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Abstract:  18 

Brown algae are key components of marine ecosystems and live in association with bacteria that are 19 
essential for their growth and development. Ectocarpus siliculosus is a genetic and genomic model 20 
for brown algae. Here we use this model to start disentangling the complex interactions that may 21 
occur between the algal host and its associated bacteria. We report the genome-sequencing of 10 22 
alga-associated bacteria and the genome-based reconstruction of their metabolic networks. The 23 
predicted metabolic capacities were then used to identify metabolic complementarities between the 24 
algal host and the bacteria, highlighting a range of potentially beneficial metabolite exchanges 25 
between them. These putative exchanges allowed us to predict consortia consisting of a subset of 26 
these ten bacteria that would best complement the algal metabolism. Finally, co-culture experiments 27 
were set up with a subset of these consortia to monitor algal growth as well as the presence of key 28 
algal metabolites. Although we did not fully control but only modify bacterial communities in our 29 
experiments, our data demonstrated a significant increase in algal growth in cultures inoculated with 30 
the selected consortia. In several cases, we also detected, in algal extracts, the presence of key 31 
metabolites predicted to become producible via an exchange of metabolites between the alga and the 32 
microbiome. Thus, although further methodological developments will be necessary to better control 33 
and understand microbial interactions in Ectocarpus, our data suggest that metabolic 34 
complementarity is a good indicator of beneficial metabolite exchanges in holobiont.  35 
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1 Introduction  36 

Microbial symbionts are omnipresent and important for the development and functioning of 37 
multicellular eukaryotes. Together the eukaryote hosts and their microbiota form meta-organisms 38 
also called holobionts. Elucidating the interactions within microbial communities and how they affect 39 
host physiology is a complex task and requires an understanding of the dynamics within the 40 
microbiome and the host, as well as of possible inter-species interactions and/or metabolic exchanges 41 
that could occur between the partners. One way to dissect those interactions is via targeted co-culture 42 
experiments using culturable bacteria. This approach works particularly well for 1:1 or 1:2 43 
interactions, but as the number of potentially interacting organisms increases, selecting the “right” 44 
bacterial consortia becomes a major bottleneck (Lindemann et al. 2016). 45 

Metabolic complementarity has previously been proposed as an indicator for potentially beneficial 46 
host-symbiont interactions and can be assessed in silico using the metabolic networks of the host and 47 
the microbiota (Dittami, Eveillard, et al. 2014; Levy et al. 2015). Common examples of metabolic 48 
complementarity are associations of autotrophic and heterotrophic organisms such as corals and their 49 
photosynthetic symbionts (Rohwer et al. 2002), or algae, and their heterotrophic bacterial biofilm 50 
(Wahl et al. 2012). In this case, the autotrophic partner has a metabolic capacity (photosynthesis) that 51 
allows for the production of metabolic intermediates (organic carbon), which can be further 52 
metabolized by the heterotrophic partners. However, especially in systems with long-lasting 53 
interactions more complex metabolic interdependencies are likely to evolve (e.g. Amin et al. 2015). 54 

As a tool to further explore such interactions, Frioux et al. (Frioux et al. 2018) have proposed the 55 
pipeline MiSCoTo. Given the metabolic networks of a host and several symbionts, this tool predicts 56 
potential metabolic capacities of one partner that could be unlocked by a contribution of a metabolite 57 
from another (e.g. the provision of carbohydrates by a photosynthetic organism unlocking the 58 
biochemical processes related to primary metabolism in heterotrophs). Furthermore, this 59 
computational approach uses these complementarities to define minimal consortia (i.e. with the 60 
lowest possible number of exchanges/contributors) allowing the host to reach its maximum metabolic 61 
potential. However, the actual predictive value of these models, both in terms of the effect on host 62 
growth and fitness, and in terms of the metabolic scope (i.e. the metabolites producible by the 63 
holobiont system), remains to be assessed.  64 

Here we have applied the MiSCoTo tool to the filamentous brown alga Ectocarpus siliculosus, a 65 
model filamentous brown alga with an available metabolic network (Prigent et al. 2014), as well as a 66 
selection of 10 Ectocarpus-derived bacteria (KleinJan et al. 2017). We then selected specific minimal 67 
microbial consortia for in vivo testing of the proposed hypotheses (growth rate, production of specific 68 
metabolites). Our results demonstrate a clear positive effect of inoculation with the predicted 69 
bacterial consortia on algal growth as well as an effect on the production of algal metabolites 70 
predicted to depend on bacterial contributions. In vivo observations largely corresponded to in silico 71 
predictions despite the incomplete input data (with models limited to annotated pathways) and the 72 
fact that we had only limited control of the microbiome. The present work thus generates numerous 73 
testable hypotheses on specific beneficial interactions between Ectocarpus and its microbiome, but 74 
also provides a proof of concept for the overall predictive power of network-based metabolic 75 
complementarity for beneficial host-microbe interactions. 76 

