3

)
gn−2 + · · ·+

(
n− 1

0

)
g1, (25)

and interpret this equation combinatorially: to build a tree of size n, we take a
size ` ∈ {1, . . . , n− 1} tree T` constructed with exactly one less iteration. To grow
it into a size-n tree, we interpret the binomial coefficient

(
n−1
`−1

)
as the number of

composition of n in ` parts: some of the ` leaves of T` are replaced by some internal
nodes to which leaves are attached, some leaves remain leaves. To do that we
traverse the tree T` and each time we see a leaf, we do the following action: if the
next part (in the composition) is of value 1, we keep the leaf unchanged otherwise
for a value s > 1, we replace the leaf by an internal node (well labelled with the
currently step number) and attached s leaves to it. We then take the next part of
the composition into consideration and continue the tree traversal.

Focusing on Equation (25) and the equation above we see that a function allowing
the unranking of compositions is necessary. Recall the composition of the integer
n into ` parts is in bijection with the number of combinations of (` − 1) elements
chosen in (n − 1) ones. A way to prove it consists in laying (` − 1) barriers in
the sequence of n bullets in order to define ` parts. There are classical algorithms
to unrank combinations in the lexicographical order. A first algorithm has been
described by Buckles and Lybanon [BL77]. Another, more efficient, has just been
settled in the technical report [DGH20]. For both of them we can easily prove that
their average complexity (when ` rages over all possibilities) is Θ(n) in the number
of arithmetic operations by having first memoized all factorial values of the numbers
from 0 to n. In the following we develop a simpler approach based on the classical
recursive generation without any lexicographic constraint like in the two mentioned
papers. The algorithm is an unranking method for the composition of integers.
It is based on the reverse lexicographic order (cf e.g. [Rus03]) so that we get an

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 39

easier implementation2. For simplification, we suppose having memoized all values
of
(
r
s

)
for r ∈ {1, n} and s ∈ {1, r}. Using the classical Pascal’s rule for binomial

coefficients, we obtain the following recurrence for the number of composition of n
into `:

Cn,` =

(
n− 1

`− 1

)
= Cn−1,` + Cn−1,`−1. (26)

We thus deduce Algorithm 2 for the unranking method.

Algorithm 2 Reverse Lexicographic Composition Unranking
1: function UnrankComposition(n, `, r)
2: if n = ` and r = 0 then
3: return (1, 1, . . . , 1)

4: if r <
(n−2
`−1

)
then

5: C :=UnrankComposition(n− 1, `, r)
6: C[0] := C[0] + 1

7: return C
8: else
9: s := r −

(n−2
`−1

)
10: C := (1) ∪ UnrankComposition(n− 1, `− 1, s)
11: return C

Theorem 3.5.1. The function UnrankComposition is an unranking algorithm
(based the reverse lexicographic order) and calling it with the parameters ` ≤ n
and a uniformly-sampled integer r in {0, . . . ,

(
n−1
`−1

)
− 1}, gives as output a uniform

composition of n in ` parts.
Using the memorization of binomial coefficients, the algorithm needs at most

(`− 1) arithmetic operations on big integers.

Proof. We prove that the algorithm is correct by induction on n. The result is
true when n = ` = r = 1 since the algorithm returns (1). Fix an integer n and
assume that the algorithm is correct for all ` ≤ n− 1, and that the total order over
compositions is the reverse lexicographic one (see, e.g., [Rus03] for the definition of
the reverse lexicographic order). Let ` be an integer between 0 and n, and r be an
integer chosen uniformly at random in {0, . . . , Cn,`−1}. Equation (26) implies that
a composition of n in ` parts is either a composition of (n−1) in ` parts whose first
part has been increased by one, or it is a composition of (n − 1) in (` − 1) parts,
and a new part equal to 1 is added at the beginning of the composition. In both
cases, the first elements are all greater than the second elements according to the
lexicographic order. The recurrence hypothesis ends the proof since the rank value
r (or s in the second case) is adapted to each of the latter cases.

The number of arithmetic operations is direct when all binomial coefficients are
first memorised. �

In Equation (25) the first term is much bigger than the second one, which is
much bigger than the third one and so on. This approach, focusing first on the
dominant terms is an adaptation to the idea underlying the Boustrophedonic order
presented in [FZVC94]. It allows to improve essentially the average complexity of

2For the composition unranking, note that it would suffice to look for the rank
(n
`

)
− 1 − r

(instead of r) in order to get the lexicographic order.

40 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

the random sampling algorithm. In our case of strict monotonic Schröder trees do
not follow a standard specification (cf. [FZVC94] for details), the complexity gain
is even better. The loop starting in line 6 aims at determining the interesting term

Algorithm 3 Strict monotonic Schröder Tree Unranking
1: function UnrankTree(n, s)
2: if n = 1 then
3: return the tree reduced to a single leaf
4: ` := 1
5: r := s

6: while r >= 0 do
7: r := r −

(n−1
`

)
· gn−`

8: ` := `+ 1

9: ` := `− 1

10: r := r +
(n−1

`

)
· gn−`

11: T :=UnrankTree(n− `, r mod gn−`)
12: C :=UnrankComposition(n, n− `, r//gn−`)
13: Substitute in T , using traversal T , some leaves according to C

14: return the tree T

The sequences (g`)`≤n and (`!)`∈{1,...,n} have been pre-computed and stored.
Line 13: The operation // is the Euclidean division.

in the sum (25), thus the size of the tree in the evolution process letting to build
the tree of rank s and size n.

The traversal T used to substitute some leaves in line 13 determines partly the
total order over the strict monotonic trees. Let α be an strict monotonic tree, and
T a given traversal of all trees. Remark that there is a single evolution process
building α (the construction is unambiguous). If α is built at the step `, then we
denote by α̃ the single tree (built with ` − 1 steps) and α the single composition
such that at step ` replacing the leaves from α̃ according to the composition α,
using the traversal T , we obtain α.
Here we remark that the whole tree α is strongly dependent from the traversal of
the leaves of α̃ (while some leaves are substituted by an internal nodes attached to
new leaves according to α). We define now how to compare strict monotonic trees
(we use the analogous notations than the latter for all trees).

Definition 3.5.2. Let α and β be two trees. We define α < β if
• the size of α is smaller than the one of β, or
• if both sizes are equal to n and if the size of α̃ is strictly greater than the
one of β̃ or if both sizes of α̃ and β̃ are equal and the composition α is
smaller than β, using the reverse lexicographic order over compositions.

Proposition 3.5.3. The order defined over strict monotonic trees is a total order.

