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STRICT MONOTONIC TREES ARISING FROM

EVOLUTIONARY PROCESSES:

COMBINATORIAL AND PROBABILISTIC STUDY

OLIVIER BODINI, ANTOINE GENITRINI, CÉCILE MAILLER, AND MEHDI NAIMA

Abstract. In this paper we study two models of labelled random trees that
generalise the original unlabelled Schröder tree. Our new models can be seen

as models for phylogenetic trees in which nodes represent species and labels

encode the order of appearance of these species, and thus the chronology of
evolution. One important feature of our trees is that they can be generated

efficiently thanks to a dynamical, recursive construction. Our first model is an

increasing tree in the classical sense (labels increase along each branch of the
tree and each label appears only once). To better model phylogenetic trees,

we relax the rules of labelling by allowing repetitions in the second model.

For each of the two models, we provide asymptotic theorems for different
characteristics of the tree (e.g. degree of the root, degree distribution, height,

etc), thus giving extensive information about the typical shapes of these trees.
We also provide efficient algorithms to generate large trees efficiently in the

two models. The proofs are based on a combination of analytic combinatorics,

probabilistic methods, and bijective methods (we exhibit bijections between
our models and well-known models of the literature such as permutations and

Stirling numbers of both kinds).

It turns out that even though our models are labelled, they can be specified
simply in the world of ordinary generating functions. However, the resulting

generating functions will be formal. Then, by applying Borel transforms the

models will be amenable to techniques of analytic combinatorics.
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1. Introduction

The aim of this paper is to study combinatorial models for phylogenetic trees: the
main idea is to add node labels in order to encode chronology in the classical model
introduced by Schröder trees in 1870 in the seminal paper Vier Combinatorische
Probleme [Sch70]. In this paper (see the fourth problem), Schröder introduces a
simple model of phylogenetic tree model, and enumerates this class of trees by their
number of leaves.

In biology, a phylogenetic tree is a classical tool to represent the evolutionary
relationship among species. At each branching node of the tree, the descendant
species from distinct branches have distinguished themselves in some manner and
are no more dependent: the past is shared but the futures are independent.

The main limitation of Schröder’s model of phylogenetic trees is that it does
not take into account the chronology between the different branching nodes. Since
then, probabilistic approaches have been developed to consider this chronology: in
particular in the context of binary trees, one can mention, e.g., the stochastic model
of Yule [Yul25] and its generalization by Aldous [Ald96].

However, to the best of our knowledge, there seems to have been no attempt to
combinatorially enrich Schröder’s original model in order to encode the chronology
of evolution (except the short version [BGN19] of this paper). Motivated by the
fact that models with restricted arities appear in the biology literature under the
name of “ranked phylogenetic trees” (see, e.g., [SDH+04]), we aim at relaxing these
restrictions and study models with unrestricted arities. To do so, we consider
labelled versions of Schröder’s tree, where the labels represent the order at which
branchings occur. In Figure 1 we have represented on the left hand-side a classical
Schröder trees of size 50 (i.e. with 50 leaves), and, on the right hand-side, a labelled
version of the same tree: time is on the vertical axis, from top to bottom, and a
node of label x is placed at time x (the horizontal placement is irrelevant).

The two models of trees we study are enumerated by their number of leaves
since leaves represent the number of current species. In this paper we do not
distinguish between the leaves and therefore they are unlabelled. The justification
for this is that we consider species to have the same evolutionary power and are
thus undistinguishable. Additionally, the trees are ordered which is not the case in
usual phylogenetic tree models. However, this gives a first approach to the study of
such trees since the equivalent non-plane models (i.e. where the order of siblings is
irrelevant) of these trees require more involved technical tools. We aim in the near
future to extend this study to such non-plane models.

Discussion of related models: Increasing trees are classical in the literature: for
example, Bergeron, Flajolet and Salvy [BFS92] study several families of increasingly-
labelled trees, and, to do so, they develop some tools that are now classical in an-
alytic combinatorics. As an example, one of these classical tools is the integration
of the Greene operators. We refer the reader to [Drm09] where more recent results
on various families of increasing trees and the analytic combinatorics methods to
quantitatively study them are surveyed.

Beyond their combinatorial description, increasing trees can often be described as
the result of a dynamic construction: the nodes are added one by one at successive
integer-times in the tree (their labels being the time at which they are added).
This description sometimes allows to apply probabilistic method to prove theorems
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Figure 1. A Schröder tree: without chronological evolution (on
the left-hand side), and with chronological evolution (on the right-
hand side): the label of a node is represented as the distance from
this node to the root.

about some characteristics such as the height of the tree, and it also often gives
a very efficient way to generate large trees from the considered class using simple,
iterative and local rules.

We illustrate this dynamical evolution on the simple case of recursive trees.
This simple model was originally designed as a simple model for the spread of
epidemics [Moo74]. Combinatorially, a recursive tree is a rooted non-plane (i.e. the
order of siblings is irrelevant) tree whose nodes are labelled from 1 to the number
of nodes in such a way that each label appears exactly once, and the labels increase
along all branches. We denote by Rn the class of all n-node recursive trees. Now,
consider a sequence of random trees (tn)n≥1 built recursively as follows: t0 has only
one node, labelled by 1. Given tn−1, attach a new child labelled by n to a node
picked uniformly at random among the n − 1 nodes of tn−1. Then, it is known
that for all n ≥ 1, tn is a tree taken uniformly at random in Rn, the set of all
n-node recursive trees. Both analytic combinatorics and probabilistic methods, as
well as a bijection with permutations, have been used to understand the average
typical shape of a large recursive tree: it is known that the degree of the root
grows on average as lnn (see [Drm09, Sec. 6.1]), the height as c lnn (for an explicit
constant c – see [Pit94]), the proportion of nodes of arity k ≥ 0 converges to 2−k

(see [Drm09, Th. 6.8]). Although our two models of increasing Schröder trees are
more involved, our proofs rely on the same three methods used in the recursive tree
literature: analytic combinatorics, a dynamical evolution, probabilistic methods,
and bijections with classes of permutations.

Our main contributions: Although, as mentioned above, many variations of the
recursive tree have been studied, this paper (together with its short version [BGN19])
contains the first study of increasing versions of the classical model of Schröder.
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Since the classical tools for specifying tree models in analytic combinatorics are not
giving here usable generating functions, we aim at defining an evolution process
that associates, to each Schröder tree, an evolution represented by an increasing
labelling of its internal nodes. Furthermore, in our second model, we relax the la-
belling constraints by allowing repetitions of labels. In the dynamical construction
of the trees, allowing repetition of labels means allowing the addition of several
nodes at once in the tree. Our generalisations can be seen as natural discrete-
time versions of the classical probabilistic model of Yule trees (see, e.g., [SM01]);
recall that, in the Yule tree, the time between two branchings are exponentially
distributed.

This work is part of a long-term over-arching project, in which we aim at relaxing
the classical rules of increasing labelling (described in, e.g., [BFS92]), by, for exam-
ple, allowing labels to appear more than once in the tree. The following papers are
part of this strand of research: [BGGW20, BGNS20] introduce and study models of
labelled trees with less-constrained increasing labelling rules; [BDF+16] focuses on
increasingly-labelled “diamonds”; and [GGKW20] analyses at a compacted struc-
ture that specifies classes of directed acyclic graphs.

In this paper, we introduce two new different models of Schröder trees with
chronological evolution: the increasing Schröder trees and the strict monotonic
Schröder trees. One important feature of these models is that they can both be
simulated efficiently. The models are based on some increasing labelling of Schröder
trees, and the repetition of labels is allowed in the second model. For the two mod-
els, we prove asymptotic results about important characteristics of a typical large
tree of this class (e.g. root distribution, number of nodes of arity 2, 3, etc, height
of the tree, etc – see Table 1 where our main results are summarised), and design
an algorithm that generates a large tree taken uniformly at random among all trees
of a given size in the class. The quantitative analysis of the models and the design
of the random samplers rely on a combination of analytic combinatorics methods
(see [FS09] for a survey), probabilistic methods (in particular methods developed
by Devroye [Dev90] to study the height of split trees), and bijective methods (we
exhibit bijections between our classes of trees and classes of permutations, these
are then useful for the analysis of different characteristics and for the design of
the generation algorithms). In particular, we exhibit interesting relations between
Stirling numbers and parameters on trees such as the number of the labellings of
nodes, the number of internal nodes, and the depth of a leaf.

Generic approach highlighted in the paper: Similarly to the recursive tree,
the two models have a generic constrained evolution process. The specificity of each
model is induced by small changes of the evolution process: we give here a generic,
non precise description of the evolution process, details specific to each family of
trees will be given in each section:

• Start with a single (unlabelled) leaf;
• Iterate the following process: at step ` (for ` ≥ 1), select a subset of leaves

and replace each selected leaf by an internal node with label ` attached to
an arbitrary sequence of leaves.

Note that the increasing labelling corresponds to the chronology of the construction
of the tree: internal nodes labelled by an integer ` were added at time `. Our models
differ from each other by different constraints on the set of selected leaves: in our
first model, this subset is always of size 1, while it can be bigger in the second
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model. Importantly, our models can be seen as phylogenetic trees of n species (n
being the number of leaves): the labels of internal nodes stand for the times at
which different branches of the phylogenetic trees split.

Number of trees Distinct labels Internal nodes Height

Increasing Schröder trees n!/2 n− lnn n− lnn Θ(lnn)

Strict monotonic Schröder trees (n− 1)!/(2 (ln 2)
n
) 1

2 ln 2 n n− ln 2 lnn

Table 1. Main analytic results of the paper: behaviour of the
characteristics of a large typical tree of each of the two classes of
labelled Schröder trees. The parameter n stands for the size of
the trees (i.e. their number of leaves) and the results represent the
average values of the parameters when n→ +∞.

Plan of the paper: Each of the two main sections (Sections 2 and 3) is dedicated
to one of our models of labelled Schröder trees. The organisation inside each section
is similar: after defining the model we show theorems about different characteristics
of the trees using analytic combinatorics and bijective methods. We then exhibit
the associated dynamical evolution that generates the considered class of trees, and
use this evolution process to (a) design an efficient random sampler for this class of
trees and (b) in the case of our first model, prove some probabilistic results about
the height of a typical large tree from this class.

2. Increasing Schröder trees

The first model we are interested in is a generalisation of the Schröder tree, a
classical combinatorial structure that was originally introduced in the context of
phylogenetics [Sch70]. Our generalisation consists in labelling the internal nodes of
a Schröder tree – denote by ` their number – with the integers {1, . . . , `} with the
constraints that each label appears exactly once and a node’s label is larger than
the label of its parent; such a labelling of a tree is called “increasing”, we call such
a constrained-labelled Schröder tree an increasing Schröder tree. In the tree seen
as an evolutionary process, the labels can be interpreted as the order of appearance
of the different nodes (which, for example, stand for different species). Several
classes of increasingly-labelled trees have already been studied in the literature
using analytic combinatorics [FS09] methods, but these methods applied to the
Schröder tree would raise new technical problems. The novelty of our approach
is to use a dynamical description of the increasing Schröder tree inspired by its
evolutionary interpretation; this allows us to give the first analytical results about
this combinatorial structure.