2 Methods 77 

2.1 Bacterial cultures and genome sequencing 78 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/813683doi: bioRxiv preprint first posted online Oct. 22, 2019; 

http://dx.doi.org/10.1101/813683
http://creativecommons.org/licenses/by/4.0/


   Brown algal-bacterial metabolic interactions 

 
3 

Ten bacterial strains were selected from the 46 isolated by KleinJan et al. from Ectocarpus subulatus 79 
(KleinJan et al. 2017). They were grown in liquid Zobell and/or diluted R2A until bacterial growth 80 
was visible with the naked eye (~3 days at room temperature), and their identity was confirmed by 81 
sequencing of the 16S rRNA gene with the primers 8F and 1492R (KleinJan et al. 2017). Bacterial 82 
DNA was extracted using the UltraClean® Microbial DNA isolation kit (MoBio, Qiagen, Hilden, 83 
Germany) and used for standard pair-end sequencing at the GENOMER platform (FR2424, Station 84 
Biologique de Roscoff), using Illumina Miseq technology (V3 chemistry, 2x300bp). After cleaning 85 
with Trimmomatic v0.38, default parameters (Bolger et al. 2014), the paired-end reads were 86 
assembled using SPADES v3.7.0 (Bankevich et al. 2012; default parameters for long reads). The 87 
RAST/SEED server (Aziz et al. 2008) was used for gene annotation, and sequences were later also 88 
incorporated into the MAGE platform (Vallenet et al. 2006).  89 

2.2 In silico predictions of metabolic interactions and selection of consortia 90 

Bacterial metabolic networks were constructed using Pathway Tools version 20.5 (Karp et al. 2016) 91 
and version 2 of the Ectocarpus siliculosus EC32 metabolic network for the host, prior to any gap-92 
filling step, in order to prevent the presence of possibly false positive reactions in the model. 93 
(because these false positive reactions could hide algal bacterial interactions). This network 94 
comprised a total of 2,118 metabolites, 1,887 metabolic reactions, and was able to produce five of the 95 
50 metabolites known to be a part of the Ectocarpus biomass (Aite et al. 2018) with only the culture 96 
medium as input. For the remaining 45 compounds the lack of producibility can be explained by the 97 
presence of metabolic gaps – either because a reaction was missed during the reconstruction of the 98 
network (missing annotation etc.), or because the corresponding pathways require metabolite 99 
exchanges with other partners in the environment, e.g. bacteria. The more such gaps can be filled by 100 
exchanging compounds between two metabolic networks, the higher we consider the degree of 101 
metabolic complementarity between the corresponding organisms. 102 

Here we used the MiSCoTo tool (Frioux et al. 2018) to compute such potential metabolic exchanges 103 
between Ectocarpus and any of the ten targeted bacteria. The underlying model of MiSCoTo 104 
assumes that a compound is producible by a host-symbiont community if there is a chain of 105 
metabolic reactions which transforms the culture medium into the expected compound without taking 106 
into consideration flux accumulations or competition for resources, and allowing for the exchange of 107 
compounds across cell boundaries. These simplifications imply that compounds predicted to be 108 
producible in silico may, in some cases, remain unproducible in vivo, although the consortium has all 109 
the genes to activate the pathways. 110 

In this study MiSCoTo was run twice, first to determine the scope of all algal compounds that 111 
become producible via exchanges with all 10 bacterial genomes together, and as second time to select 112 
minimal bacterial consortia for the production of these compounds. In both cases the Provasoli 113 
culture medium was used as a source as defined previously (Prigent et al. 2014). 114 

2.3 Algal cultures  115 

Two of the six predicted bacterial consortia were tested experimentally via algal-bacterial co-culture 116 
experiments. Additionally, each member of the two consortia was tested individually, as well one 117 
other sequenced strain that was not part of any of the predicted minimal consortia, i.e. Sphingomonas 118 
sp. 391. Ectocarpus siliculosus (strain 32; accession CCAP 1310/4, origin San Juan de Marcona, 119 
Peru) was cultured under standard conditions (13 °C; 12h light regime) in Provasoli-enriched natural 120 
seawater until the start of antibiotic treatment. Prior to co-culture experiments, algal filaments were 121 
treated with a mixture of the following liquid antibiotics: 45 μg/ml Penicillin G, 22.5 μg/ml 122 
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streptomycin, and 4.5 μg/ml chloramphenicol dissolved in Provasoli-enriched artificial seawater 450 123 
mM Na+, 532 mM Cl-, 10 mM K+, 6 mM Ca2+, 46 mM Mg2+, 16 mM SO4