The result is direct since all possible cases according to the trees α and β for
comparing them are explored.

Theorem 3.5.4. The function UnrankTree is an unranking algorithm and call-
ing it with the parameters n and a uniformly-sampled integer s in {0, . . . , gn − 1}
gives as output a uniform strict monotonic Schröder tree of size n .

The correctness of the algorithm follows directly from the total order over the
trees and Equation (25).

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 41

Theorem 3.5.5. Once the pre-computations have been done, the function Un-
rankTree needs in average Θ(n) arithmetic operations to construct a tree of size
n.

Proof. Let us assume that all binomial coefficients (Cn,`)0≤`≤n have been mem-
orized and prove that, with this information stored, the complexity in terms of
arithmetic operations is of order Θ(n). Note that if we only memorize the factorial
numbers (i!)0≤i≤n−1 the complexity is at most three times the complexity obtained
when memorizing the binomial coefficient and thus still of order Θ(n).

For all n ≥ 1, we denote by an the number of arithmetic operations that come
from the loop in line 7 and the calls in lines 11 and 12, when building all trees of
size n (i.e. we sum the number needed for each r ∈ {0, . . . , Cn,` − 1}). The exact
value of arithmetic operations is an +O(ngn), because at each recursive call there
is at most a constant number of operations that are not counted in an. We first
analyze an: we have

an =

n−1∑
`=1

(
n− 1

`

)(
(min(`, n− 1− `)− 1 + 2`) gn−` + an−`

)
.

In fact, for the terms with index `, we are interested in the trees α of size n such
that their corresponding tree α̃ is of size n − `. Thus such trees α are counted by(
n−1
`

)
gn−`. And for each of them the factor min(`, n−1−`)−1 is the the number of

operations needed for the unranking of the composition (we use the symmetry in the
binomial coefficients), the factor 2` is the number of multiplication and subtractions
in the loop in line 7. Furthermore we have a1 = 0. By taking an upper bound for
the min function, we get that if ā1 = 0, and, for all n ≥ 2,

ān =

n−1∑
`=1

(
n− 1

`

)
(3` gn−` + ān−`) ,

then an ≤ ān for all n ≥ 1. Using similar calculations as in the proof of Propo-
sition 3.2.2, we obtain an equation satisfied by the Borel transform of the series
associated to (ān):

2
(
BĀ(z)

)′
= ez

(
BĀ(z)

)′
+ 3zez (BG(z))

′
.

We thus deduce ān ∼ 3ngn, which concludes the proof. �

Let us give some final remarks for this algorithm. In order to obtain a better
time complexity for the implementation, we must handle an array of pointers to
the leaves of the tree under construction so that the tree traversal is efficient. At
each step `, a leaf stored in the array is replaced by n− `+ 1 leaves that must be
stored in the array. An efficient way consists in reusing the cell from the replaced
leaf, and the to append all other leaves at the end on the array. Thus, the most
efficient traversal T of the leaves consists to the left right traversal of the array.
But obviously this is not really a natural traversal for the tree. Thus in practice
we use this efficient traversal T .

4. Strict monotonic general trees

In this section, we introduce a generalisation of the strict monotonic Schröder
tree model of Section 3: the difference is that we allow internal nodes to have only
one child (we call these nodes “unary” nodes). Since the size of a tree is the number

42 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

of its leaves, allowing unary nodes without adding any other constraint would mean
that there would be infinitely many trees of any given size n. To avoid this, we add
the following constraint: at each growth step, at least one leaf is expanded as an
internal node of arity greater or equal to 2.

1

2 2

3 3 3

4 5

5 6

7 6 7

9 7

10

14

10 8

12 9 9

13 10 12

14 14 11 14

12

13

14

11

12 12

13

14

6

7 9

8 11

9

10

11

13

12

13 14

14

9 4

14 5

6

7

12

14

Figure 9. Two strict monotonic general trees

4.1. The model and its enumeration.

Definition 4.1.1. A strict monotonic general tree is a labelled tree that can be
obtained by the following evolution process:

• Start with a single (unlabelled) leaf.
• At every step ` ≥ 1, select a non-empty subset of leaves, replace all of them
by internal nodes labelled by `, attach to at least one of them a sequence of
at least two leaves, and attach to all others a unique leaf.

The two trees in Figure 9 are sampled uniformly among all strict monotonic gen-
eral trees of respective sizes (i.e. number of leaves) 15 and 500. The left-hand-side
tree has 14 distinct node-labels, i.e. it can be built in 14 steps using Definition 4.1.1.
The right-hand-side tree is represented as a circular tree with stretched edges like
in the right-hand-side of Figure 2. Here the tree contains 500 leaves built with 499
iterations of the growth process. But in comparison with the increasing and strict
monotonic Schröder trees drawn in the latter sections and containing respectively

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 43

492 and 495 internal nodes, this one contains 62494 internal nodes, most of them
being unary nodes.

We can specify strict monotonic general trees using the symbolic method; once
again the labelling is transparent and does not appear in the specification (i.e.
we use ordinary generating functions). In this section, we denote by F (z) the
generating function of strict monotonic general trees and by Fn the set of all strict
monotonic general trees of size n; from Definition 4.1.1, we get

F (z) = z + F

(
z +

z

1− z

)
− F (2z). (27)

The combinatorial meaning of this specification is the following: A tree of is
either a single leaf, or it is obtained by taking an already constructed tree, and
replace each leaf by either a leaf (i.e. no change) or an internal node attached
to a sequence of at least one leaf. Furthermore we omit the case where no leaf
is replaced by an internal node with at least to children (this is encoded in the
subtracting F (2z)).

From this equation we extract the recurrence for the number fn of strict mono-
tonic general trees with n leaves. In fact we get

fn = [zn]F (z) = [zn]

(
z + F

(
z +

z

1− z

)
− F (2z)

)
= δn,1 − 2nfn + [zn]

∑
`≥1

f`

(
z +

z

1− z

)̀

= δn,1 − 2nfn +
∑
`≥1

f` [zn−`]
∑̀
i=0

(
`

i

)(
1

1− z

)i
,

which implies that

fn =

1 if n = 1,∑n−1
`=1

min(n−`,`)∑
i=1

(
`
i

)
2`−i

(
n−`−1
i−1

)
f` for all n ≥ 2.