2.1. The model and its context. In this paper, we define rooted trees as ge-
nealogical structures: the root is the unique common ancestor of all nodes of the
tree, each node except the root has exactly one parent (the root has no parent),
nodes that have no children are called leaves, nodes that have at least one child are
called internal nodes. The arity of a node is it’s number of children. We say that
a tree is plane if siblings (nodes that have the same parent) are ordered.
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Definition 2.1.1 (see [FS09, p. 69]). A Schröder tree is a rooted plane tree whose
internal nodes all have arity at least 2. The size of a Schröder tree is its number of
leaves.

Note that a Schröder tree is an unlabelled combinatorial structure (neither the
leaves nor the internal nodes are labelled). In the context of analytic combinatorics
the combinatorial class S of Schröder trees is thus specified as

S = Z ∪ Seq≥2 S. (1)

Its combinatorial meaning is direct in the context of decomposable objects (see
Flajolet and Sedgewick [FS09] for a detailed introduction for the method of combi-
natorial specification): An object from S is either a leaf (represented by the single
atom Z, of size 1), or it is composed of an internal node, parent of a sequence of at
least two elements from S. Note that, in the specification, the internal nodes are
omitted (because they are of size 0): the expression Seq≥2 S is a abbreviation of
E × Seq≥2 S where E stands for an atom of size 0 and Seq≥2 S is a sequence of at
least two elements from S.

Once the combinatorial specification is given, the symbolic method (see [FS09]
for details), translates automatically the equation specifying the objects into a
functional equation satisfied by the (ordinary) generating functions associated to
the structures. The generating function of S is defined as the formal series S(z) =∑
n≥1 snz

n where sn is the number of Schröder trees of size n (i.e. with n leaves).

Using the symbolic method on Equation (1), we get that

S(z) = z +
S(z)2

1− S(z)
. (2)

An elementary iteration allows us to extract the first coefficients of the sequence (sn)n∈N:

(0, 1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859, 2646723, 13648869, . . . ) .

Equation (2) implies that the generating function S is algebraic and in fact

S(z) =
1 + z −

√
1− 6z + z2

4
.

This is sufficient to get the following asymptotic equivalent of sn when n tends to
infinity:

sn =

√
3
√

2− 4

4
√
π

n−3/2
(

3− 2
√

2
)−n

(1 +O(1/n)) .

We refer the reader to [FS09, page 69] for a more detailed analysis of this generating
function S.

In the rest of the section we are interested in an increasingly-labelled variation
of Schröder trees.

Definition 2.1.2. An increasing Schröder tree has a Schröder tree structure and
its internal nodes are labelled with the integers between 1 and ` (where ` is the
number of internal nodes) in such a way that each label appears exactly once and
each sequence of labels in the paths from the root to any leaf is (strictly) increasing.

Increasing trees can, to a certain extent, be specified using the Greene operator
�? (see, for example, [FS09, page 139]), and the specification can then be translated
into an equation satisfied by the exponential generating function of the increasing
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Figure 2. Two increasing Schröder trees

tree class. Since in our context the size of a tree is the number of its leaves while
only internal nodes are labelled, we need to introduce a second variable u to mark
the internal nodes. We let sn,` denote the number of increasing Schröder trees with
n leaves and ` internal nodes. Following standard methods in combinatorics we
define a generating function that is ordinary for the leaf marks and exponential for
the internal node marks: we set S∗(z, u) =

∑
n,` sn,` z

n u`/`!. The specification of
this combinatorial class is

S∗ = Z ∪ U� ? Seq≥2 S∗.

Using the symbolic method [FS09], we obtain the following equation satisfied by
S∗(z, u):

S∗(z, u) = z +

∫ u

v=0

S∗(z, v)2

1− S∗(z, v)
dv.

Although this integral equation could be analysed further in order to get informa-
tion about increasing Schröder trees, this analysis would be very cumbersome; a
better approach is to see the Schröder tree as the result of an evolutionary pro-
cess. Another advantage of this new approach is that it extends to other families
of labelled Schröder trees for which there seems to be no (classical) specification,
even using the Greene operator: one such example is the family of strict monotonic
Schröder trees studied in Section 3.

In Figure 2 we have represented two increasing Schröder trees: both are gen-
erated uniformly at random among all increasing Schröder trees of the same size:
size 30 on the left, size 500 on the right. The left-hand-side tree has 27 internal
nodes (and 30 leaves). It is the same tree as the one represented in Figure 1, where
its chronological evolution is represented on the right-hand side: the internal node
labelled by ` is displayed on level ` − 1 (i.e. at distance ` − 1 from the root on
the vertical axis), for all ` ∈ {1, . . . , 27}. The right-hand-side one is drawn using
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a circular representation, which is often used for phylogenetic trees: the labels are
omitted but as in Figure 1, the length of an edge is proportional to the difference of
the labels of the two nodes it connects. This right-hand-side tree has 492 internal
nodes (and 500 leaves).

We introduce an evolution process generating increasing Schröder trees:

• Start with a single (unlabelled) leaf;
• Iterate the following process: at step ` (for ` ≥ 1), select one leaf and

replace it by an internal node with label ` attached to an arbitrary sequence
of new leaves.

By taking all trees of the same size together, we obtain the following recurrence,
enumerating increasing Schröder trees by size: if, for all n ≥ 1, tn is the number of
n-leaf Schröder trees, then t1 = 1 and, for all n ≥ 2,

tn =

n−1∑
`=1

` t`. (3)

To make sure that this algorithm generates all increasing Schröder trees and
generates each tree exactly “once”; we define this evolution process more rigorously
as follows: The process takes as input two sequences of integers (d`)`≥1 and (u`)`≥1

such that u1 = 1 and for all ` ≥ 1, d` ≥ 2 and 1 ≤ u`+1 ≤
∑`
i=1 di − (` − 1) and

gives as an output a sequence (τ`)`≥0 of `-internal-node increasing Schröder trees.
The process is defined inductively as follows:

• Tree τ0 is the 1-node tree, without any internal node.
• Given τ`, we define τ`+1 as follows: we number the leaves of τ` in the

depth-first order (the choice of the ordering does not matter) from 1 to∑`
i=1 di−(`−1), and replace leaf number u`+1 by an internal node labelled

by `+ 1 to which d`+1 leaves are attached.

Note that, by construction, τ` is an increasing Schröder tree with ` internal nodes
for all ` ≥ 0, and the label of a node corresponds to the time in the evolution process
when this node became an internal node. In other words, the increasing labelling
corresponds to the chronology of the evolution process. Finally, note that the
evolution process indeed defines a bijection between the set of increasing Schröder
trees having p internal nodes and the set of all sequences (d`, u`)1≤`≤p such that

u1 = 1, and for all 1 ≤ ` ≤ p, d` ≥ 2 and 1 ≤ u`+1 ≤
∑`
i=1 di − (`− 1).

Recall that we define the size of a Schröder tree to be its number of leaves.
It is important to note that, because a Schröder tree with n − 1 internal nodes
has at least n leaves, the evolution process defines a bijection between the set of
all n-leaf Schröder trees and the set of all sequences (d(n)

` , u(n)

` )1≤`<n such that

for all 1 ≤ ` < n, u(n)

1 = 1, d(n)

` ≥ 2, 1 ≤ u(n)

`+1 ≤
∑`
i=1 d

(n)

i − (` − 1), and∑`
i=1 d

(n)

i − (`− 1) = n.

2.2. Overview of the main results. We start by solving the enumeration prob-
lem in Section 2.3. Then we turn to the analysis of typical parameters in Section 2.4
with the results summarised in Table 2. From the enumeration a relationship with
permutations is unveiled. Therefore, in Section 2.5 we will characterise this rela-
tionship through a bijection. The bijection will serve as a basis to construct an
efficient uniform sampler for this classes that we give in Section 2.6. We conclude
with Section 2.7, where we study the average height of these trees; this result is dealt
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with in an independent subsection because its proof is different from the proofs of
all analytical results of Section 2.4 and relies on the uniform sampling method of
Section 2.6.

Mean Variance Limit law
Internal nodes n− lnn lnn Normal

Degree of the root 2 e− 3 0.4997 modified Poisson
Number of binary nodes n− 2 ln 2 4 lnn Normal
Number of ternary nodes lnn

Height of the tree Θ (lnn)

Table 2. Summary of the main results on parameters of Increas-
ing Schröder trees

2.3. Exact enumeration and relationship with permutations. Let T denote
the class of increasing Schröder trees. Using the evolution process, we get the
following specification for T :

T = Z ∪
(
ΘT × Seq≥1Z

)
. (4)

In this specification, Z stands for the leaves, and the operator Θ is the classical
pointing operator (see [FS09, page 86] for details). The specification is a direct
rewriting of the evolution process: a tree is either of size 1 (Z), or it has been built
by pointing at a leaf in a smaller tree (ΘT ) and replacing it by a sequence of at
least two leaves. Although the latter sequence is of length at least 2, we use the
operator Seq≥1(Z) instead of Seq≥2(Z) because the leaf that was pointed at is
reused as the leftmost child of the new internal node.

The symbolic method translates this specification into a functional equation sat-
isfied by the generating function associated to the combinatorial class of increasing
Schröder trees. Note that although the increasing Schröder trees are labelled, this
labelling does not appear in the specification, i.e. it is possible to work with ordi-
nary generating functions (as opposed to exponential generating functions). This
is because the size of an increasing Schröder tree is its number of leaves, and the
leaves are not labelled. We define the ordinary generating function associated to T
by T (z) =

∑
n≥1 tn z

n, where tn is the number of increasing Schröder trees of size

n. Using the symbolic method (in particular, pointing at a leaf translates into a
differential operator), we get

T (z) = z +
z2

1− z
T ′(z). (5)

From this equation we get that for all n ≥ 3, tn = n tn−1; which is also a conse-
quence of Equation (3). Using the fact that t1 = t2 = 1, we get that tn = n!/2 for
all n ≥ 2 (this sequence (tn)n appears under the reference OEIS A0017101). Note
that the radius of convergence of the ordinary generating series T (z) is 0; this series
is thus purely formal.

1Throughout this paper, a reference OEIS A· · · points to Sloane’s Online Encyclopedia of In-
teger Sequences www.oeis.org.

https://oeis.org/A001710
www.oeis.org
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2.4. Analysis of typical parameters. In this section, our aim is to describe the
shape of a typical increasing Schröder tree, i.e. a tree taken uniformly at random
among all increasing Schröder trees of a fixed size. To get information about this
shape, we focus on four characteristics of the tree: the number of internal nodes,
the arity of the root, the number of leaves that are children of the root, and the
number of binary nodes (node of arity 2). We show asymptotic theorems for these
characteristics in a typical increasing Schröder tree when the size goes to infinity.

2.4.1. Quantitative analysis of the number of iteration steps. In this section, we
show that although an increasing Schröder tree of size n can have between 1 and
n− 1 internal nodes, it typically has of order n− lnn internal nodes. This result is
particularly interesting to analyse the complexity of the evolutionary process: this
means that, on average, this evolutionary process takes of order n − lnn iteration
steps to generate a typical increasing Schröder tree of size n. In fact, our result is
stronger than just finding an equivalent for the average number of iterations since
we prove a central limit theorem for this quantity. To complete the picture we
also quantify the average number of nodes of a fixed degree. We will show that the
average number of binary nodes in a typical tree is n−2 lnn, the number of ternary
nodes is lnn and higher arity nodes have a constant mean.