2-. Filaments were exposed 124 
to 25 ml of this solution for 3 days and then placed in Provasoli-enriched artificial seawater for 3 125 
days to recover. The absence of bacteria on the algal surface was verified by microscopy using phase-126 
contrast (Olympus BX60, 1.3- PH3 immersion objective, 800x magnification) and by plating of algal 127 
filaments on Petri dishes with Zobell medium followed by three weeks of incubation at room 128 
temperature.  129 

2.4 Co-culture experiments 130 

For co-culture experiments, cell densities of bacterial cultures were determined using a BD FACS 131 
CantoTM II flow cytometer (BD Bioscience, San Jose, CA) using samples fixed in Tris-EDTA. 132 
Before the start of the experiment, antibiotic-treated algae (three replicate cultures per condition) 133 
were inoculated with 2.3*105 bacterial cells per strain and ml medium. Each co-culture was then 134 
incubated for 4 weeks under standard algal growth conditions (see above). During this time, algal 135 
growth was quantified by measuring the filament length of the algae each week using the binocular 136 
microscope (3 measurements per replicate). Furthermore, bacterial abundance in the algal growth 137 
medium was estimated using flow cytometry (described above) and bacteria attached to algal cell 138 
walls were counted by microscopy (5x 10 μm long filaments observed per biological replicate, 800x 139 
magnification in phase contrast). At the end of the experiment, general algal morphology was 140 
observed using a LEICA DMi8 microscope and in parallel, remaining algal tissues were frozen in 141 
liquid nitrogen and freeze-dried for downstream analyses. Two controls (three replicates each) were 142 
run in parallel: a non-antibiotic treated positive control (CTRL w/o. ATB), and an antibiotic-treated 143 
non-inoculated alga as a negative control (CTRL w. ATB).  144 

2.5 Bacterial community composition after co-culture experiments 145 

A metabarcoding approach was implemented to investigate the composition of the bacterial 146 
community after the co-culture experiments. For each culture, 20 mg ground freeze-dried tissue 147 
(TissueLyserII Qiagen, Hilden, Germany; 2x45sec, 30 Hz) was used for DNA extraction (DNeasy 148 
Plant Mini Kit, Qiagen; standard protocol). Nucleotide concentrations were verified with 149 
NanodropONE (Thermofisher Scientific). A mock community comprised of DNA from 32 bacterial 150 
strains (covering a variety of taxa) as well as a negative control were included in addition to the 151 
samples (see Thomas et al. in prep. for details). Libraries were prepared according to the standard 152 
Illumina protocol for metabarcoding MiSeq technology targeting the V3–V4 region (Illumina 2017) 153 
and sequenced using Illumina MiSeq Technology (2x300 bp, pair-end reads; MiSeq Reagent v3 kit; 154 
Platform de Séquencage-Génotypage GENOMER, FR2424, Roscoff). 155 

Resulting raw sequences (7,354,164 read pairs) were trimmed using fastq_quality_trimmer from the 156 
FASTX Toolkit (quality threshold 30; minimum read length 200) and assembled into 6,804,772 157 
contigs using PandaSeq v2.11 (Masella et al. 2012). Data were analyzed with Mothur (V.1.40.3) 158 
according to the MiSeq Standard Operating Procedures (Kozich et al. 2013). Contigs were pre-159 
clustered (allowing for four mismatches), and aligned to the Silva_SEED 132b database for sequence 160 
classification. Chimeric sequences were removed (Vsearch) and the remaining sequences classified 161 
taxonomically (Wang et al. 2007). Non-bacterial sequences were removed and the remaining 162 
sequences were then clustered into operational taxonomic units (OTUs) at a 97% identity level and 163 
each OTU was classified to the genus level where passible (Wang et al. 2007). All OTUs with n ≤ 10 164 
sequences were removed resulting in a final data matrix with 1,834,992 sequences. The OTU matrix 165 
was subsampled to have the same number of sequences per sample for downstream analyses.  166 
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2.6 Targeted metabolomics  167 