(28)

The combinatorial meaning of the inner sum is the following: starting with a tree
of size ` we reach a tree of size n in one iteration by adding n− ` leaves. The index
i in the inner sum stands for the number of leaves that are replaced by internal
nodes or arity at least 2, by definition of the model (see Definition 4.1.1), we have
1 ≤ i ≤ min(n − `, `). There are

(
`
i

)
possible choices for the i leaves that are

replaced by nodes of arity at least 2. Each of the remaining ` − i leaves is either
kept unchanged or replaced by a unary node, which gives 2`−i possible choices.
And finally, there are

(
n−`−1
`−1

)
possible ways to distribute the (indistinguishable)

n−` additional leaves among the i new internal nodes so that each of the i nodes is
given at least one additional leaf (it already has one leaf, which is the leaf that was
replaced by an internal node). The first terms of the sequence are the following:

(fn)n≥0 = (0, 1, 1, 5, 66, 2209, 180549, 35024830, 15769748262, 16187601252857, . . .) .

Theorem 4.1.2. There exists a constant c such that the number fn of strict mono-
tonic general trees of size n satisfies, asymptotically when n tends to infinity,

fn ∼
n→∞

c (n− 1)! 2
(n−1)(n−2)

2 .

44 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

In the proof of the latter theorem we exhibit the following bounds 1.4991 < c <
1.8932. But through several experimentations we see that c < 3/2 but it is close to
it. For instance when n = 1000 we get c ≈ 1.49913911. We postpone the proof to
the next section to make use of the number of iteration steps.

4.2. Iteration steps and asymptotic enumeration of the trees. In this sec-
tion, we look at the number of distinct internal-node labels that occur in a typical
strict monotonic general tree, i.e. the number of iterations needed to build it:

Proposition 4.2.1. Let fn,k denotes the number of strict monotonic general trees
of size n with k distinct node-labels, then, for all n ≥ 1,

fn,n−1 = (n− 1)! 2
(n−1)(n−2)

2 .

Note that the first terms are

(fn,n−1)n≥0 = (0, 1, 1, 4, 48, 1536, 122880, 23592960, 10569646080, 10823317585920, . . .) .

Proof. We use a new variable u to mark the number of iterations (i.e. the number
of distinct node-labels) in the iterative Equation (28). We get

F (z, u) = z + u F

(
z +

z

1− z
, u

)
− u F (2z, u). (29)

Using either Equation (29) or a direct combinatorial argument, we get that, for all
k ≥ n, fn,k = 0 and

fn,k =

1 if n = 1 and k = 0,
n−1∑̀
=k

min(n−`,`)∑
i=1

(
`
i

)
2`−i

(
n−`−1
i−1

)
f`,k−1 if 1 ≤ k < n.

In particular, for k = n− 1, we get

fn,n−1 = (n− 1) 2n−2 fn−1,n−2 = f1,0

n−1∏
j=1

j2j−1 = (n− 1)!2
∑n−2
j=0 j

= (n− 1)!2
(n−1)(n−2)

2 ,

because f1,0 = 1. This concludes the proof.
Alternatively the recurrence of fn,n−1 can be obtained by extracting the coeffi-

cient [zn] in the following functional equation

T (z) = z + z2 T ′(2z). �

Lemma 4.2.2. Both sequences (fn) and (fn,n−1) have the same asymptotic be-
haviour up to a multiplicative constant.

Proof. Let us start with the definition of a new sequence

gn =

{
1 if n = 1,
fn/fn,n−1 otherwise.

This sequence gn satisfies the following recurrence:

gn =

{
1 if n = 1,∑n−1
`=1

∑min(n−`,`)
i=1

(
`
i

)
2`−i

(
n−`−1
i−1

)
g`

(`−1)! 2(`−1)(`−2)/2

(n−1)! 2(n−1)(n−2)/2 otherwise.

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 45

When n > 1, extracting the term gn−1 from the sum we get

gn = gn−1 +

n−2∑
`=1

min(n−`,`)∑
i=1

(
`

i

)
2`−i

(
n− `− 1

i− 1

)
g`

(`− 1)! 2(`−1)(`−2)/2

(n− 1)! 2(n−1)(n−2)/2
.

Since all summands are non-negative, this implies that gn ≥ gn−1, and thus that
this sequence is non-decreasing. To prove that this sequence converges, it only
remains to prove that it is (upper-)bounded.

Equation (28) implies that, for n ≥ 2,

fn ≤
n−1∑
`=1

2`−1

min(n−`,`)∑
i=1

(
`

i

) (
n− `− 1

i− 1

)
f`.

Chu-Vandermonde’s identity states that, for all ` ≤ n,
min(n−`,`)∑

i=1

(
`

i

) (
n− `− 1

i− 1

)
=

(
n− 1

`− 1

)
.

This implies the following upper-bound for fn:

fn ≤
n−1∑
`=1

2`−1

(
n− 1

`− 1

)
f` =

n−1∑
`=1

2n−`−1

(
n− 1

`

)
fn−`

Using the same argument for gn we get

gn ≤ gn−1 +

n−1∑
`=2

2(`−1)(`−2n+2)/2

`!
gn−`.

We look at the exponent of 1 in the sum: For all ` ≥ 2 (as in the sum), we have
2` ≥ ` + 2, and thus 2n − ` − 2 ≥ 2(n − `). This implies that for all ` ≥ 2,
(`− 1)(`− 2n+ 2)/2 ≤ −(n− `), and thus that

gn ≤ gn−1 +

n−1∑
`=2

1

`! 2n−`
gn−`.

Since the sequence (gn)n is non-decreasing, we obtain

gn ≤ gn−1 +
gn−1

2n

n−1∑
`=2

2`

`!
≤ gn−1 + gn−1

e2 − 3

2n
.

We set α = e2 − 3. Iterating the last inequality, we get that

gn ≤ gn−1

(
1 +

α

2n

)
≤ g1

n∏
i=2

(
1 +

α

2i

)
= exp

(
n∑
i=2

ln
(

1 +
α

2i

))
,

because g1 = 1. Note that, when i → +∞, we have ln(1 + α2−i) ≤ α2−i (because
ln(1 + x) ≤ x for all x ≥ 0). This implies that, for all n ≥ 1,

gn ≤ exp

(
α

∞∑
i=2

2−i

)
= exp(α/2).

In other words, the sequence (gn)n is bounded. Since it is also non-decreasing, it
converges to a finite limit c, which is also non-zero since gn ≥ g1 6= 0 for all n ≥ 1.
This is equivalent to fn ∼ cfn,n−1 when n→ +∞ as claimed. To get a lower wound
on c, note that, for all n ≥ 1, c ≥ gn ≥ g9 = f9/f9,8 ≈ 1.4956. �

46 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

Proof of Theorem 4.1.2. The latter Lemma 4.2.2 gives a proof of Theorem 4.1.2.
But in order to get a better upper bound for the constant c, let us introduce another
proof. In the proof of Lemma 4.2.2 we have proved

gn ≤ gn−1 + gn−1
e2 − 3

2n
.