Theorem 2.4.1. For all n ≥ 1, we denote by Xn the number of internal nodes
in a tree taken uniformly at random among all increasing Schröder trees of size n.
Then, asymptotically when n tends to infinity, ETn [Xn] ∼ n− lnn, VTn [Xn] ∼ lnn,
and

Xn − (n− lnn)√
lnn

d−−→ N (0, 1) in distribution.

To prove this theorem, we enrich the specification (4) with an additional param-
eter U marking the internal nodes:

T = Z ∪
(
U ×ΘZT × Seq≥1Z

)
,

where the operator ΘZ consists in pointing at an element marked by Z. Note that
here we do not use the Greene operator: the increasing labelling is a consequence
of the iterative process. Using the symbolic method, this implies that, if tn,k is the
number of increasing Schröder trees with n leaves and k internal nodes, tn(u) =∑n−1
k=0 tn,k u

k, and T (z, u) =
∑
n≥1 tn(u) zn, then

T (z, u) = z +
uz2

1− z
∂zT (z, u), (6)

where ∂z denotes the partial differentiation according to z. Once again, we write
(1− z)T (z, u) = z(1− z) + uz2∂zT (z, u), and extract the coefficient of zn on both
sides, we thus get that t1(u) = 1, t2(u) = u and, for all n > 2,

tn(u) = (1 + (n− 1)u) tn−1(u). (7)

Extracting the coefficient of uk on both sides of this last equation gives: t1,0 = 1,
tn,1 = 1 and for all n > 1,

tn,k = tn−1,k + (n− 1) tn−1,k−1 for all 0 < k < n,

and tn,k = 0 otherwise. The first values of tn,k are listed in Table 3. Note that, for
all n ≥ 1, tn,n−1 is the number of increasing binary trees (see [FS09, page 143] for
details).



12 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

1
0 , 1
0 , 1, 2
0 , 1, 5, 6
0 , 1, 9, 26, 24
0 , 1, 14, 71, 154, 120
0 , 1, 20, 155, 580, 1044, 720

Table 3. Values of tn,k (the number of increasing Schröder trees
with n leaves and k internal nodes) for n ∈ {1, 2, . . . , 7}, and k ∈
{0, 1, . . . , n− 1}.

From Equation (7), we easily deduce a closed form for tn(u): for all n ≥ 2, we
have

tn(u) = u

n−1∏
`=2

(1 + `u). (8)

This is a shifted version of the sequence OEIS A145324, which is related to Stirling
cycle numbers. Our proof of Theorem 2.4.1 relies on the following lemma, which
is a straightforward consequence of Equation (8). From now on tn(u) will always

refer to the generating function of tn,k with respect to k, that is tn(u) =
n−1∑
k=0

tn,ku
k.

Lemma 2.4.2. Let SCn(u) =
∏n−1
i=0 (u + i) be the generating functions of the re-

spective rows of the Stirling Cycle numbers (see [FS09, page 735]), which enumerate
all permutations of a set of size n that decompose into k cycles (i.e. Stirling num-

bers of the first kind). If we set t̂n(u) =
∑n−1
k=0 tn,k u

n−k, which is the row-reversed
generating function, then

t̂n(u) =
SCn(u)

1 + u
= u

n−1∏
`=2

(u+ `).

Proof of Theorem 2.4.1. One could apply Hwang’s quasi-powers theorem [Hwa98],
but since we have an explicit formula for tn(u), we decided instead to apply Lévy’s
continuity theorem directly. By Lemma 2.4.2, we have that, if X̄n = n − Xn, for
all ξ ∈ R,

E
[
e
iξ· X̄n−lnn√

lnn

]
=

1

tn
e−iξ

√
lnnt̂n

(
e

iξ√
lnn

)
=

2

n!
e
−iξ
√

lnn+ iξ√
lnn ·

Γ
(
n+ e

iξ√
lnn

)
Γ
(

2 + e
iξ√
lnn

)

=
2 + o(1)

Γ(3 + o(1))

(
n− 1 + e

iξ√
lnn

)n+e
iξ√
lnn− 1

2

ene−iξ
√

lnn

en−1+e
iξ√
lnn nn+ 1

2

,

where we have used Stirling’s formula. Note that

lim
n→∞

e1−e
iξ√
lnn

= 1,

https://oeis.org/A145324
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and Γ(3) = 2, which implies that

E
[
e
iξ· X̄n−lnn√

lnn

]
= (1 + o(1))

(
n− 1 + e

iξ√
lnn

)n+e
iξ√
lnn− 1

2

e−iξ
√

lnn

nn+1/2

= (1 + o(1))
ne

iξ√
lnn e−iξ

√
lnn

n
.

Since

ne
iξ√
lnn

= exp

(
(lnn)

(
1 +

iξ√
lnn
− ξ2

2 lnn
+O

(
(lnn)−

3/2
)))

∼
n →∞

neiξ
√

lnn−ξ2/2,

we get

E
[
e
iξ· X̄n−lnn√

lnn

]
= (1 + o(1)) e−

ξ2/2,

which, by Lévy’s continuity theorem concludes the proof; recall that X̄n = n −
Xn. �

2.4.2. Quantitative analysis of the root node. In this section, we show that the
distribution of the degree of the root of a tree taken uniformly at random among
all increasing Schröder trees of size n is in fact independent of n:

Theorem 2.4.3. The degree ATn of the root of a tree taken uniformly at random
among all increasing Schröder trees of size n satisfies, for all n ≥ 1,

E[ATn ] = 2 e− 3, and V[ATn ] = 14 e− 4 e2 − 8.

In fact, for all 2 ≤ k ≤ n, we have

P(ATn = k) =
2k

(k + 1)!
. (9)

The proof of Theorem 2.4.3 relies on the following lemma.

Lemma 2.4.4. If tn,k is the number of increasing Schröder trees whose root has
arity k, then t1,0 = 1, for all n ≥ 0, tn,1 = 0 and for all n ≥ 2, 2 ≤ k ≤ n− 1,

tn,k =
k n!

(k + 1)!
, and tn,n = 1.

Indeed, this lemma together with the fact that tn = n!/2, implies Equation (9).
The mean and variance of this probability distribution are then straightforward to
calculate, which concludes the proof of Theorem 2.4.3: it only remains to prove
Lemma 2.4.4.

We refer the reader to Table 4 where the first values of tn,k are listed. The
sequences (tn(u))n≥1 and (tn,k)2≤k<n are related to the sequences OEIS A094112

and OEIS A092582, which enumerate some families of permutations (the former
enumerates a family of permutations avoiding some pattern, the second permuta-
tions with initial cycle of a given size). Since the number of increasing Schröder
trees of size n ≥ 2 is equal to n!/2, it is natural to expect some links between this
family of trees and permutations: in Section 2.5 we exhibit a bijection between the
two families.

https://oeis.org/A094112
https://oeis.org/A092582
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1, 0
0, 0, 1
0, 0, 2, 1
0, 0, 8, 3, 1
0, 0, 40, 15, 4, 1
0, 0, 240, 90, 24, 5, 1
0, 0, 1680, 630, 168, 35, 6, 1

Table 4. Values of tn,k, the number of size-n increasing Schröder
trees of root-arity k, and 0 ≤ k ≤ n ∈ {1, . . . , 7}.

Proof of Lemma 2.4.4. In this proof, the variable U marks the arity of the root (we
re-use the same notation as in the previous section, but with a different meaning;
this is done to avoid having too many different notations). Using the evolution
process, we get that

T = Z ∪
(
U × Z × Seq≥1(U × Z)

)
∪
(
ΘZ(T \ Z)× Seq≥1Z

)
.

Indeed, the root is either a leaf (Z), or it is an internal node to which is attached a
sequence of at least 2 leaves (U ×Z×ΘZ(Z)×Seq≥1(U ×Z)), or the tree is larger,
i.e. the last step in the evolution process was replacing another leaf by an internal
node to which is attached a sequence of non-marked leaves (ΘZ(T \Z)×Seq≥1Z).
Using the symbolic method, we thus get that

T (z, u) = z +
u2z2

1− uz
+

z2

1− z
∂z (T (z, u)− z) .

In the same way as before, through a direct extraction [zn](1 − zu)(1 − z)T (z, u),
we prove that t1(u) = 1, t2(u) = u2, and for all n > 2,

tn(u) = (u− 1) un−1 + n tn−1(u).

This implies t1,0 = 1, tn,n = 1 for all n ≥ 1, tn,k = n tn−1,k for all 1 ≤ k ≤ n − 1,
and tn,k = 0 for all k > n, which concludes the proof. �

2.4.3. Quantitative analysis of the number of nodes of a given arity. In this section,
we prove asymptotic results for the number of nodes of a given arity in a typical
increasing Schröder tree, starting with binary nodes:

Theorem 2.4.5. Let Bn be the number of binary nodes (nodes of arity 2) in a tree
taken uniformly at random among all increasing Schröder trees of size n. Asymp-
totically when n tends to infinity, we have

E[Bn] = n−2 lnn+2γ−7

3
+O

(
1

n

)
, and V[Bn] = 4 lnn+4 γ−2

3
π2−17

6
+O

(
1

n

)
,

where γ is the Euler-Mascheroni constant. Moreover, in distribution when n tends
to infinity,

Bn − (n− 2 lnn)

2
√

lnn
→ N (0, 1).

In other words, on average, almost all internal nodes are binary, and only a
proportion of order 2 lnn/n of internal nodes are at least ternary. In the following
theorem, we show that, on average, half of all non-binary nodes are ternary.
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Theorem 2.4.6. Let C(`)
n be the number of nodes of arity ` ≥ 3 in a tree taken

uniformly at random among all increasing Schröder trees of size n. Asymptotically
when n tends to infinity, we have

EC(3)

n = lnn+O(1), and EC(`)

n ∼ c`,

for some positive constants (c`)`≥4; and, for ` = 4, we have c4 = 23/90.

Proof of Theorem 2.4.5. Here the specification is easy to exhibit, and its translation
via the symbolic method is direct (in this proof, U marks the binary nodes):

T = Z ∪
(
ΘZT ×

(
U × Z ∪ Seq≥2Z

))
;

T (z, u) = z +

(
u z2 +

z3

1− z

)
∂zT (z, u).

The method we use to analyse this differential equation is similar to [CHY00]. For
all n ≥ 3,

tn(u) = (1 + u(n− 1))tn−1(u) + (1− u)(n− 2)tn−2(u), (10)

with t1(u) = 1 and t2(u) = u. Once again (see also Lemma 2.4.2) we take

the normalised row-reversed generating function t̂n(u) =
2

n!

∑n−1
k=0 tn,k un−k =

2

n!
untn(1/u). From Equation (10), we get that, for all n ≥ 3,

t̂n(u) =
n+ u− 1

n
t̂n−1(u) +

u(u− 1)(n− 2)

n(n− 1)
t̂n−2(u), (11)

with t̂1(u) = 2u and t̂2(u) = u.
We now define F (z, u) =

∑
n≥1 nt̂n(u)zn; this generating function satisfies the

following differential equation:

z (1− z) ∂zF (z, u) =
(
1 + uz − u(1− u)z2

)
F (z, u) + 2u2z2,

with initial condition ∂zF (z, u)|z=0 = 2u. This last equation gives

F (z, u) =
2uz

(1− z)u2+1
eu(1−u)z ·

(
1−

∫ z

0

u(1− t)u
2

e−u(1−u)t dt

)
.