Seven metabolites predicted to be producible by the algae only in presence of metabolic exchanges 168 
with specific bacteria were selected for targeted metabolite profiling after manual verification of 169 
automatic predictions of corresponding pathways in the algal and bacterial networks and based on 170 
their biological importance for the alga: L-histidine, putrescine, beta-alanine, nicotinic acid, folic 171 
acid, auxin, and spermidine. Metabolites were extracted from 10 mg of ground, freeze-dried tissue 172 
using a triple extraction protocol based on the method of Bligh and Dyer (1959): two ml of 173 
methanol:chloroform:water (6:4:1) were used as first extraction solvent, then the remaining pellet 174 
was extracted with 1 ml of chloroform:methanol (1:1), and finally, a 3rd extraction was performed 175 
using 1ml of H2O. The supernatants of each extraction were pooled and evaporated under a stream of 176 
nitrogen. The residue was then resuspended in 100 μl methanol:water (1:1) and analyzed on an 177 
ACQUITY Ultra-performance convergence chromatography (UPC²) system (Waters®, Milford, 178 
USA) equipped with a Viridis BEH column (3x100 mm, 1.7 μm). A linear gradient of two solvents 179 
was used to separate peaks: supercritical carbon dioxide (Solvent A), and methanol spiked with 0.1% 180 
formic acid (Solvent B). The gradient ran from 5% to 25% of solvent B (35% for spermidine and 181 
nicotinic acid) during 2 minutes, was kept at this level for another 2 minutes and then gradually 182 
reduced back to 5% during 3 minutes. The UPC² system was coupled to a Xevo G2 Q-Tof mass 183 
spectrometer (Waters), operating in positive ESI ion mode (m/z 20–500). Blanks, as well as 184 
standards of all 7 compounds obtained from Sigma-Aldrich (St. Louis, MO, USA), were run in 185 
parallel to samples. The resulting chromatograms were then used to examine the presence/absence of 186 
the target compounds in the other samples based on retention time and the mass spectra. Analyses 187 
were performed at the METABOMER platform (FR2424, Station Biologique de Roscoff).  188 

2.7 Statistical analyses  189 

Growth data (both algal and bacterial) were confirmed to follow a normal distribution using a 190 
Shapiro-Wilk test (Rstudio v1.0.44). Significant differences between all treatments after four weeks 191 
of co-culture (day 28) were calculated with an ANOVA and a Tukey honestly significant difference 192 
(HSD) post-hoc test with a significance level α 0.05 using the PAST software version 3.20 (Hammer 193 
et al. 2001). 194 

3 Results 195 

3.1 Predicted metabolic interactions and selection of beneficial bacterial consortia 196 

Genome sequencing and subsequent bioinformatics analyses yielded bacterial genome assemblies 197 
with sufficient coverage and 11-72 scaffolds per genome Table 1). Metabolic networks were then 198 
reconstructed for these ten genomes. On average, 1,714 reactions, 111 transport reactions, and 1,405 199 
metabolites (Table 2) were predicted per bacterium. These reactions belonged, again on average, to 200 
261 pathways, 137 of which were complete and 124 were incomplete (i.e. missing one or more 201 
reactions). Based on metabolic complementarity analysis carried out using MiSCoTo, these bacterial 202 
networks were predicted to enable the production of 160 additional compounds with the algal 203 
networks, including several polyamines (Cadaverine, Spermidine, Agmatine), amino acids (Histidine, 204 
Tyrosine, beta-alanine), vitamins B3, B9, and E, several lipids and lipid derivatives, and nucleic 205 
acids. Please refer to Supplementary Table S1 for a complete list of compounds. Many of these 206 
compounds were also previously predicted via the metabolic interaction between the same strain of 207 
E. siliculosus and the associated bacterium Candidatus Phaeomarinobacter ectocarpi (Dittami, 208 
Barbeyron, et al. 2014; Prigent et al. 2017). A total of six bacterial consortia comprising three 209 
bacterial strains each (Table 3) were predicted to be sufficient to enable the production of all of these 210 
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compounds. Of these six proposed consortia, two comprising one phylogenetically distinct bacterium 211 
each (i.e. the Bacteriodetes Imperialibacter vs the Gammaproteobacterium Marinobacter) were 212 
chosen for in vivo testing using algal-bacterial co-cultures.  213 

3.2 Growth rates in co-culture experiments 214 

The inoculation with one or several bacterial strains significantly enhanced algal growth by a factor 215 
of 2 compared to controls (Figure 1A). This positive effect was observed both for the predicted 216 
bacterial consortia and for all the individual strains tested. At the same time, the abundance of 217 
bacteria on algal filaments after four weeks of cultivation was significantly lower in cultures initially 218 
inoculated with bacteria compared to both controls with and without initial antibiotic treatment 219 
(Figure 1B), although bacterial cell counts in the medium were similar between co-culture 220 
experiments and the non-inoculated control after 28 days (Supplementary Figure S1).  221 