We set α = e2 − 3 and define two other sequences as

ḡn =

{
1 if n = 1 or n = 2,
ḡn−1 + α

2n ḡn−2 otherwise,

and

¯̄gn =

{
1 if n = 1 or n = 2,
¯̄gn−1 + 1

n(n+1)
¯̄gn−2 otherwise.

Due to the two first terms and the recurrence equation we have for all positive n,
gn ≤ ḡn ≤ ¯̄gn. By induction we prove a new expression for ¯̄gn:

¯̄gn =

{
ḡn if n ≤ 3,
¯̄gn−1 + 2

(n+1)! an−1 otherwise,

with the sequence (an)n such that a1 = 0, a2 = 1 and for n ≥ 3, an = nan−1 +an−2.
This sequence (an) is a shifted version of OEIS A058307. We can either follow
the work of Janson [Jan10] to study it, but we need less details than him so we
describe here an easier approach. We define a new sequence as bn = an/n!. We
easily prove that bn = bn−1 + bn−2/(n(n − 1)) with b1 = 0 and b2 = 1/2. Using
the later recurrence, we obtain an equation satisfied by its generating function
B(z) =

∑
n>0 bnz

n:

B(z) =
z2

2
+ zB(z) +

∫ u

t=0

∫ z

t=0

B(u)du.

we thus obtain
(z − 1)B′′(z) + 2B′(z) +B(z) + 1 = 0,

with B(0) = 0 and B′(0) = 0. By dividing the equation by i
√

1− z and then by a
change of variable: u := 2i

√
1− z, we recognize the classical differential equation

satisfied by Bessel functions [BO99]. We thus derive

B(z) = −1 +
1√

1− z
(
α J1(2i

√
1− z) + β Y1(2i

√
1− z)

)
,

where J·(·) and Y·(·) are the Bessel functions and α and β are two complex constants
determined with the initial conditions:

α =
Y1(2i)− iY0(2i)

J1(2)Y0(2i) + iJ0(2)Y1(2i)
, β = − J1(2)− iJ0(2)

J1(2)Y0(2i) + iJ0(2)Y1(2i)
.

We are interested in the asymptotic behaviour of bn. The dominant singularity of
B(z) is at z = 1 and there

B(z) ∼
z→1
− β

iπ

1

1− z
.

We thus deduce that bn tends to −β/(iπ) ≈ 0.68894. Since the sequence ¯̄gn satisfies
¯̄gn = ¯̄gn−1 + 2

n(n+1) bn−1. We deduce that the increasing sequence (¯̄gn) admits
a finite limit. Hence it is also the case for the increasing sequence (gn). Finally,

https://oeis.org/A058307

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 47

Proposition 4.2.1 allows to conclude for the existence of the constant c. Furthermore
we get

c < ¯̄g3 +
∑
`≥4

2

`(`+ 1)
· lim
n→∞

bn ≈ 1.8932. �

This result means that asymptotically a constant fraction of the strict monotonic
general trees of size n are built in (n − 1) steps. For these trees, at each step of
construction only one single leaf expands into a binary node. All other leaves
either become a unary node or stay unchanged, meaning that on average half of
the leaves will expand into unary node with one leaf expanding into a binary node.
The number of internal nodes of these trees then grow like n2

/4.

4.3. Analysis of typical parameters.

4.3.1. Quantitative analysis of the number of internal nodes.

Theorem 4.3.1. Let IFn be the number of internal nodes in a tree taken uniformly
at random among all strict monotonic general trees of size n. Then for all n ≥ 1,
we have

(n− 1)(n+ 2)

6
≤ E[IFn] ≤ (n− 1)n

2
.

To prove this theorem, we use the following proposition.

Proposition 4.3.2. Let us denote by sn,k the number of strict monotonic general
trees of size n that have n − 1 distinct node-labels and k internal nodes. For all
n ≥ 1 and k ≥ 0,

sn,k = (n− 1)!

(
(n− 1)(n− 2)/2

k − (n− 1)

)
,

and thus, if ISn is the number of internal nodes in a tree taken uniformly at random
among all strict monotonic general trees of size n that have n − 1 distinct label
nodes, then, for all n ≥ 1,

E[ISn] =
(n− 1)(n+ 2)

4
.

Proof. Let us prove the formula for sn,k by induction. For n = 1, k can only be 0

thus s1,0 = 1 = 0!
(

0
0

)
.

We suppose that sm,k = (m − 1)!
(

(m−1)(m−2)/2
k−(m−1)

)
holds for m = n − 1 and k ∈

{n− 1, . . . , (n− 2)(n− 3)/2}.
Then, we are interested in the value of sn,k:

sn,k =

k−(n−1)∑
s=0

(n− 2)!

(
(n− 2)(n− 3)/2

s− (n− 2)

)(
n− 1

k − s− 1

)
(k − s− 1).

Let k′ = k − (n − 1) and s′ = s − (n − 2). Replacing k′ and s′ in the equation
gives,

s̃n,k′ =

k′∑
s′=0

(n− 2)!

(
(n− 2)(n− 3)/2

s′

)(
n− 1

k′ − s′ + 1

)
(k′ − s′ + 1)

= (n− 1)!

k′∑
s′=0

(
(n− 2)(n− 3)/2

s′

)(
n− 2

k′ − s′

)
.

48 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

Using Chu-Vandermonde identity, we finally obtain

sn,k = (n− 1)!

(
(n− 1)(n− 2)/2

k − (n− 1)

)
.

We now can compute the average number of internal nodes of Sn:

En[ISn] =

n(n−1)/2∑
k=n−1

k(n− 1)!
(

(n−1)(n−2)/2
k−(n−1)

)
(n− 1)! 2(n−1)(n−2)/2

.

Again we reverse the sum: k′ = k − (n− 1),

E[ISn] =

(n−1)(n−2)/2∑
k′=0

(k′ + (n− 1))(n− 1)!
(

(n−1)(n−2)/2
k′

)
(n− 1)! 2(n−1)(n−2)/2

=

(n−1)(n−2)/2∑
k′=0

k ′
(

(n−1)(n−2)/2
k′

)
+ (n− 1)

(n−1)(n−2)/2∑
k′=0

(
(n−1)(n−2)/2

k′

)
2(n−1)(n−2)/2

=
(n− 1)(n− 2)

4
+ (n− 1) =

(n− 1)(n+ 2)

4
.