We remark that F (z, u) is singular at z = 1 with a pole of order u2 + 1, thus

F (z, u) ∼
z=1

g(u)

(1− z)u2+1
,

with

g(u) = 2ueu(1−u)

(
1−

∫ 1

0

u(1− t)u
2

e−u(1−u)t dt

)
.

Therefore, asymptotically when n→ +∞,

nt̂n(u) =
g(u)

Γ (u2 + 1)
nu

2

(
1 +O

(
1

n

))
,

uniformly for all u such that |u−1| ≤ δ for some δ > 0. This thus falls into the scope
of the quasi-powers framework and Theorem IX.8 [FS09, p. 645] is applicable with
B(u) = exp (2u) and βn = lnn, which concludes the proof (the mean and variance
expansions can be calculated automatically using, e.g., a computer software such
as Maple). �
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Proof of Theorem 2.4.6. We first look at ternary nodes: the specification (with U
marking ternary nodes) is given by

T = Z ∪
(
ΘZT ×

(
Z ∪ U × Z2 ∪ Seq≥3Z

))
which implies

T (z, u) = z +

(
z2 + u z3 +

z4

1− z

)
∂zT (z, u),

and thus, for all n ≥ 4:

tn(u) = ntn−1(u) + (u− 1)(n− 2)tn−2(u) + (n− 3)(1− u)tn−3(u),

with t0(u) = 0, t1(u) = 1 and t2(u) = 1. Differentiating this equation, we get that,
for all n ≥ 5,

t′n(u)|u=1 = nt′n−1(u)|u=1 +
(n− 2)(n− 2)!

2
− (n− 3)(n− 3)!

2
.

This thus implies that, for all n ≥ 5,

E[C(3)

n ] = E[C(3)

n−1] +
(n− 2)

n(n− 1)
− (n− 3)

n(n− 1)(n− 2)

=
5

12
+

n∑
`=5

(
(k − 2)

k(k − 1)
− (k − 3)

k(k − 1)(k − 2)

)
.

since E[C(3)

4 ] = 5/12. Using the fact that
∑n
k=1

1
k = lnn+O(1) and

∑n
k=1

1
k2 = O(1)

when n tends to infinity, we get

E[C(3)

n ] = lnn+O(1),

as claimed.
We reason similarly for ` = 4 (U now marks nodes of arity 4):

T = Z ∪
(
ΘZT ×

(
Z ∪ Z2 ∪ U × Z3 ∪ Seq≥4Z

))
;

T (z, u) = z +

(
z2 + z3 + u z4 +

z5

1− z

)
∂zT (z, u).

Thus, for all n ≥ 4, we have

tn(u) = ntn−1(u) + (u− 1)(n− 3)tn−3(u) + (n− 4)(1− u)tn−4(u),

with t0 = 0, t1(u) = 1, t2(u) = 1 and t3(u) = 3, which, after differentiating at
u = 1 and dividing by tn gives, for n ≥ 6,

E[C(4)

n ] = E[C(4)

n−1] +
(n− 3)

n(n− 1)(n− 2)
− (n− 4)

n(n− 1)(n− 2)(n− 3)
,

with E[C(4)

5 ] = 6/60. The recurrence can be solved explicitly and we obtain,

E[C(4)

n ] =
23

90
− 13

6n
− 1

6 (n− 2)
+

4

3 (n− 1)
,

which proves the statement for ` = 4.
We now treat the general ` ≥ 5 case (U now marks nodes of arity `):

T = Z ∪
(
ΘZT ×

((
∪`−2
i=1Z

`
)
∪ U × Z`−1 ∪ Seq≥`Z

))
;

T (z, u) = z +

((
`−1∑
i=2

zi

)
+ u z` +

z`+1

1− z

)
∂zT (z, u).



STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 17

This implies that, for all n ≥ `:

tn(u) = ntn−1(u) + (u− 1)(n− `+ 1)tn−`+1(u) + (n− `)(1− u)tn−`(u),

with tn(u) = tn for all n < `. Therefore, we get, for n ≥ `+ 2,

E[C(`)

n ] = E[C(`)

n−1] +
n− `+ 1

n(n− 1) · · · (n− `+ 2)
− n− `
n(n− 1) · · · (n− `+ 1)

= E[C(`)

`+1] +

n∑
k=`+1

(k − `+ 1)

k(k − 1) · · · (k − `+ 2)
− (k − `)
k(k − 1) · · · (k − `+ 1)

.

Since
k − `+ 1

k(k − 1) · · · (k − `+ 2)
− k − `
k(k − 1) · · · (k − `+ 1)

∼
k→∞

1

k`−2
,

which implies that, for all ` ≥ 4,

lim
n→∞

E[C(`)

n ]

= E[C(`)

`+1] +

∞∑
k=`+1

k − `+ 1

k(k − 1) · · · (k − `+ 2)
− k − `
k(k − 1) · · · (k − `+ 1)

< +∞.

All these sequences converge to constants that get smaller and smaller when `
increases. �

Table 3 gives a summary of the typical number of nodes for the smallest arities:
the first three values appear explicitly in the latter proofs and an obvious adaptation
of Theorem 2.4.6 gives the constants c` for larger `.

2-ary 3-ary 4-ary 5-ary 6-ary 7-ary 8-ary 9-ary 10-ary

EC(`)
n n− 2 lnn lnn 23

90
1
32

107
25200

47
86400

101
1587600

229
33868800

659
1005903360

Figure 3. The asymptotic number of `-ary nodes

2.5. Bijection with permutations. Since the number of increasing Schröder
trees of size n is equal to tn = n!/2, it hints at the existence of a relationship
between our model of increasing trees and a subclass of permutations. In this
section, we aim at exhibiting this relationship.

We denote by σ = (σ1, . . . , σn) the size-n permutation that sends i to σi ∈
{1, . . . , n} for all i ∈ {1, . . . , n}. For all k ∈ {1, . . . , n}, we denote by σ−1(k)
the pre-image of k by σ, and sometimes call σ−1(k) the “position” of k in the
permutation σ.

We now define recursively a mapM between HP, the class of permutations such
that 1 appears before 2, and the class T of increasing Schröder trees.

The only element of HP of size 2 is the permutation (1, 2); we set its image to
be the tree whose root is labelled by 1 and has two (unlabelled) leaf-children. Now
assume that we have defined M(σ) for all permutations σ ∈ HP of size at most
n− 1 for some n ≥ 2 and let σ be a size-n permutation in HP. We distinguish two
cases according to the pre-image of n by σ; we denote by σ̂i = σi if σi < σn and
σ̂i = σi − 1 otherwise. For example, if σ = (4, 1, 5, 2, 3), then σ̂ = (3, 1, 4, 2); σ̂ can
be seen as the permutation induced by σ on {1, . . . , n− 1}.
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• If σ−1(n) = n then, we set M(σ) to be the tree M(σ̂) in which we add a
new rightmost leaf to the internal node with the largest label.
• If σ−1(n) = k < n, then, we build M(σ) as follows: create a new binary

node ν labelled with the smallest integer that does not appear as a label
in M(σ̂) and attach two new leaves to this internal node. Insert this tree
in M(σ̂) by placing ν in the k-th leaf (we assume, for example, that the
leaves are ordered in the depth-first order) of M(σ̂).

(1, 2) M−−→ (1, 2, 3) M−−→
(4, 1, 2, 3) M−−→

(4, 1, 2, 5, 3) M−−→ (4, 1, 2, 5, 3, 6) M−−→

(4, 1, 2, 5, 3, 6, 7) M−−→

(4, 1, 2, 5, 3, 8, 6, 7)
M−−→

Figure 4. A size-8 example of the mapping M

In Figure 4 we present the mapping on an example, where we have ordered the
steps reversely to understand the process in a constructive way.

Theorem 2.5.1. The map M is a one-to-one map between HP and T .

Proof. First note that the image by M of a permutation of size n is a Schröder
tree of size n: indeed, at each iteration we remove exactly one element from the
permutation and add exactly one leaf to the tree by either adding a leaf to the
node with largest label or by removing one leaf and adding two new ones. Since the
number of permutations of size n in HP is equal to the number of Schröder trees of
size n, it is enough to prove thatM is injective to conclude the proof. The mapping
is injective since by induction at each iteration we remove the greatest element of
the permutation and the following actions are performed on the resulting tree in a
non-ambiguous manner. This concludes the proof. �

2.6. Uniform random sampling. In this section, we present an algorithm that
samples a Schröder tree uniformly at random among all Schröder trees of a given
size. Our aim is to use this algorithm to generate trees of large size (typically
several thousands of leaves): we thus provide a detailed analysis of the complexity
of our sampler.
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Note that the uniform sampling of structures with increasing labelling constraints
is not so classical in the context of analytic combinatorics. Mart́ınez and Mo-
linero [MM03, Mol05] focus on the recursive method: using and generalising recur-
sive and unranking generation methods, they give a method that, given a combina-
torial specification, automatically outputs a uniform generation algorithm and its
complexity analysis. Using a different approach based on Boltzmann generation,
Bodini, Roussel and Soria [BRS12] give an algorithmic framework to develop Boltz-
mann samplers in the context of specifications that lead to differential equations of
the first order. The paper [BDF+16] shows that this framework can be extended to
the context of differential equations of higher order; in particular, they apply this
method to the generation of diamonds satisfying differential equations of order 2.

The bijection presented in Section 2.5 immediately gives an algorithm that sam-
ples a tree uniformly among all Schröder trees of size n: first sample a permutation
uniformly at random among all permutations of size n in HP, and then build its
image by M. While there exists fast algorithms to sample permutations (see for
example [BBHT17]), it is not clear how to make the application of M efficient.

Instead, we use the bijectionM as a basis for a direct probabilistic construction.
Indeed, one can sample a permutation uniformly at random in HP by doing the
following recursive procedure: if n = 2, then return σ(2) = (1, 2). If n ≥ 3, assume
we have sampled σ(n−1) uniformly among all permutations of size n − 1. Draw an
integer kn uniformly at random in {1, . . . , n}, and set σ(n)

n = kn, and

σ(n)

i =

{
σ(n−1)

i if σ(n−1)

i < kn

σ(n−1)

i + 1 otherwise.

One can indeed check that σ(n) is uniformly distributed among all permutations of
size n in HP. Executing this random sampling of σ(n) simultaneously withM (note
that, for all n ≥ 3, σ(n−1) = σ̂(n), where the notation σ̂ is defined in the definition
of M) is the idea of our sampler:

Algorithm 1 Increasing Schröder Tree Builder

1: function TreeBuilder(n)
2: if n = 1 then

3: return the single leaf

4: T = the root labelled by 1 and attached to two leaves
5: ` = 2

6: for i from 3 to n do
7: k = rand int(1, i)

8: if k = i then
9: Add a new leaf to the last added internal node in T

10: else

11: Create a new binary node at position k in T
12: with label ` and attached to two leaves

13: ` = ` + 1

14: return T

The function rand int(a, b) returns uniformly at random an integer in {a, a + 1, . . . , b}.

Using adequate data structures, as for example by keeping an array of pointers
to all leaves and another one to the last inserted internal node, each insertion in
the tree under construction is done in constant time. We thus get
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Theorem 2.6.1. The function TreeBuilder(n) in Algorithm 1 is a uniform
sampling algorithm for size-n trees. Asymptotically, it operates in O(n) operations
on trees and necessitates O(n lnn) random bits.