3.3 Bacterial impact on morphology 222 

Compared to the negative control, which exhibited a ball-like morphology typical for “axenic” 223 
cultures (Tapia et al. 2016), all bacterial inocula tested resulted in filamentous thalli with clear 224 
branching patterns (Figure 2). We furthermore observed differences in the branching patterns 225 
depending on the bacterial inocula. For example, Sphingomonas-inoculated cultures produced 226 
relatively long filaments with few branching sites (Figure 2H), whereas Hoeflea-inoculated cultures 227 
produced filaments with frequent branching (Figure 2E). Imperialibacter induced aggregation of 228 
individual filaments (Figure 2F), while in all other co-cultures, filaments remained more or less 229 
separated. These differences were, however, difficult to quantify given complexity of their 230 
morphology.  231 

3.4  (Algal) metabolome in co-culture conditions 232 

Seven putatively key metabolites (l-histidine, putrescine, beta-alanine, nicotinic acid, folic acid, 233 
auxin, and spermidine) predicted to be non-producible by the alga alone but producible via exchanges 234 
with some bacterial consortia, were quantified in algal tissues by UPC2-MS after four weeks of co-235 
culture. The presence/absence of these metabolites is shown in Figure 3, comparing both the 236 
predicted producibility by metabolic network analysis and the experimental UPC2-MS results. In the 237 
negative control, i.e. antibiotic-treated algae that were not inoculated with bacteria, none of the 238 
compounds could be identified by UPC2-MS confirming the computational predictions. In contrast, 239 
in all co-cultures, at least one target compound was experimentally detected. Furthermore, each 240 
compound became producible in at least one of the co-cultures. Overall, across the 56 predictions 241 
made based on the metabolic networks (7 metabolites x 8 consortia including the individual bacteria 242 
and the negative control) in silico and in vivo data agreed in 28 cases (Figure 3). Only in four cases 243 
did we observe the presence of a metabolite although it was not predicted by the networks. Finally, in 244 
24 cases we did not detect the presence of a metabolite predicted to be producible in the co-cultures.  245 

3.5 Bacterial community composition after co-culture experiments 246 

The bacterial community composition of each sample was analyzed by 16S rDNA metabarcoding at 247 
the end of the co-culture experiments. This was done to verify if the bacteria inoculated had grown in 248 
the co-cultures and to determine to what extent other bacteria were present and affected by the 249 
inoculations. The results (Table 4) show that, except for Imperialibacter, all of the bacterial strains 250 
inoculated were detected in the corresponding co-cultures 28 days after inoculation. However, except 251 
for Marinobacter and Hoeflea, read abundances of these strains were low compared to the total 252 
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number of reads. In parallel, several other OTUs that had not been inoculated were detected in our 253 
co-culture experiments, suggesting that these bacteria were at least partially resistant to or protected 254 
from (e.g. within the cell wall) the antibiotic treatments applied, and were able to recover under the 255 
experimental conditions: in total 30 additional OTUs with a minimal abundance of 1% of total reads 256 
were detected in our samples, accounting for 63 to 82% of the total reads. Furthermore, Hoeflea reads 257 
were dominant in all samples including the non Hoeflea-inoculated cultures (14-30% of total reads).  258 

4 Discussion 259 

Metabolic complementarity, a powerful metric despite limitations 260 

Metabolic complementarity intuitively seems like an excellent marker for beneficial metabolic 261 
interactions. The more organisms are complementary at the metabolic and by extension the gene 262 
level, the more they can potentially benefit from each other (Levy et al. 2015); the more they overlap 263 
in terms of metabolic pathways, the more likely they are to compete for the same resources (Kreimer 264 
et al. 2012). There are, however, two important restrictions that limit the applicability of this simple 265 
idea. First, the possibility of a beneficial exchange does not necessarily mean that it will occur, 266 
because this may require the presence and activation of excretion/uptake mechanisms in both 267 
partners, e.g. via chemical or environmental cues. Secondly, the genome-scale metabolic models used 268 
to predict metabolic complementarities may be partially erroneous and incomplete. For instance, 269 
metabolic networks frequently do not comprise interactions of chemical signals with receptor 270 
molecules, which may be key to regulate interactions (Zhou et al. 2016; Wang et al. 2018). 271 
Furthermore, in many cases, they are based on automatic predictions and annotations of protein 272 
sequences, which may, in some cases, miss genes or introduce overpredictions of functions (Schnoes 273 
et al. 2009). In this paper, we provide first in vivo tests of host-microbe interactions inferred from 274 
genome-based predictions of metabolic complementarity. Despite the aforementioned restrictions and 275 
simplifications, our results discussed below provide a strong indication that, genome-based 276 
predictions of metabolic complementarity is a powerful tool to handle the complexity of host microbe 277 
systems and to generate hypotheses on their interactions. 278 