�

We are now ready to prove the main theorem of this section.

Proof of Theorem 4.3.1. Note that the number of internal nodes of a strict mono-
tonic general tree of size n belongs to {1, . . . , n(n−1)/2}. The upper bound follows
from the fact that, at the `-th iteration in Definition 4.1.1, a maximum of ` internal
nodes is added to the tree, and

∑n
`=1 ` = n(n− 1)/2. In particular, we thus have

that, almost surely for all n ≥ 1, IFn ≤ n(n− 1)/2, and thus E[IFn] = O(n2).
For the lower bound, we denote by Sn the set of strict monotonic general trees of

size n that have n− 1 distinct node-labels. Moreover, we denote by tn a tree taken
uniformly at random in Fn, and by IFn its number of internal nodes. We have, for
all n ≥ 1,

E[IFn] = E[IFn | tn ∈ Sn] · P(tn ∈ Sn) + E[IFn | tn /∈ Sn] · P(tn /∈ Sn)

≥ E[IFn | tn ∈ Sn] · P(tn ∈ Sn) = E[ISn] · fn,n−1

fn
,

where we have used conditional expectations and the fact that conditionally on
being in Sn, tn is uniformly distributed in this set, and, in particular, E[IFn | tn ∈
Sn] = EISn . Using Proposition 4.3.2 and the upper bound of Proposition 4.2.1, we
thus get

E[IFn] ≥ 2

3

(n− 1)(n+ 2)

4
,

which concludes the proof. �

4.3.2. Quantitative analysis of the number of distinct labels.

Theorem 4.3.3. Let XFn denotes the number of distinct internal-node labels (or
construction steps) is a tree taken uniformly at random among all strict monotonic
general trees of size n, then for all n ≥ 1,

2

3
(n− 1) ≤ E[XFn] ≤ n− 1.

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 49

Proof. First note that since at every construction step in Definition 4.1.1 we add at
least one leaf in the tree, then after ` construction steps, there are exactly ` distinct
labels and at least ` + 1 leaves in the tree. Therefore, n ≥ XFn + 1 almost surely
for all n ≥ 1, which implies in particular that E[Xn] ≤ n− 1, as claimed.

For the lower bound, we reason as in the proof of Theorem 4.3.1, and using the
same notations:

E[XFn] ≥ E[XFn | tn ∈ Sn] · P(tn ∈ Sn) = (n− 1)
fn,n−1

fn
,

because E[XFn | tn ∈ Sn] = n − 1 by definition of Sn (being the set of all strict
monotonic general trees of size n that have n − 1 distinct node-labels). Using the
upper bound of Proposition 4.2.1 gives that E[XFn] ≥ 2(n− 1)/3, which concludes
the proof. �

4.3.3. Quantitative analysis of the height of the trees.

Theorem 4.3.4. Let HFn denotes the height of a tree taken uniformly at random
in Fn, the set of all strict monotonic general trees of size n. Then we have, for all
n ≥ 0,

n

3
≤ E[HFn] ≤ n− 1.

To prove this theorem, we first prove the following:

Proposition 4.3.5. Let us denote by HSn the height of a tree taken uniformly at
random in Sn, the set of all strict monotonic general trees of size n that have n− 1
distinct labels. Then we have, for all n ≥ 0,

n

2
≤ E[HSn] ≤ n− 1.

Proof. Define the sequence of random trees (tn)n≥0 recursively as:
- t1 is a single leaf.
- Given tn−1, we define tn as the tree obtained by choosing a leaf uniformly at
random among all leaves of tn−1, replacing it by an internal nodes to which two
leaves are attached, and, for each of the other leaves of tn−1, choose with probability
1/2 (independently from the rest) whether to leave it unchanged or to replace it by
a unary node to which one leaf is attached.

One can prove by induction on n that for all n ≥ 1, tn is uniformly distributed
in Sn. We denote by HFn the height of tn. Since the height of tn is at most the
height of tn−1 plus 1 for all n ≥ 2, we get that HSn ≤ n− 1 almost surely.

For the upper bound, we note that, for the height of tn to be larger than the
height of tn−1, we need to have replaced at least one of the maximal-height leaves
in tn−1. There is at least one leaf of tn−1 which is at height HSn−1 and this leaf is
replaced by an internal node with probability

1

2

(
1− 1

n− 1

)
+

1

n− 1
≥ 1

2
.

Therefore, for all n ≥ 1, we have

P(HSn = HSn−1 + 1) ≥ 1

2
,

which implies, since HSn ∈ {HSn−1, H
S
n−1 + 1} almost surely,

E[HSn] = E[HSn−1] + P(HSn = HSn−1 + 1) ≥ E[HSn−1] +
1

2
.

50 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

Therefore, for all n ≥ 1, we have E[HSn] ≥ E[HS0] + n/2 = n/2, as claimed. �

Proof of Theorem 4.3.4. By Definition 4.1.1, it is straightforward to see that the
height of a tree built in ` steps is at most ` since the height increases by at most one
per construction step. Since a tree of size n is built in at most n− 1 steps, we get
that HFn ≤ n− 1 almost surely, which implies, in particular, that E[HFn] ≤ n− 1.

For the lower bound, note that, if tn is a tree taken uniformly at random in Fn
and HFn is its height, then

E[HFn] ≥ E[HFn |tn ∈ Sn] · P(X ∈ Sn) ≥ 2

3
E[HSn],

where we have used Proposition 4.2.1 and the fact that tn conditioned on being
in Sn is uniformly distributed in this set and thus E[HFn | tn ∈ Sn] = EHSn . By
Proposition 4.3.5, we thus get E[HFn] ≥ n/3, as claimed. �

4.3.4. Quantitative analysis of the depth of the leftmost leaf.

Theorem 4.3.6. Let us denote by DFn the height of a tree taken uniformly at
random in Fn, the set of all strict monotonic general trees of size n. Then we have,
for all n ≥ 0,

n

3
≤ E[HFn] ≤ n− 1.

Proposition 4.3.7. Let us denote by DSn the depth of the leftmost leaf of a tree
taken uniformly at random in Sn, the set of all strict monotonic general trees of
size n that have n− 1 distinct labels. Then we have, for all n ≥ 0,

n

2
≤ E[DSn] ≤ n− 1.