2.7. Analysis of the height of a typical increasing Schröder tree. The prob-
abilistic construction used in our uniform sampler allows us to prove the following
result.

Theorem 2.7.1. For all n ≥ 2, let Hn be the height of a tree taken uniformly at
random among all increasing Schröder trees of size n. Asymptotically when n tends
to infinity,

P
(
Hn

lnn
∈ [1− ε, γ + ε]

)
→ 1,

where γ = inf{c ≥ 2: c− 1 + c ln(2/c) < 0} ≈ 4.311. This implies in particular that
E[Hn] = Θ(lnn) when n tends to infinity.

Note that, equivalently, γ can be defined as the smallest solution of c − 1 +
c ln(2/c) = 0 on [2,∞).

We remark all other results in this section on increasing Schröder trees are more
precise than a Θ order. However, since the height involves a maximum (maximum
height of a leaf in the tree), it is not a surprise that the height is more intricate
to study than other parameters. In the literature, precise results on the height are
known for two classes of random trees: the trees for which a scaling limit result
can be proved (e.g. Catalan trees’ scaling limit is Aldous’ continuous random tree),
or the split trees of Devroye (see, e.g., [Dev90]). Increasing Schröder trees fall in
neither of these two classes; however, we are able to adapt Devroye’s techniques to
get the upper bound in Theorem 2.7.1.

We split the proof of Theorem 2.7.1 in two parts: we prove the upper bound in
Section 2.7.1, and the lower bound in Section 2.7.2

2.7.1. Upper bound in Theorem 2.7.1.

Definition 2.7.2. Given a sequence of integers d = (di)i≥1, we define the random
d-ary tree (τ (d)

n )n≥0 recursively as follows: τ (d)

0 is reduced to its root, given τ (d)

`−1,

we build τ (d)

` as the tree obtained by picking a leaf uniformly at random in τ (d)

`−1 and
replacing it by a node to which d` leaves are attached.

Lemma 2.7.3. Let D = (D`)`≥1 be the sequence of integer-valued random variables
defined for all k ≥ 2 by:

(i) P(D1 = k) = 2k/(k + 1)!, and

(ii) if, for all ` ≥ 1, we denote by D̄` =
∑`
i=1Di, then,

P(D`+1 = k|D1, . . . , D`) =
(D̄` + 1)!(k − 1 + D̄`)

(k + D̄`)!
.

Then, for all ` ≥ 1, the tree τ (D)

` is equal in distribution to an increasing Schröder
tree taken uniformly at random among all trees of its size.

Proof. To prove this claim, it is enough to show that if, for all i ≥ 1, Di is the
degree of node i in an increasing Schröder tree taken uniformly at random among
all trees of its size, then the distribution of (Di)i≥1 satisfies (i) and (ii). We show
how this follows from Theorem 2.6.1: Indeed, note that the degree of the last
inserted internal node increases as long as the random integer k = ki (see line 7



STRICT MONOTONIC TREES ARISING FROM EVOLUTIONARY PROCESSES 21

of Algorithm 1) drawn in the i-th loop is equal to i. Note that this happens with
probability 1/i. For example, the degree of the root starts at 2, we draw the first
integer k3 ∈ {1, 2, 3} and if k3 6= 3, then we can conclude that D1 = 2, otherwise,
we know that D1 ≥ 3 and we need to look at k4. Therefore, P(D1 = 2) = 2/3, as
claimed, and P(D1 ≥ 3) = 1/3. Iterating this argument, we get that

P(D1 ≥ k) =

k∏
i=3

P(ki = i) =

k∏
i=3

1

i
=

2

k!
,

and thus

P(D1 = k) = P(D1 ≥ k)− P(D1 ≥ k + 1) =
2

k!
− 2

(k + 1)!
=

2k

(k + 1)!
,

as claimed.
By definition of our sampling algorithm, we know that the (`+1)-st internal node

is inserted into the tree during the loop number i = D1 + · · · + D` + 1 = D̄` + 1.
Therefore, we get

P(D`+1 = 2|D1, . . . , D`) = P(ki+1 6= i+ 1) = 1− 1

D̄` + 2
,

as claimed, and

P(D`+1 ≥ 3|D1, . . . , D`) =
1

D̄` + 2
.

Iterating this argument, we get that, for all k ≥ 3,

P(D`+1 ≥ k|D1, . . . , D`) =

D̄`+k−1∏
j=D̄`+2

P(kj = j) =

D̄`+k−1∏
j=D̄`+2

1

j
=

(D̄` + 1)!

(D̄` + k − 1)!
.

This concludes the proof because

P(D`+1 = k|D1, . . . , D`)

= P(D`+1 ≥ k|D1, . . . , D`)− P(D`+1 ≥ k + 1|D1, . . . , D`)

=
(D̄` + 1)!

(D̄` + k − 1)!
− (D̄` + 1)!

(D̄` + k)!
=

(D̄` + 1)!(D̄` + k − 1)

(k + D̄`)!
.

�

This lemma allows us to prove the upper-bound in Theorem 2.7.1: This proof
is an adaptation of Devroye [Dev90] in which the case of regular trees is treated
(in regular trees, nodes have all the same degree; they are also known as random
k-ary trees). We denote by N1(n), . . . , ND1(n) the sizes of the subtrees of the root
of τ (D)

n ; a straightforward adaptation of [Dev90, Lemma 2] gives that, conditionally
on D1,

P((n−m+ 2)S1 ≥ x) ≤ P(N1(n) ≥ x) ≤ P(nS1 ≥ x), (12)

where S1 is the minimum of D1 − 1 i.i.d. random variables uniform on [0, 1]. We
reason conditionally on the sequence D of random degrees, and denote by PD the
law under this conditioning. We denote by S1, . . . , SD1

the spacings induced on
[0, 1] by a sample of D1 − 1 i.i.d. random variables uniform on [0, 1]. Using the
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fact that the sizes of the subtrees of the root, N1(n), . . . , ND1
(n) all have the same

distribution, we get

PD(Hn ≥ k) ≤
D1∑
i=1

PD(HNi(n) ≥ k − 1) = D1PD(HN1(n) ≥ k − 1)

≤ D1PD(HnS1
≥ k − 1),

where we have used Equation (12) in the last inequality. We now iterate this

identity: we denote by I(n) = n
∏k
i=1 S(Di), where, for all d ≥ 2, S(d) is the

minimum of d− 1 i.i.d. random variables uniform on [0, 1]. We get

PD(Hn ≥ k) ≤

(
k∏
i=1

Di

)
PD

(
HI(n) ≥ 0

)
=

(
k∏
i=1

Di

)
PD

(
n

k∏
i=1

S(Di) ≥ 1

)
,

because a tree has height at least 1 as soon as it has at least one internal node. We
now use Chebychev’s inequality, which implies that, for all α ≥ 1,

PD(Hn ≥ k) ≤

(
k∏
i=1

Di

)
nαED

[
k∏
i=1

S(Di)
α

]
= nα

k∏
i=1

(
Γ(Di + 1)∏Di−1
i=1 (α+ i)

)
.

See [Dev90, Equation (1)] for the last equality. For all α ≥ 1, and for all d ≥ 2, we
have

ln Γ(d+ 2)−
d∑
i=1

ln(α+ i) = ln Γ(d+ 1)−
d−1∑
i=1

ln(α+ i) + ln(d+ 1)− ln(α+ d)

≤ ln Γ(d+ 1)−
d−1∑
i=1

ln(α+ i).

Therefore, since Di ≥ 2 almost surely for all i ≥ 1, we get

PD(Hn ≥ k) ≤ nα
k∏
i=1

(
Γ(3)

α+ 1

)
= nα

(
2

α+ 1

)k
.

This expression is minimised for α = k/ lnn − 1; taking k = c lnn and α = c − 1,
we get that, for all c ≥ 2 (because α ≥ 1),

PD(Hn ≥ c lnn) ≤ nc−1+c ln(2/c).

If we take c > γ where γ = inf{c ≥ 2: c− 1 + c ln(2/c) < 0}, then

PD(Hn ≥ c lnn) →
n→∞

0,

which concludes the proof for the upper bound in Theorem 2.7.1.

2.7.2. Lower bound in Theorem 2.7.1. For this proof, we use the fact that the height
of a tree is larger or equal to the depth of the leftmost leaf; the following lemma
gives information on the behaviour of this quantity:

Lemma 2.7.4. Let Yn be the depth of the leftmost leaf in a tree taken uniformly

at random among all increasing Schröder trees of size n. For n ≥ 1, Yn
d
= n−Xn,

where Xn is the number of internal nodes in a typical increasing Schröder tree of
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size n (see Theorem 2.4.1), and thus, we have convergence in distribution when n
tends to infinity:

Yn − lnn√
lnn

d−−→ N (0, 1).

Note that the choice of the leftmost leaf is arbitrary, although it has the advan-
tage that the specification is straightforward.

Proof. We directly look at the differential equation satisfied by T (z, u), where u
marks the internal nodes that belong to the leftmost path (between the root and
the leftmost leaf).

T (z, u) = z + ∂z

(
T (z, u)

z

)
z3

1− z
+ T (z, u)

uz

1− z
.

Indeed, the tree is either a unique leaf (which is thus also the leftmost leaf) at
height zero (z), or at the last step of the evolution process, we have selected a leaf
that is not the leftmost one and replaced it by a sequence of at least two leaves

(∂z(T (z, u)/z) z3

1−z ), or we have replaced the leftmost leaf by an internal node and

a sequence of at least two leaves (T (z, u) uz
1−z ). We rewrite this equation as

(1− uz)T (z, u) = z(1− z) + z2∂zT (z, u),

and thus, identifying the coefficient of zn on both sides gives that

tn(u) = (u+ n− 1)tn−1(u),

t1(u) = 1, and t2(u) = u. This implies that, for all n ≥ 3,

tn(u) = u

n−1∏
i=2

(u+ i) =
1

1 + u
SCn(u),

where SCn(u), defined in Lemma 2.4.2, is the generating function of all size n

permutations with k cycles. Therefore, using Lemma 2.4.2, we get that Yn
d
= n−Xn

in distribution, where Xn is the number of internal nodes in a typical increasing
Schröder tree, which concludes the proof, by Theorem 2.4.1. �

The lower bound of Theorem 2.7.1 follows from Lemma 2.7.4 since, almost surely
for all ` ≥ 1, H` ≥ YD̄`+1, where we recall that Yn is the depth of the leftmost

leaf in an n-leaf uniform increasing Schröder tree and D̄` =
∑`
i=1Di. Indeed, by

Lemma 2.7.4, we have that, for all ε > 0,

P(Hn ≤ (1− ε) lnn) ≤ P(Yn ≤ (1− ε) lnn) ≤ P
(
Yn − lnn√

lnn
≤ −ε

√
lnn

)
→ 0,

when n tends to infinity, which concludes the proof of the lower bound of Theo-
rem 2.7.1.

3. Strict monotonic Schröder trees

3.1. The model and its context. In this section we introduce and study a gener-
alisation of the increasing Schröder trees, which we call strict monotonic Schröder
trees. The main difference between the two models is that in strict monotonic
Schröder trees, several internal nodes can be labelled by the same integer as long
as they are not on the same ancestral line:
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Definition 3.1.1. A strict monotonic Schröder tree is a classical Schröder tree
structure whose internal nodes are labelled by the integers between 1 and ` (for
some ` ≥ 1), in such a way that each integer in {1, . . . , `} appears at least once in
the tree and the sequence of labels in the path from the root to any leaf is (strictly)
increasing.