Similar complementarities found across studies and Ectocarpus symbionts. 279 

Compared to a previous analysis of metabolic complementarity between Ectocarpus and another 280 
associated bacterium, Candidatus Phaeomarinobacter ectocarpii, (Dittami, Barbeyron, et al. 2014; 281 
Prigent et al. 2017), newly producible compounds predicted in this study were largely similar, 282 
notably regarding polyamines, histidine, beta-alanine, and auxin. This similarity persists even though 283 
metabolic complementarity analyses were performed using MiSCoTo, which incorporates the notion 284 
of different compartments minimizing the number metabolite exchanges (Frioux et al. 2018) and 285 
despite the fact that different bacteria were examined. The main difference compared to the previous 286 
study is that numerous additional compounds were predicted to be exchanged, which can be 287 
explained by the fact that ten rather than one bacterial network were available to complete the algal 288 
network.  289 

 Inoculation with metabolically complementary bacteria enhances growth rate and impacts 290 
morphology and metabolism 291 

As described above, both the bacterial consortia tested, as well as all of the bacteria inoculated 292 
individually had clear positive effects on algal growth and impacted algal morphology and metabolite 293 
profiles, even though, by the time the co-cultures were harvested, some of the inoculated bacteria 294 
were present only in very low abundance or even below the detection limit. These positive effects 295 
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could be due either to interactions early in the co-culture experiments followed by a decline in 296 
bacterial abundance, or due to the capacity of bacteria to impact and interact with their algal hosts 297 
even at very low cell concentrations. The latter would support the hypothesis that part of the 298 
observed effects may not be due to the exchanges of (abundant) primary metabolites, such as the 299 
predicted histidine/histidinol, but due to lowly concentrated signaling molecules or growth hormones. 300 
One such compound could be the examined auxin, which was detected in 5 of the 7 tested co-301 
cultures, and which has previously been shown to modify the developmental patterns and 302 
morphology of Ectocarpus cultures (Le Bail et al. 2010) in a similar way as bacterial inoculations. 303 
Another observation was that the abundance of bacteria on algal filaments but not in the medium was 304 
significantly lower in co-culture conditions compared to the controls. This suggests that the 305 
inoculated bacteria, either directly, or indirectly, by stimulating algal growth or defense, can also 306 
regulate biofilm formation (see Goecke et al. 2010 for a review). 307 

Interestingly, although differences in the effects of individual bacteria and bacterial consortia were 308 
observed on metabolite profiles and morphology, all consortia had similar effects on algal growth. 309 
Indeed, all of the tested bacteria, including Sphingomonas, which was not part of the minimal 310 
solutions proposed by MiSCoTo, were to a great extent complementary to the alga, already covering 311 
a large part of the metabolic gaps. In future studies, it may be particularly useful to incorporate a 312 
larger range of bacteria, possibly from other sources so that they are not expected to have evolved 313 
mutualistic interactions with brown algae. These negative controls could then be used to correlate 314 
growth rates with the presence or absence of specific metabolic capacities in the network. Once the 315 
list of candidate metabolite exchanges has been narrowed down by such comparisons, supplying 316 
these metabolites from artificial sources but also testing for their excretion into the medium by 317 
bacteria can be used to corroborate their role. 318 

Predicted metabolic exchanges likely to occur in part 319 

With respect to the predictions of target metabolites, we observed that for a large number of cases, 320 
predictions from the metabolic networks corresponded to the observations made by experimental 321 
metabolic profiling: none of the target metabolites were detected in the negative control, and only in 322 
four cases (Figure 3), did we detect compounds in co-cultures that were not predicted to be there. 323 
This could either be attributed to undetected metabolic pathways in the examined/added bacteria (e.g. 324 
due to missing annotations) or, more likely, to the activity of other bacteria present in our co-culture 325 
experiments (see below). Furthermore, there were several cases in which a potentially co-producible 326 
metabolite was not detected in our co-cultures. Here two explanations appear particularly likely: first, 327 
the metabolites in question may be produced but quickly metabolized in certain consortia, so that 328 
they do not accumulate sufficiently to be detectable in our cultures; secondly, it is possible that the 329 
corresponding biosynthetic pathway of the metabolite was not active or that the necessary exchange 330 
of metabolites was not taking place. To resolve this point in future experiments, the addition of gene 331 
expression data may help to establish whether or not biosynthetic or degradation pathways are active. 332 
From a global perspective, however, the fact that none of the compounds in question were detected in 333 
negative controls, but all of them it at least one co-culture condition, constitutes a highly promising 334 
result.  335 