Proof. Given the uniform process of trees tn presented in 4.3.5. The depth of the
leftmost leaf is always smaller than n − 1. Let Xn be a Bernoulli variable taking
value 1 if the leftmost leaf of tn has been expanded at iteration n and the value 0
otherwise. Then for n ≥ 1,

P (Xn = 1) =
1

n
+

(n− 1)

n

1

2
=
n+ 1

2n
≥ 1

2
.

Since at each iteration step either the leftmost leaf expand to make a binary node
which gives 1

n or it has not created a binary and then it has 1
2 probability to make

a unary node. The depth of the leftmost leaf is DSn =
n∑
k=1

Xk. Therefore for n ≥ 1,

E[DSn] ≥ n

2
.

Which concludes the proof. �

Proof of Theorem 4.3.6. By the same arguments as in Theorem 4.3.4 the result
follows directly since we have the same bounds on the depth of leftmost leaf as we
had in the height of the tree. �

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 51

4.4. Correspondence with labelled graphs. In Section 4.2 we defined fn,k the
number of strict monotonic general trees of size n that have k distinct node-labels
then we have shown that, for all n ≥ 1,

fn,n−1 = (n− 1)! 2
(n−1)(n−2)

2 .

The factor 2(n−1)(n−2)/2 = 2(n−1
2) in graphs of (n− 1) vertices counts the different

combinations of edges (not directed) between vertices. The factor (n−1)! accounts
for all possible permutations of vertices. We will denote Sn to be the trees that
fn,n−1 counts and exhibit a bijection between strict monotonic general trees of
S = ∪n≥1Sn with a class of labelled graphs with n − 1 vertices defined in the
following. Let us define the subclass of strict monotonic general trees S = ∪n≥1Sn.

For all n ≥ 1, we denote by Gn the set of all labelled graphs (V, `, E) such that
V = {1, . . . , n}, E ⊆ {{i, j} : i 6= j ∈ V } and ` = (`1, . . . , `n) is a permutation of
V (see Figure 10 for an example). We set G = ∪∞n=0Gn. Choosing a graph in Gn
is equivalent to (1) choosing ` (there are n! choices) and (2) for each of the

(
n
2

)
possible edges, choose whether it belongs to E or not (there are 2(n2) choices in
total). In total, we thus get that |Gn| = n! 2(n2).

2 1 3

Figure 10. The graph G3 graph. In this representation, the ver-
tices V = {1, . . . , n} are drawn from left to right (node 1 is the
leftmost, node n is the rightmost), and their label is their image
by `: in this example ` = (2, 1, 3).

We recall the definitions used in Section 2.4. A size-n permutation σ is denoted
by (σ1, . . . , σn), and σi is its i-th element (the image of i), while σ−1(k) is the
preimage of k (the position of k in the permutation).

Another important bijection that we will use is the bijection between binary
increasing trees and permutations, see [FS09, page143].

We define M′′
: S → G recursively on the size of the tree it takes as an input:

first, if t is the tree of size 1 (which contains only one leaf) or the tree of size 2
(one internal node attached to two leaves), then we set M′′(t) to be the graph
({1}, (1),∅) (the graph with one vertex labelled 1 and no edge). Now assume we
have defined M′′

on ∪n−1
`=1 S`, and consider a tree t ∈ Sn. By Definition 4.1.1 and

since t ∈ Sn, then there exists a unique binary node in t labelled by n − 1, and
this node is attached to two leaves. Consider t̂ the tree obtained when removing all
internal nodes labelled by n − 1 (and all the leaves attached to them) from t and
replacing them by leaves. Denote by vn the position (in, e.g., depth-first order)
of the leaf of t̂ that previously contained the binary node labelled by n − 1 in t.
Denote by u1, . . . , um the positions or the leaves of t̂ that previously contained
unary nodes labelled by n−1 in t. We setM′′

(t̂) = ({1, . . . , n−1}, ˆ̀, Ê) and define

52 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

M′′
(t) = ({1, . . . , n}, `, E) where

`i =

vn if i = n
ˆ̀
i if ˆ̀

i < vn
ˆ̀
i + 1 if ˆ̀

i ≥ vn,

E = Ê ∪ {{ˆ̀−1(uj), n} : 1 ≤ j ≤ m}. An example of the bijection is depicted in
Figure 11.

Theorem 4.4.1. The mappingM′′
is bijective, andM′′

(Sn) = Gn−1.

Proof. From the definition, it si clear that two different trees have two distinct
images byM′′

, thus implying thatM′′
is injective; this is enough to conclude since

|Gn−1| = |Sn| (see Theorem 4.2.1 for the cardinality of Sn). �

Remark: It is interesting to note that this graph model is a labelled version of
the binomial random graph Gn(1/2) = (V,E) defined as follows: V = {1, . . . , n} and
each edge belong to E with probability 1/2, independently from the other edges.
This model, also called the Erdös-Renyi random graph was originally introduced
by Erdös and Renyi [ER59], and simultaneously by Gilbert [Gil59], and has been
since then extensively studied in the probability and combinatorics literature (see,
for example, the books [Bol01] and [Dur06] for introductory surveys).

1

2

2 1

1

2 3

3

2 1 3

1

2 3

3 4 4

2 4 1 3

1

2 3

3 4 4

5 5 5

2 4 1 3 5

Figure 11. Bijection between an evolving tree in S from size 3
to 5 and its corresponding graph G.

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 53

4.5. Uniform random sampling. In this section we exhibit a very efficient way
for the uniform sampling of the tree model using the evolution process.

Once again when r grows, the sequence (fn−r)r decreases extremely fast. Thus
for the uniform random sampling, it will appear more efficient to read Equation (28)
in the following way:

fn =

(
n− 1

1

)
2n−2 fn−1 +

2∑
i=1

(
n− 2

i

)
2n−2−i fn−2

+

3∑
i=1

(
n− 3

i

)
2n−3−i

(
2

i− 1

)
fn−3 + · · ·+ f1. (30)

Using the latter decomposition the algorithm can now be described as Algorithm 4.