We remark that the trees are qualified by “strict” in the sense that the sequence
of labels along the paths from the root to any leaf is strictly increasing.

1

8 2

15 3 9

4 4

14 5

6

8

12 10

16 14 15

6 5

7

8

12

6

10

11 13

12

Figure 5. Two strict monotonic Schröder trees

In Figure 5 we show two strict monotonic trees: the left-hand-side one is of size 30
with 16 distinct labels, the right-hand-side one is of size 500 (sampled uniformly
at random among all trees of size 500), with 495 internal nodes labelled with 372
distinct labels.

Because of the possible repetition of labels, this class of labelled trees cannot be
directly specified using the classical analytic combinatorics operators for labelled
structures. However, the following recursive construction allows us to specify the
class of strict monotonic Schröder trees using operators for unlabelled structures.
Every strict monotonic Schröder tree can be built as follows:

• Start with a single (unlabelled) leaf.
• At step ` (for ` ≥ 1), select a non-empty subset of leaves and replace each

of them by an internal node with label ` attached to a sequence of at least
two leaves.

3.2. Overview of the main results. As in Section 2, we first solve the counting
problem and its asymptotic equivalent for this family of trees (see Section 3.3).
We then notice that the enumeration problem corresponds to the one of ordered
set partitions which are counted by ordered Bell numbers, and, in Section 3.4,
we exhibit a bijection between weakly increasing Schröder trees and ordered set
partitions. Solving the counting problem and exhibiting this bijection allows us to
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study some typical parameters of these trees (see Section 3.5; the results of this
section are summarised in Table 5 below). Finally, in Section 3.6, we conclude this
part on weakly increasing Schröder trees by designing a uniform random sampler,
which also gives an unranking algorithm.

Mean Var. Limit law
Internal nodes n− ln 2 lnn

Distinct labels 1
2 ln 2 n

(1−ln 2)
(2 ln 2)2 n Normal

Degree of the root 2 ln 2 + 1 2 ln 2 (1− ln 2) (shifted) zero-truncated Poisson

Table 5. Summary of the main results on parameters of Strict
monotonic Schröder trees

3.3. Enumeration and relationship with ordered Bell numbers. Using the
iterative construction described above, we deduce the following specification for the
class G of all strict monotonic Schröder trees:

G = Z ∪
(
G[Z → (Z ∪ Seq≥2Z)]

)
\ G.

Note that again the labelling does not appear directly in the specification. The
combinatorial meaning of this specification is the following: A tree of G is either a
single leaf, or it is obtained by taking an already constructed tree in G, and replace
each leaf by either a leaf (i.e. no change) or an internal node attached to a sequence
of at least two leaves. Furthermore we omit the case where no leaf is changing (this
is why we subtract the set G). Note that subtracting G is important, otherwise
some integer values could be absent in the final tree. For example, if there is no
change at step 2 but then the evolution continues, then 2 would not appear in the
final tree but larger integers would appear as labels.

Using the symbolic method, we can translate this specification into a functional
equation (with substitution) for the ordinary generating series:

G(z) = z +G

(
z +

z2

1− z

)
−G(z) = z +G

(
z

1− z

)
−G(z). (13)

From this equation we extract the recurrence for the number gn of strict monotonic
Schröder trees with n leaves: we get

gn = [zn]

(
z +G

(
z +

z2

1− z

)
−G(z)

)
= δn,1 − gn +

∑
`≥1

g`[z
n−`]

(
1

1− z

)̀
.

We use Kronecker’s notation: δn,1 = 1 if n = 1 and 0 otherwise. The last coefficient
follows from the binomial theorem. This implies

gn =


1 if n = 1,
n−1∑̀
=1

(
n−1
`−1

)
g` otherwise.

(14)

The first terms are equal to a shift of the sequence of ordered Bell numbers (also
called Fubini numbers or surjection numbers) referenced as OEIS A000670:

(gn)n∈N = (0, 1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247563, . . . ) .

We recall that the n-th ordered Bell number counts the number of ordered partitions
of a set of size n, where an ordered partition of a set S is an ordered sequence of

https://oeis.org/A000670
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disjoint subsets of S whose union is equal to S. Ordered Bell numbers are specified
by

B = Seq (Set≥1Z) . (15)

Motivated by this remark, we define in Section 3.4 a bijection between the set of
strict monotonic Schröder trees and the set of ordered partitions.

Following the approach developed by Pippenger in [Pip10] for ordered Bell num-
bers, we compute the exponential generating function of G, i.e. we apply the Borel
transform on G(z). But first we recall some basic properties of the latter transform.
The Borel transform, denoted by B, takes as an argument an ordinary generating
function and gives as its image the corresponding exponential generating series.
More precisely, for all real-valued sequence (an)n≥0, we set

B

∑
n≥0

anz
n

 =
∑
n≥0

an
zn

n!
.

Note that if tn ≤ ρn n! for n sufficiently large then B[T (z)] is analytic around 0. It
is easy to check that:

Fact 3.3.1. For all ordinary generating functions f = f(z), we have

(i) B [zf(z)] =

∫ z

0

B[f(t)]dt and (ii) B [f ′(z)] = (B[f(z)])′ + z(B[f(z)])′′.

Proposition 3.3.2. The exponential generating function enumerating strict mono-
tonic Schröder trees is

B[G(z)] =
1

2
(z − ln (2− ez)) .

Proof. From Equation (14) we obtain

2gn = δn,1 +

n∑
`=1

(
n− 1

`− 1

)
g`.

This recurrence can be directly used to derive an equation for the exponential
generating function of G:

2B[G(z)] = z +
∑
n≥1

n∑
`=1

(
n− 1

`− 1

)
g`
zn

n!
,

which is the classical equation satisfied by the ordered Bell numbers. Following the
approach of [Pip10], we differentiate the equation with respect to z and get

2(B[G(z)])′ = 1 +
∑
n≥1

n∑
`=1

(
n− 1

`− 1

)
g`

zn−1

(n− 1)!
.

Since the sum is the convolution of (B[G(z)])′ with exp(z), we get

(B[G(z)])′ =
1

2− ez
,

which implies B[G(z)] = (z − ln (2− ez)) /2 as claimed. �
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Recall that ordered Bell numbers are specified by B = Seq(Set≥1Z) and thus
have exponential generating function B(z) = 1/(2− ez). This directly implies that
our sequence (gn)n≥0 is equal to the sequence of ordered Bell numbers shifted by
one, since B(z) is the derivative of B[G(z)]. This link between strict monotonic
trees and ordered Bell numbers has the interesting following consequence: we have
shown that the (shifted) ordinary generating function of the ordered Bell numbers
satisfies Equation (13). As far as we can tell, this was not known before.

The asymptotic behaviour of ordered Bell numbers is known (see, e.g., [FS09, p.
109]): if we denote by bn the n-th ordered Bell number, then

bn =

n∑
`=0

`!

{
n

`

}
∼

n→∞

n!

2 (ln 2)
n+1 ,

where the
{
n
`

}
’s are the Stirling partition numbers (also called Stirling numbers of

the second kind, see [FS09, Appendix A.8]). They count the number of ways to
partition a set of n objects into k non-empty subsets.

The number bn is equal to the number gn+1 of strict monotonic Schröder trees
of size n+ 1, which implies that, for all n ≥ 1,

gn =

n−1∑
`=0

`!

{
n− 1

`

}
∼

n→∞

(n− 1)!

2 (ln 2)
n .

3.4. Bijection with ordered Bell numbers. Since the number of strict mono-
tonic Schröder trees of size n+ 1 is equal to the number of ordered partitions of a
set of size n, it is natural to try to find an explicit bijection between the two classes.
In this section, we exhibit such a bijection.

To describe precisely the bijection we need the following definitions and nota-
tions. Recall that the subsets of an ordered partitions are ordered but the elements
inside each subset are not. In the following, we denote by p = (p1, p2, . . . , p`) the or-
dered partition of subsets p1, . . . , p`; for example, we have ({3, 4}, {1, 5, 7}, {2, 6}) 6=
({2, 6}, {3, 4}, {1, 5, 7}). We denote by |pi| the size of the i-th subset of p, and by

|p| =
∑`
i=1 pi its total size (i.e. the number of elements of ∪`i=1pi). Let a =

{α1, α2, . . . , αr} (with r ≥ 1) be a subset of N; without loss of generality, we
can assume that α1 < α2 < . . . < αr. A run of a is a maximal sequence
(αi, αi+1, . . . , αj) (1 ≤ i ≤ j ≤ r) of consecutive integers, i.e. (αi, αi+1, . . . , αj) =
(αi, αi+1, . . . , αi+j−i), αi−1 < αi−1 and αj+1 > αj+1, unless αi = α1 or αj = αr.
We define the function runs as the function that lists all the runs of a subset: for
example, runs({3, 4}) = ({3, 4}) and runs({1, 3, 6, 7}) = ({1}, {3}, {6, 7}).

An ordered partition p = (p1, . . . , p`) is called incomplete if and only if ∪`i=1pi 6=
{1, 2, . . . , |p|}: e.g. the partition ({3, 4}, {1, 5, 7}) is incomplete due to the fact that
∪`i=1pi = {1, 3, 4, 5, 7} 6= {1, 2, 3, 4, 5}. We define the normalisation of a parti-
tion p (either incomplete or not), denoted by norm(p), as the ordered partition of
{1, . . . , |p|} that keeps the relative order between the elements. For example, if
p = ({3, 4}, {1, 5, 7}), then norm(p) = [{2, 3}, {1, 4, 5}].

We are now ready to describe our bijection: we first define the mapping M’, which
associates a strict monotonic Schröder tree to each (possibly incomplete) ordered
partition p = (p1, . . . , p`). Before starting we fix an arbitrary order for the leaves
in the tree once and for all (for example, the one given by the postorder traversal
of the tree). Then tree M’(p) is the result of the following recursive procedure:
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• At time 1, consider a tree with one internal node labelled by 1 to which are
attached |p1|+ 1 leaves.
• At each time 2 ≤ i ≤ `, we denote by p′1, . . . , p

′
i the ordered subsets of

the renormalization of (p1, . . . , pi), i.e. norm((p1, . . . , pi)) = (p′1, . . . , p
′
i).

We denote by r1, . . . , rj the runs of p′i, i.e. runs(p′i) = (r1, . . . , rj); recall
that each of r1, . . . , rj is a set of successive integers, possibly reduced to a
singleton. Now, we iterate the following process: for k from 1 to j, take the
leaf whose index is the first element of rk and replace it with an internal
node with label k attached to |rk|+ 1 leaves.

norm(({3, 4})) = ({1, 2}) M′−→

norm(({3, 4}, {1, 5, 7})) = ({2, 3}, {1, 4, 5}) M′−→

norm(({3, 4}, {1, 5, 7}, {2, 6})) = ({3, 4}, {1, 5, 7}, {2, 6}) M′−→

Figure 6. The constructive bijection between an ordered parti-
tion and a strict monotonic Schröder tree

In Figure 6 we show how to construct M′(p) when p = ({3, 4}, {1, 5, 7}, {2, 6}).
The resulting strict monotonic Schröder tree is of size 8. It is straightforward to
check that M’ is indeed a bijection.