Outlook 336 

In our opinion, the main challenge for future in vivo studies of metabolic complementarity will be to 337 
better control the Ectocarpus-associated microbiome in co-culture experiments, and thus to avoid any 338 
impact of non-inoculated microbes. The currently applied antibiotic treatments are successful in 339 
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removing bacteria from the algal surface to a level where they are no longer detectable by 340 
microscopy and spreading on culture medium, but once the treatment is stopped and algae are left to 341 
recover, so do parts of the microbiome, possibly from spores that were inactive or embedded in the 342 
algal cell wall and thus less susceptible to our treatments (Tetz and Tetz 2017). In the light of these 343 
results, we strongly recommend routine metabarcoding analysis for any type of coculture experiment, 344 
also in other model systems. One possibility in the future would be to use axenization protocols 345 
based on the movement of gametes, as has been done for Ulva mutablilis (Spoerner et al. 2012); at 346 
least some strains of Ectocarpus have previously been shown to produce phototactic gametes (Kawai 347 
et al. 1990).  A second alternative is the continuous use of antibiotics throughout the experiment, and 348 
working with antibiotic-resistant bacterial strains. In this context a better understanding of the 349 
metabolic requirements of the algae will help to durably maintain axenic cultures. 350 

Despite these challenges, the present study constitutes an important proof of concept for the use of 351 
metabolic complementarity to study simplified system of mutualistic host-symbiont interactions. We 352 
anticipate that, in the long run, this concept can be applied not only to controlled co-culture 353 
experiments, but that it will also prove useful for the interpretation of more complex datasets such as 354 
metatranscriptomic or metagenomic data. 355 
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9 Figures 382 

 383 

Figure 1: A) Relative length of E. siliculosus filaments after 28 days of (co-)culture compared to the 384 
starting point. B) Number of bacteria detected on algal filaments after 28 days of co-culture. Both 385 
panels A and B show means of 3 replicate co-cultures ± SD and differences are statistically 386 
significant (one-way ANOVA p<0.01). The letters above the columns indicate the results of a 387 
TUKEY HSD pairwise comparisons (p<0.05). CTRL = control, ATB = antibiotic treatment, MRH = 388 
Marinobacter-Roseovarius-Hoeflea; RIH = Roseovarius-Imperialibacter-Hoeflea. 389 
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 390 

Figure 2: Morphological effect co-cultures with bacteria on E. siliculosus after 4 weeks of co-391 
culturing. MRH = Marinobacter-Roseovarius-Hoeflea, RIH = Roseovarius-Imperialibacter-Hoeflea. 392 

  393 
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394 

Figure 3: Comparison of predicted production of target metabolites in co-cultures based on 395 
metabolic networks (symbol before the slash) and results from targeted UPC2-MS analyses of algal396 
filaments after 28 days (symbol after the slash). The column “Exchange” indicates one possible 397 
compound provided by the microbiome leading to the production of the compound in the column 398 
“Target” in the algal metabolome; it was these target metabolites that were tested for using UPC2-399 
MS. All experiments were carried out in triplicate, each replicate of the same condition yielding 400 
identical results. (-): a target metabolite was not predicted/detected (+): a metabolite was 401 
predicted/detected. Green highlights conditions where predictions correspond to the in vivo 402 
observations, red highlights compounds that were detected although no pathway was predicted. 403 
Yellow indicates compounds potentially producible via bacterial exchanges that were not detected.404 
MRH: Marinobacter-Roseovarius-Hoeflea; RIH: Roseovarius-Imperialibacter-Hoeflea; CTRL = 405 
control; ATB = antibiotic treatment. 406 

 407 

10 Tables 408 

Table 1: Overview of bacterial genomes used in this study and corresponding assembly statistics.  409 

 raw reads # 
scaffolds 

genome 
size (mbp) 

N50 
(mbp) 

Coverage mapped 
reads  

Bosea sp. 5A  1 863 417 26 6.34 0.98 133 X 99.91% 
Erythrobacter sp. 430 1 065 278 11 3.14 0.44 157 X 99.93% 
Hoeflea sp. 425 3 734 649 41 5.22 1.26 326 X 99.94% 
Imperialibacter sp. R6  1 553 981 65 6.8 0.21 111 X 99.94% 
Marinobacter sp. HK15 1 587 675 14 4.39 1.11 172 X 99.93% 
Rhizobium sp. 404  1 332 560 27 4.2 0.45 148 X 99.93% 
Roseovarius sp. 134 987 463 73 4.68 0.18 150 X 99.92% 
Roseovarius sp. 420 803 175 85 4.68 0.12 79 X 99.89% 
Sphingomonas sp. 631 1 111 277 25 3.28 0.29 150 X 99.87% 
Sphingomonas sp. 391 1 150 343 74 4.6 0.16 113 X 99.91% 