Algorithm 4 Strict Monotonic General Tree Unranking
1: function UnrankTree(n, s)
2: if n = 1 then
3: return the tree reduced to a single leaf
4: ` := 1

5: r := s

6: i := 1
7: while r >= 0 do
8: t :=

(n−`
i

)
2n−`−i

(`−1
i−1

)
9: r := r − t · fn−`

10: i := i+ 1
11: if i > min(`, n− `) then
12: i := 1
13: ` := `+ 1

14: if i > 1 then
15: i := i− 1

16: else
17: ` := `− 1

18: i := min(`, n− `)

19: r := r + t · fn−`

20: T :=UnrankTree(n− `, r mod fn−`)
21: r := r//fn−`

22: B :=UnrankBinomial(n− `, i, r//
(n−`

i

)
)

23: r := r mod
(n−`

i

)
24: F := r//

(`−1
i−1

)
25: C :=UnrankComposition(`, i, r mod

(`−1
i−1

)
)

26: Substitute in T , using traversal T , the leaves selected with B with internal nodes
27: and new leaves according to C and the other leaves are changed or not based on F

28: return the tree T

The sequences (f`)`≤n and (`!)`∈{1,...,n} have been pre-computed and stored.

Algorithm 4 is very similar to the one corresponding to strict monotonic trees.
In fact this new one is a bit more involved than the previous one because of the
recurrence formula for enumerating the tree. However both algorithm cores are
very close. First the While loop allows to determine the values for `, i and r. Then
the recursive call is done using the adequate rank r mod fn−`. The last lines of
the algorithm (for 21 to 27) are necessary to modify the tree T of size n − ` that
has just been built. In line 22 we determine which leaves T will be substituted by

54 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

internal nodes (of arity at most 2) with new leaves. It is based on the unranking
of combinations that is very close to the unranking of compositions. Then for the
other leaves that are either kept as they are of replaced by unary internal nodes
attached to a leaf we use the integer F seen as a n− `− i-bit integer: if the bit #s
is 0 then the corresponding leaf is kept, and if it is 1 then the leaf si substituted.
And finally the composition unranking allows to determine how many leaves are
attached to the nodes selected with B.

Theorem 4.5.1. The function UnrankTree is an unranking algorithm and call-
ing it with the parameters n and a uniformly-sampled integer s in {0, . . . , fn − 1}
gives as output a uniform strict monotonic general tree of size n .

The correctness of the algorithm follows directly from the total order over the
trees deduced from the decomposition (30).

Theorem 4.5.2. Once the pre-computations have been done, the function Un-
rankTree needs in average Θ(n) arithmetic operations to construct a tree of size
n.

The proof for this theorem is analogous to the one for Theorem 3.5.5 correspond-
ing to the complexity of the tree builder for strict monotonic Schröder trees.

5. Conclusion

As a conclusion, we comment our main analytical results (summarised in Table 1)
in the light of the simulations obtained using the different random samplers designed
in the paper (see the right-hand sides of Figures 2, 5 and 9), and compare on the
similarities and difference of our three models. Recall that in the representations
no label is represented but the length of an edge between two internal nodes is
proportional to the difference of the labels of the nodes it connects.

A few of our analytical results can be observed looking at the simulations: for ex-
ample, the fact that a large proportion of the nodes are binary in a large monotonic
Schröder tree, which we have confirmed by a rigorous analysis (see Theorem 2.3.6),
is visible on Figure 2. From Figure 5, one could conjecture this is also true in the
case of strict monotonic Schröder trees, but this question remains open.

From Figures 2, 5 and 9 it seems clear that the model of strict monotonic general
Schröder trees behaves drastically differently from the two other models, which are
quite similar. This is indeed what we have proved in our analysis: for example,
the height of a typical strict monotonic general tree of size n is of order Θ(n) (see
Theorem 4.3.4), while we have shown that a in the monotonic case, the height is of
order Θ(log n) (see Theorem 2.6.1). Another huge difference is that the number of
internal nodes in a large typical monotonic general Schröder tree is of order Θ(n2)
(see Theorem 4.3.1) while, in the two other models, this parameter is of order n
(see Theorems 2.3.1 and 3.4.2).

Proving results on the height of different families of random trees is often a
challenging question, and we have seen that it is indeed one of the most intricate
parameters to study in our three models: in the case of monotonic and strict mono-
tonic general trees, we obtain a Θ-estimate but we only obtain a lnn lower bound
in the case of strict monotonic Schröder trees (see Proposition 3.4.4). A natural
conjecture, based on the fact that monotonic and strictly monotonic Schröder trees
seem to behave similarly, is that the height of a typical strictly monotonic Schröder
tree is also of order Θ(lnn).

STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 55

Acknowledgment. We thank Hsien-Kuei Hwang for his help with the proof of
Theorem 2.3.6 and for telling us about the links of this proof with [CHY00].

References

[Ald96] D. Aldous. Probability distributions on cladograms. In D. Aldous and R. Pemantle,
editors, Random Discrete Structures, pages 1–18. Springer New York, 1996.

[BBHT17] A. Bacher, O. Bodini, H.-K. Hwang, and T.-H. Tsai. Generating random permutations
by coin tossing: Classical algorithms, new analysis, and modern implementation.
ACM Trans. Algorithms, 13(2):24:1–24:43, 2017.

[BDF+16] O. Bodini, M. Dien, X. Fontaine, A. Genitrini, and H.-K. Hwang. Increasing Dia-
monds. In LATIN 2016: Theoretical Informatics - 12th Latin American Symposium,
pages 207–219, 2016.

[BDGV18] O. Bodini, M. Dien, A. Genitrini, and A. Viola. Beyond series-parallel concurrent
systems: the case of arch processes. In 29th International Meeting on Probabilis-
tic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms, page to
appear, 2018.

[Ben73] E. A. Bender. Central and local limit theorems applied to asymptotic enumeration.
Journal of Combinatorial Theory, Series A, 15(1):91–111, 1973.

[BFS92] F. Bergeron, P. Flajolet, and B. Salvy. Varieties of increasing trees. In CAAP, pages
24–48, 1992.

[BGGW20] O. Bodini, A. Genitrini, B. Gittenberger, and S. Wagner. On the number of increasing
trees with label repetitions. Discrete Mathematics, 343(8):111722, 2020.

[BGN19] O. Bodini, A. Genitrini, and M. Naima. Ranked schröder trees. In Proceedings of the
Sixteenth Workshop on Analytic Algorithmics and Combinatorics, ANALCO 2019,
pages 13–26, 2019.

[BGNS20] O. Bodini, A. Genitrini, M. Naima, and A. Singh. Families of Monotonic Trees: Com-
binatorial Enumeration and Asymptotics. In 15th International Computer Science
Symposium in Russia (CSR), page To appear, 2020.

[BL77] B. P. Buckles and M. Lybanon. Algorithm 515: Generation of a vector from the
lexicographical index [g6]. ACM Trans. Math. Softw., 3(2):180–182, June 1977.