3.5. Analysis of typical parameters. In this section, we give information about
the shape of a typical strict monotonic Schröder tree: more precisely, we prove limit
theorems for the number of distinct labels and the arity of the root as well as the
average number of internal nodes in a tree picked uniformly at random among all
strict monotonic Schröder trees of size n (i.e. with n leaves).

3.5.1. Quantitative analysis of the number of iteration steps. The main novelty
of strict monotonic Schröder trees compared to increasing Schröder trees is that
repetitions of labels are allowed: it is thus natural to ask how many repetitions
there are in a typical strict monotonic Schröder tree. To answer this question, one
can mark iterations by adding a new variable u in Equation (13):

G(z, u) = z + u G

(
z

1− z
, u

)
− u G(z, u),
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which implies

gn,k =


1 if n = 1 and k = 0,
n−1∑̀
=1

(
n−1
`−1

)
g`,k−1 otherwise,

(16)

with n being the size and k the number of iteration steps (i.e. the number of
distinct labels). In Figure 7, we show the first values of (gn,k) that are stored in
OEIS A019538.

1,
0, 1,
0, 1, 2,
0, 1, 6, 6,
0, 1, 14, 36, 24,
0, 1, 30, 150, 240, 120,
0, 1, 62, 540, 1560, 1800, 720

Figure 7. Distribution of (gn,k)k for n ∈ {1, . . . , 7}

This recurrence is analogous to the one relating ordered Bell numbers and Stirling
partition numbers (see Equation (14)).

Theorem 3.5.1. The number of strict monotonic Schröder trees of size n with
exactly k distinct labels is given by

gn,k = k!

{
n− 1

k

}
.

We denote by XGn the number of distinct labels in a tree picked uniformly at random
among all strict monotonic Schröder trees of size n + 1: for all n ≥ 1, XGn is a
random variable such that P(XGn = k) = gn,k/

∑n
k=1 gn,k. Then, asymptotically

when n tends to infinity,

XGn − n
2 ln 2√

(1−ln 2)n
(2 ln 2)2

d−−→ N (0, 1).

The analysis of the limiting distribution is classical in the quasi-powers frame-
work established by Hwang [Hwa98]; see [FS09, p. 645, 653] for details and appli-
cations.

Proof. Recall that gn,k = k!
{
n−1
k

}
is the number of ordered partitions of a set of

size n having k non-empty parts. It is known (see, e.g. [Ben73, Example 3.4]) that,
if Kn is the number of parts in an ordered set partition of size n, then

Kn − n
2 ln 2√

(1−ln 2)n
(2 ln 2)2

d−−→ N (0, 1),

in distribution. This concludes the proof since Kn has the same distribution as XGn
for all n ≥ 1. �

https://oeis.org/A019538
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3.5.2. Quantitative analysis of the number of internal nodes. In this model the
number of internal nodes is different from the number of distinct labels that appear
in the tree: this is because one integer can label several internal nodes. It is thus
natural to ask how many internal nodes a typical strict monotonic Schröder trees of
size n (i.e. with n leaves) has. The specification marking both leaves (with variable
z) and internal nodes (with variable u) is

G(z, u) = z +G

(
z +

uz2

1− z
, u

)
−G(z, u). (17)

We recall that the substitution z → z + uz2

1−z means that at each iteration each

leaf can be left as it is (z → z) or expanded into an internal node attached to an

arbitrary number of leaves (z → z2

1−z ). A new internal, marked with the variable u,
is created only in the second case.

1,
0, 1,
0, 1, 2,
0, 1, 5, 7,
0, 1, 9, 31, 34,
0, 1, 14, 86, 226, 214
0, 1, 20, 190, 874, 1946, 1652

Figure 8. Distribution of (gn,k)k for n ∈ {1, . . . , 7}

For all 1 ≤ n and 1 ≤ k ≤ n− 1, we denote by gn,k the number strict monotonic
Schröder trees with n leaves and k internal nodes: Figure 8 shows the values of
(gn,k)1≤k≤n−1 for n ∈ {1, 2, . . . , 7}. This triangle of integers is not yet stored in
OEIS. However, its diagonal is equal to OEIS A171792. In fact in the diagonal the
numbers corresponds to the number of strict monotonic trees with n leaves and
n− 1 internal nodes, i.e. binary strict monotonic trees: this class of trees is studied
in [BGGW20].

Theorem 3.5.2. If we denote by IGn the (random) number of internal nodes in
a tree picked uniformly at random among all strict monotonic Schröder trees of
size n, then, asymptotically when n tends to infinity,

E[IGn ] =
n→∞

n− (ln 2)(lnn) +
π2

12
− 1 + (ln 2)

(
−γ +

ln 2

2
+ ln ln 2

)
+ o(1),

where γ is the Euler-Mascheroni constant.

Proof. For all n ≥ 1, we denote by hn =
∑n−1
k=1 kgn,k, and let H be the ordinary

generating function of (hn)n≥1; we have

H(z) =

(
∂G(z, u)

∂u

)
|u=1

.

The ratio hn/gn is equal to the expected number of internal nodes in a tree taken
uniformly at random among all strict monotonic Schröder trees of size n; we are

https://oeis.org/A171792
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thus interested in the asymptotic behaviour of this ratio. Differentiating according
to u and then substituting u by 1 in Equation (17) gives

H(z) =
z2

1− z
G′
(

z

1− z

)
+H

(
z

1− z

)
−H(z), (18)

because (
∂G(z, u)

∂z

)
|u=1

= G′(z).

Since Equation (18) is similar to Equation (13), we apply the same method as in
the proof of Proposition 3.3.2. We first derive

(B[H(z)])
′

=
1

2− ez

(
B
[
z2

1− z
G′
(

z

1− z

)])′
.

Then using Equation (13) we deduce(
B
[
z2

1− z
G′
(

z

1− z

)])′
= −z +

z2

2
+ 2

(
B
[
z2(1− z)G′ (z)

])′
.

Furthermore since for any function F we have B[zF (z)] =
∫ z

0
B[F (t)]dt see Fact 3.3.1,

we can simplify the equation into

(B[H(z)])
′

=
1

2− ez

(
−z +

z2

2
+ 2

∫ z

0

B[G′(t)] dt− 2

∫ z

0

∫ t

0

B[G′(u)] dudt

)
.

Then, since
∫ z

0
B[G′(t)]dt = z(B[G(z)])′, we obtain

(B[H(z)])′ =
1

2− ez

(
−z + z2

2
+ 2z(B[G(z)])′ − 2

∫ z

0

t(BG(t))′dt

)
=

1/2

1− ez/2

(
−π

2

12
+

(ln 2)2

2
− z

(
1− ln(1− ez/2)− 1

1− ez/2

)
+ Li2(e

z
/2)

)
,

where Li2 is the dilogarithm function, defined in [FS09, section VI.8.]. Using its
asymptotic development at 1, we get

(B[H(z)])′ ∼
z→ln 2

1

2 ln 2

1

(1− z/ ln 2)2

−
(

1

2 ln 2
− π2

24 ln 2
+

ln 2

4
− ln 2 + ln ln 2 + ln (1− z/ ln 2)

2

)
1

1− z/ ln 2

− 1

2
− 7 ln 2

24
+
π2

48
+

(ln 2)2

8
+

ln 2 ln ln 2

4
+O

(
ln

(
1

1− z/ ln 2

))
.

By using classical transfer theorems we obtain the result by extracting the (n−1)-st
coefficient of (B[H(z)])

′
and dividing it by the n-th coefficient of B[G(z)]. �

3.5.3. Quantitative characteristics of the root node. In this section, we look at the
arity of the root in a typical strict monotonic Schröder tree. We denote by AGn the
arity of the root in a tree picked uniformly at random among all strict monotonic
Schröder trees of size n, and by pn its probability generating function:

pn(u) =
∑
k≥0

P(AGn = k) uk.
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Theorem 3.5.3. Asymptotically when n tends to infinity, AGn converges in dis-
tribution to a (shifted) zero-truncated Poisson law with parameter ln 2, i.e. for all
u ≥ 0,

pn(u) →
n→∞

ueu ln 2 − u.

This implies that E[AGn]→ 2 ln 2 + 1 when n tends to infinity.

Proof. Thanks to the bijection of Section 3.4, we know that AGn is equal to the size
of the first subset +1 in an ordered partition picked uniformly at random among all
ordered partitions of {1, . . . , n−1}. We denote by P the class of ordered partitions,
1 is the empty partition, Z is a singleton, and U marks the elements in the first
subset. Here the specification is defined in the context of labelled object, thus the
associated generating functions are exponential (see [FS09] for notation details):

P = 1 + Set≥1(UZ) ? Seq(Set≥1Z).

Using the symbolic method for exponential generating function, we get

P (z, u) = 1 +
euz − 1

2− ez
.

Thus, if we set

p̃n(u) =
[zn]P (z, u)

[zn]P (z, 1)
,

for all n ≥ 0, then

[zn]P (z, u) →
n→∞

1

2
(2u − 1) (ln 2)

−n−1
.

This implies that, for all u ≥ 0,

p̃n(u) →
n→∞

2u − 1.

Note that, by definition, p̃n(u) is the probability generating function of the size Sn
of the first subset in an ordered partition picked uniformly at random among all
ordered partitions of {1, . . . , n−1}. Because of the bijection of Section 3.4, we know
that AGn and Sn−1 + 1 have the same distribution, implying that pn(u) = up̃n(u).
This concludes the proof. �

3.6. Uniform random sampling. To sample uniformly at random a strict mono-
tonic Schröder tree of size n, we could choose a two-step algorithm. First we sample
uniformly an ordered partition of the set {1, . . . , n − 1} and then with the use of
the bijection of Section 3.4 we transform it into a strict monotonic Schröder tree.
But here, in this section, we prefer to present a direct algorithm that generates
uniformly a strict monotonic Schröder tree, i.e. without the intermediate step of
generating another combinatorial object like an ordered partition.

The global approach for our algorithmic framework deals with the recursive gen-
eration method adapted to the analytic combinatorics point of view in [FZVC94].
But in our context we note that we can obtain for free (from a complexity view) an
unranking algorithm. This fact is sufficiently rare to mention it: usually unranking
algorithm are less efficient than recursive generation ones. Unranking algorith-
mic has been developed in the 70’s by Nijenhuis and Wilf [NW75] and then has
been introduced to the context of analytic combinatorics by Mart́ınez and Mo-
linero [MM03]. Here the idea is not to draw uniformly an object, but first to
define a total order over the objects under consideration (in our context, strict
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monotonic Schröder trees) and then an integer (named the rank) is chosen to build
deterministically the associated object. Obviously if the rank is uniformly chosen
among all possible ranks, then the unranking algorithm is nothing else than a uni-
formly random sampler. But the unranking approach gives also a way for obtaining
an exhaustive sampler, just by iterating the sampling over all possible ranks (the
reader can refer to the paper [BDGV18] for an example of both methods: recursive
generation and unranking).

For both types of algorithms (unranking or recursive generation) some pre-
computations are done (only once before the sampling of many objects). We com-
pute (and store) the numbers of trees of sizes from 1 to n. This calculation is done
with a quadratic complexity (in the number of arithmetic operations) using the
recursive formula for (gn)n≥1 (see Equation (14)). This complexity is only achieved
if we first compute and memorise all values of (i!)1≤i≤n.