 410 
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 412 

Table 2: Predicted metabolic pathways (complete pathways in parentheses), reactions and 413 
metabolites in bacterial metabolic networks. 414 

 number of 
pathways 

number of 
reactions 

transport 
reactions 

number of 
metabolites  

Bosea sp. 5A  298 (187) 1892 153 1557 

Erythrobacter sp. 430 218 (91) 1532 63 1247 

Hoeflea sp. 425 315 (170) 1920 129 1558 

Imperialibacter sp. R6  239 (131) 1711 100 1425 

Marinobacter sp. HK15 249 (128) 1679 128 1364 

Rhizobium sp. 404  289 (142) 1814 125 1462 

Roseovarius sp. 134 263 (146) 1703 125 1418 

Roseovarius sp. 420 263 (143) 1701 125 1418 

Sphingomonas sp. 361 224 (108) 1519 69 1239 

Sphingomonas sp. 391 254 (126) 1671 92 1358 

 415 

Table 3: Minimal bacterial consortia predicted by MiSCoTo that enabled the production of 160 algal 416 
compounds. See Supporting table S1 for a detailed list of compounds. 417 

Solution proposed by MiSCoTo In vivo testing? 

Marinobacter sp. HK15, Roseovarius sp. 420, Hoeflea sp. 425  Yes 

Roseovarius sp. 420, Imperialibacter sp. R6, Hoeflea sp. 425  Yes 

Marinobacter sp. HK15, Bosea sp. 5a, Roseovarius sp. 420  No 

Marinobacter HK15, Hoeflea sp. 425, Roseovarius sp. 134 No 

Imperialibacter sp. R6, Hoeflea sp. 425, Roseovarius sp.134 No 

Marinobacter sp. HK15, Bosea sp. 5a, Roseovarius sp. 134 No 

 418 

  419 
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Table 4: Observed abundance of target OTUs after four weeks of co-culture. The table shows 420 
number of reads obtained corresponding to each OTU (mean three replicates ± SD). Bold numbers 421 
grey background indicate OTUs expected to be present based on the inoculations. 422 

 MRH RIH 
Marino-
bacter 

Roseo-
varius Hoef-lea 

Im-
periali-
bacter 

Sphing-
omonas  

CTRL 
w. ATB 

CT
w
A

Marinobct.O
TU00030 82 ± 48 0 ± 0 

1103 ± 
1068 0 ± 0 0 ± 0 0 ± 0 38 ± 38 0 ± 0 

Roseovarius 
OTU00055 8 ± 7 11 ± 3 1 ± 1 41 ± 10 1 ± 1 0 ± 0 0 ± 0 0 ± 0 
Hoeflea 
OTU00001 

10265 ± 
1586 

7644 ± 
889 

4483 ± 
2777 

15635 ± 
1349 

15321 ± 
3515 

13426 ± 
5338 

10216 ± 
4345 

8899 ± 
2811 

3

Imperialib. 
OTU00044 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 
Sphingomn. 
OTU00097 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 1 ± 1 4 ± 4 0 ± 0 

Other OTUs* 
39403 ± 

2138 
23458 ± 

1828 
26223 ± 

3187 
36374 ± 

7810 
34190 ± 

5508 
38076 ± 

4292 
29066 ± 

3302 
42323 ± 

9670 
28

*see Supplementary Figure S2 for details 423 

11 Supplementary Material 424 

Supplementary Table S1: Metabolites predicted to become producible by the alga as a result of 425 
metabolite exchanges between the alga and bacteria. (uploaded separately) 426 

427 

Supplementary Figure S1: Number of bacteria detected in the algal culture medium after 28 days 428 
co-culture. The graph shows means of 3 replicates ± SD and differences are statistically significant 429 
(one-way ANOVA p<0.01). The letters above the columns indicate the results of a TUKEY HSD 430 
pairwise comparisons (p<0.05). CTRL = control, ATB = antibiotic treatment. 431 

tions 

14 

rs on 

CTRL 
w./o. 
ATB 

1 ± 1 

0 ± 0 
3618 ± 
1055 

0 ± 0 

0 ± 0 

28009 ± 
5897 
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432 

Supplementary Figure S2: Heatmap of relative OTU abundance for all 30 OTUs that made up ove433 
1% of the total number of reads and that were not inoculated (See Table 4 for the latter). This 434 
heatmap as generated using the ClustVis service (Metsalu and Vilo 2015) using “correlation” as a 435 
distance measure and “average linkage” as clustering method. The color code corresponds to the 436 
mean sequence abundance for each OTU in the three replicates a percentage of total reads; uc. = 437 
unclassified 438 
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 440 

12 Data Availability Statement 441 

The metabarcoding data generated for this study has been deposited at the European Nucleotide 442 
Archive (ENA) under project accession number PRJEB34356. The bacterial genomes have been 443 
deposited at the ENA under the sample accessions ERZ1079053-ERZ1079062. 444 
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