[BO99] C. Bender and S. Orszag. Advanced Mathematical Methods for Scientists and Engi-
neers: Asymptotic Methods and Perturbation Theory, volume 1. 1999.

[Bol01] B. Bollobás. Random Graphs. Cambridge Studies in Advanced Mathematics. Cam-
bridge University Press, 2 edition, 2001.

[BRS12] O. Bodini, O. Roussel, and M. Soria. Boltzmann samplers for first-order differential
specifications. Discrete Applied Mathematics, 160(18):2563–2572, 2012.

[CHY00] H.-H. Chern, H.-K. Hwang, and Y.-N. Yeh. Distribution of the number of consecutive
records. Random Structures & Algorithms, 17(3-4):169–196, 2000.

[Dev90] L. Devroye. On the height of random m-ary search trees. Random Struct. Algorithms,
1(2):191–204, 1990.

[DGH20] C. Donnot, A. Genitrini, and Y. Herida. Unranking combinations lexicographically:
an efficient new strategy compared with others. https://hal.archives-ouvertes.
fr/hal-02462764v1, 2020.

[Drm09] M. Drmota. Random trees. Springer, Vienna-New York, 2009.
[Dur06] R. Durrett. Random Graph Dynamics. Cambridge Series in Statistical and Proba-

bilistic Mathematics. Cambridge University Press, 2006.
[ER59] P. Erdös and A. Rényi. On random graphs. Publicationes mathematicae, 6(26):290–

297, 1959.
[FS09] P. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge University Press,

Cambridge, 2009.
[FZVC94] P. Flajolet, P. Zimmermann, and B. Van Cutsem. A calculus for the random genera-

tion of labelled combinatorial structures. Theoretical Computer Science, 132(1-2):1–
35, 1994.

[GGKW20] A. Genitrini, B. Gittenberger, M. Kauers, and M. Wallner. Asymptotic enumeration
of compacted binary trees of bounded right height. to appear in Journal of Combi-
natorial Theory, Series A, 172:105177, 2020.

https://hal.archives-ouvertes.fr/hal-02462764v1
https://hal.archives-ouvertes.fr/hal-02462764v1

56 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

[Gil59] E.Ñ. Gilbert. Random graphs. The Annals of Mathematical Statistics, 30(4):1141–
1144, 1959.

[Hwa98] H.-K. Hwang. On Convergence Rates in the Central Limit Theorems for Combinato-
rial Structures. Eur. J. Comb., 19(3):329–343, 1998.

[Jan10] S. Janson. A divertent generating function that can be summed and analysed analyt-
ically. Discret. Math. Theor. Comput. Sci., 12(2):1–22, 2010.

[MM03] C. Martínez and X. Molinero. Generic algorithms for the generation of combinatorial
objects. In 28th International Symposium on Mathematical Foundations of Computer
Science (MFCS), pages 572–581. Springer Berlin Heidelberg, 2003.

[Mol05] X. Molinero. Ordered Generation of Classes of Combinatorial Structures. Phd thesis,
Universitat Politècnica de Catalunya, 2005.

[Moo74] J. W. Moon. The distance between nodes in recursive trees, page 125–132. London
Mathematical Society Lecture Note Series. Cambridge University Press, 1974.

[NW75] A. Nijenhuis and H. S. Wilf. Combinatorial algorithms. Computer science and applied
mathematics. Academic Press, New York, NY, 1975.

[Pip10] N. Pippenger. The hypercube of resistors, asymptotic expansions, and preferential
arrangements. Mathematics Magazine, 83(5):331–346, 2010.

[Pit94] B. Pittel. Note on the heights of random recursive trees and random m-ary search
trees. Random Structures & Algorithms, 5(2):337–347, 1994.

[Rus03] F. Ruskey. Combinatorial generation. 2003.
[Sch70] E. Schröder. Vier Combinatorische Probleme. Z. Math. Phys., 15:361–376, 1870.
[SM01] M. Steel and A. McKenzie. Properties of phylogenetic trees generated by yule-type

specification models. Mathematical Biosciences, 170(1):91–112, 2001.
[Yul25] G. U. Yule. A mathematical theory of evolution, based on the conclusions of Dr. J.

C. Willis, F.R.S. Philosophical Transactions of the Royal Society of London. Series
B, Containing Papers of a Biological Character, 213:21–87, 1925.

Olivier Bodini and Mehdi Naima. Université Sorbonne Paris Nord, Laboratoire
d’Informatique de Paris Nord, CNRS, UMR 7030, F-93430, Villetaneuse, France.

Email address: {Olivier.Bodini, Mehdi.Naima}@lipn.univ-paris13.fr

Antoine Genitrini. Sorbonne Université, CNRS, Laboratoire d’Informatique de
Paris 6 -LIP6- UMR 7606, F-75005 Paris, France.

Email address: Antoine.Genitrini@lip6.fr

Cécile Mailler. University of Bath, Department of Mathematical Sciences, Claver-
ton Down, BA2 7AY Bath, UK.

Email address: C.Mailler@bath.ac.uk

	1. Introduction
	2. Increasing Schröder trees
	2.1. The model and its context
	2.2. Exact enumeration and relationship with permutations
	2.3. Analysis of typical parameters
	2.3.1. Quantitative analysis of the number of iteration steps
	2.3.2. Quantitative characteristics of the root node
	2.3.3. Quantitative analysis of the number of nodes of a given arity
	2.3.4. Typical depth of the leftmost leaf

	2.4. Bijection with permutations
	2.5. Uniform random sampling
	2.6. Analysis of the height of a typical increasing Schröder tree

	3. Strict monotonic Schröder trees
	3.1. The model and its context
	3.2. Enumeration and relationship with ordered Bell numbers
	3.3. Bijection with ordered Bell numbers
	3.4. Analysis of typical parameters
	3.4.1. Quantitative analysis of the number of iteration steps
	3.4.2. Quantitative analysis of the number of internal nodes
	3.4.3. Quantitative characteristics of the root node
	3.4.4. Typical depth of the leftmost leaf

	3.5. Uniform random sampling

	4. Strict monotonic general trees
	4.1. The model and its enumeration
	4.2. Iteration steps and asymptotic enumeration of the trees
	4.3. Analysis of typical parameters
	4.3.1. Quantitative analysis of the number of internal nodes
	4.3.2. Quantitative analysis of the number of distinct labels
	4.3.3. Quantitative analysis of the height of the trees
	4.3.4. Quantitative analysis of the depth of the leftmost leaf

	4.4. Correspondence with labelled graphs
	4.5. Uniform random sampling

	5. Conclusion
	References