Then it only remains to build the tree of rank r recursively. If r is sampled
uniformly at random in {0, 1, . . . , gn− 1} the algorithm is a uniform sampler and if
r is deterministically chosen, then the algorithm is a classical unranking algorithm.
To do this, we recall that (see Equation (14)), for all n ≥ 1,

gn =

(
n− 1

n− 2

)
gn−1 +

(
n− 1

n− 3

)
gn−2 + · · ·+

(
n− 1

0

)
g1, (19)

and interpret this equation combinatorially: to build a tree of size n, we take a
size ` ∈ {1, . . . , n− 1} tree T` constructed with exactly one less iteration. To grow
it into a size-n tree, we interpret the binomial coefficient

(
n−1
`−1

)
as the number of

composition of n in ` parts: some of the ` leaves of T` are replaced by internal nodes
to which leaves are attached, some leaves remain leaves. To do that we traverse
the tree T` and each time we see a leaf, we do the following action: if the next part
(in the composition) is of value 1, we keep the leaf unchanged otherwise for a value
s > 1, we replace the leaf by an internal node (labelled with the currently step
number) and attached s leaves to it. We then take the next part of the composition
into consideration and continue the tree traversal.

Focusing on Equation (19) and the equation above we see that a function al-
lowing the unranking of compositions is necessary. Recall that the composition of
the integer n into ` parts is in bijection with the number of sets of combinations of
(`−1) elements chosen in (n−1) ones. A way to prove this consists in laying (`−1)
barriers in the sequence of n bullets in order to define ` parts. There are classi-
cal algorithms to unrank combinations in the lexicographical order. An algorithm
has been described by Buckles and Lybanon [BL77]. Furthermore a survey about
such an approach has recently been published [GP21]. For these algorithms we can
easily prove that their average complexity (when ` ranges over all possibilities) is
Θ(n) in the number of arithmetic operations by having first memoized all factorial
values of the numbers from 0 to n. In the following we develop a simpler approach
based on the classical recursive generation without any lexicographic constraint.
The algorithm is an unranking method for the composition of integers. It is based
on the reverse lexicographic order (cf e.g. [Rus03]) so that we get an easier imple-
mentation2. For simplification, we suppose having memoized all values of

(
r
s

)
for

r ∈ {1, n} and s ∈ {1, r}. Using the classical Pascal’s rule for binomial coefficients,

2For the composition unranking, note that it would suffice to look for the rank
(n
`

)
− 1 − r

(instead of r) in order to get the lexicographic order.
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we obtain the following recurrence for the number of composition of n into ` parts:

Cn,` =

(
n− 1

`− 1

)
= Cn−1,` + Cn−1,`−1. (20)

We thus deduce Algorithm 2 for the unranking method where the union symbol ’∪’
used in the algorithm represents list concatenation.

Algorithm 2 Reverse Lexicographic Composition Unranking

1: function UnrankComposition(n, `, r)
2: if n = ` and r = 0 then

3: return (1, 1, . . . , 1)

4: if r <
(n−2
`−1

)
then

5: C :=UnrankComposition(n− 1, `, r)
6: C[0] := C[0] + 1

7: return C

8: else
9: s := r −

(n−2
`−1

)
10: C := (1) ∪ UnrankComposition(n− 1, `− 1, s)

11: return C

Theorem 3.6.1. The function UnrankComposition is an unranking algorithm
(based on the reverse lexicographic order) and calling it with the parameters ` ≤ n
and a uniformly-sampled integer r in {0, . . . ,

(
n−1
`−1

)
− 1}, gives as output a uniform

composition of n into ` parts.
Using the memorisation of binomial coefficients, the algorithm needs at most

(`− 1) arithmetic operations on big integers.

The function UnrankComposition manipulates numbers upper bounded by(
n−1
`−1

)
≤ 2n. Thus the memory size of the big integers, that are used during the

calculations, is O(n) bits.

Proof. We prove that the algorithm is correct by induction on n. The result is
true when n = ` and r = 0 since the algorithm returns (1). Fix an integer n and
assume that the algorithm is correct for all ` ≤ n− 1, and that the total order over
compositions is the reverse lexicographic one (see, e.g., [Rus03] for the definition of
the reverse lexicographic order). Let ` be an integer between 0 and n, and r be an
integer chosen uniformly at random in {0, . . . , Cn,`−1}. Equation (20) implies that
a composition of n in ` parts is either a composition of (n−1) in ` parts whose first
part has been increased by one, or it is a composition of (n − 1) in (` − 1) parts,
and a new part equal to 1 is added at the beginning of the composition. In both
cases, the first elements are all greater than the second elements according to the
lexicographic order. The recurrence hypothesis ends the proof since the rank value
r (or s in the second case) is adapted to each of the latter cases.

The number of arithmetic operations is immediate when all binomial coefficients
are first memorised. �

In Equation (19) the first term is much bigger than the second one, which is much
bigger than the third one and so on. This approach, focusing first on the dominant
terms is an adaptation to the idea underlying the Boustrophedonic order presented
in [FZVC94]. It allows to improve essentially the average complexity of the random
sampling algorithm. In our case of strict monotonic Schröder trees since they do
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not follow a standard specification (cf. [FZVC94] for details), the complexity gain
is even better. The loop starting in line 6 aims at determining the interesting term

Algorithm 3 Strict monotonic Schröder Tree Unranking

1: function UnrankTree(n, s)
2: if n = 1 then

3: return the tree reduced to a single leaf

4: ` := 1
5: r := s

6: while r >= 0 do
7: r := r −

(n−1
`

)
· gn−`

8: ` := ` + 1

9: ` := `− 1

10: r := r +
(n−1

`

)
· gn−`

11: T :=UnrankTree(n− `, r mod gn−`)

12: if n− ` ≤ n/2 then
13: C :=UnrankComposition(n, n− `, r//gn−`)

14: else

15: C :=UnrankComposition(n, ` + 1, (
(n−1

`

)
− 1− r)//gn−`)

16: C :=ComplementComposition(C)

17: Substitute in T , using traversal T , some leaves according to C

18: return the tree T

The sequences (g`)`≤n and (`!)`∈{1,...,n} have been pre-computed and stored.

Line 13: The operation // is the Euclidean division.

Recall a composition of (n, `) can be seen as a choice of `− 1 barriers inside a sequence of n
bullets. The function ComplementComposition(n, `, r) returns the complement of the barriers

chosen in the r-th composition of (n, `).

in the sum (19), thus the size of the tree in the evolution process letting to build
the tree of rank s and size n.

The traversal T used to substitute some leaves in line 13 determines partly the
total order over the strict monotonic trees. Let α be an strict monotonic tree, and
T a given traversal of all trees. We remark that there is a single evolution process
building α (the construction is unambiguous). If α is built at the step `, then we
denote by α̃ the single tree (built with ` − 1 steps) and α the single composition
such that at step ` replacing the leaves from α̃ according to the composition α,
using the traversal T , we obtain α.
Here we remark that the whole tree α is strongly dependent on the traversal of the
leaves of α̃ (while some leaves are substituted by an internal nodes attached to new
leaves according to α). We define now how to compare strict monotonic trees (we
use the analogous notations also for the latter for all trees).

Definition 3.6.2. Let α and β be two trees. We define α < β if

• the size of α is smaller than the one of β, or
• if both sizes are equal to n and if the size of α̃ is strictly greater than the

one of β̃ or if both sizes of α̃ and β̃ are equal and the composition α is
smaller than β, using the reverse lexicographic order over compositions.

Proposition 3.6.3. The order defined over strict monotonic trees is a total order.

The result is immediate since all possible cases according to the trees α and β
for comparing them are explored.
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Theorem 3.6.4. The function UnrankTree is an unranking algorithm and call-
ing it with the parameters n and a uniformly-sampled integer s in {0, . . . , gn − 1}
gives as output a uniform strict monotonic Schröder tree of size n .

The correctness of the algorithm follows directly from the total order over the
trees and Equation (19).

Theorem 3.6.5. Once the pre-computations have been done, the function Un-
rankTree needs O(n) arithmetic operations on big integers to construct a tree of
size n.

Here the algorithm works with number of order gn, thus the big integers that
are taken into account are encoded with O(n log n) bits.

Proof. We assume that all binomial coefficients (Cn,`)0≤`≤n have been memorised
and prove that, with this information stored, the complexity in terms of arithmetic
operations (on big integers) is of order O(n). Note that if we only memorise the
factorial numbers (i!)0≤i≤n−1 the complexity is at most three times the complexity
obtained when memorising the binomial coefficient and thus still of order O(n).

For all n ≥ 1, we denote by an the number of arithmetic operations that come
from the loop in line 7 and the calls in lines 11 and 12, when building all trees of
size n (i.e. we sum the number needed for each r ∈ {0, . . . , Cn,` − 1}). The exact
value of arithmetic operations is an +O(ngn), because at each recursive call there
is at most a constant number of operations that are not counted in an. We first
analyse an: we have

an =

n−1∑
`=1

(
n− 1

`

)(
(min(`, n− 1− `)− 1 + 2`) gn−` + an−`

)
.

In fact, for the terms with index `, we are interested in the trees α of size n such
that their corresponding tree α̃ is of size n − `. Thus such trees α are counted by(
n−1
`

)
gn−`. And for each of them the factor min(`, n− 1− `)− 1 is the number of

operations needed for the unranking of the composition (we use the symmetry in the
binomial coefficients), the factor 2` is the number of multiplication and subtractions
in the loop in line 7. Furthermore we have a1 = 0. By taking an upper bound for
the min function, we get that if ā1 = 0, and, for all n ≥ 2,

ān =

n−1∑
`=1

(
n− 1

`

)
(3` gn−` + ān−`) ,

then an ≤ ān for all n ≥ 1. Using similar calculations as in the proof of Propo-
sition 3.3.2, we obtain an equation satisfied by the Borel transform of the series
associated to (ān):

2
(
B[Ā(z)]

)′
= ez

(
B[Ā(z)]

)′
+ 3zez (B[G(z)])

′
.

We thus deduce ān ∼ 3ngn, which concludes the proof. �

We now give some final remarks about this algorithm: In order to obtain a better
time complexity for the implementation, we must use an array of pointers to the
leaves of the tree under construction so that the tree traversal is efficient. At each
step `, a leaf stored in the array is replaced by n− `+ 1 leaves that must be stored
in the array. An efficient way consists in reusing the cell from the replaced leaf, and
to append all other leaves at the end on the array. Thus, the most efficient traversal
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T of the leaves consists to the left right traversal of the array. But obviously this
is not really a natural traversal for the tree. Nevertheless, in practice we use this
efficient traversal T .
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[GP21] A. Genitrini and M. Pépin. Lexicographic Unranking of Combinations Revisited. Al-

gorithms, 14(3), 2021.
[Hwa98] H.-K. Hwang. On Convergence Rates in the Central Limit Theorems for Combinato-

rial Structures. Eur. J. Comb., 19(3):329–343, 1998.
[MM03] C. Mart́ınez and X. Molinero. Generic algorithms for the generation of combinatorial

objects. In 28th International Symposium on Mathematical Foundations of Computer
Science (MFCS), pages 572–581. Springer Berlin Heidelberg, 2003.



38 O. BODINI, A. GENITRINI, C. MAILLER, AND M. NAIMA

[Mol05] X. Molinero. Ordered Generation of Classes of Combinatorial Structures. Phd thesis,
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