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ABSTRACT

We study sectoral resonances of the form jκ = m(n−Ω) around a non-axisymmetric

body with spin rate Ω, where κ and n are the epicyclic frequency and mean motion of a

particle, respectively, where j > 0 and m (< 0 or > 0) are integers, j being the resonance

order. This describes n/Ω ∼ m/(m − j) resonances inside and outside the corotation

radius, as well as prograde and retrograde resonances. Results are: (1) the kinematics

of a periodic orbit depends only on (m′, j′), the irreducible (relatively prime) version

of (m, j). In a rotating frame, the periodic orbit has j′ braids, |m′| identical sectors

and |m′|(j′ − 1) self-crossing points; (2) thus, Lindblad resonances (with j = 1) are

free of self-crossing points; (3) resonances with same j′ and opposite m′ have the same

kinematics, and are called twins ; (4) the order of a resonance at a given n/Ω depends

on the symmetry of the potential. A potential that is invariant under a 2π/k-rotation
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creates only resonances with m multiple of k; (5) resonances with same j and opposite

m have the same kinematics and same dynamics, and are called true twins ; (6) A

retrograde resonance (n/Ω < 0) is always of higher order than its prograde counterpart

(n/Ω > 0); (7) the resonance strengths can be calculated in a compact form with the

classical operators used in the case of a perturbing satellite. Applications to Chariklo

and Haumea are made.

Keywords: Disk dynamics — resonances — planets and satellites: rings — minor

planets, asteroids: individual (Chariklo, Haumea)

1. INTRODUCTION

Resonances between a non-axisymmetric rotating potential and orbiting particles have a very vast

domain of applications, from galactic disks perturbed by a central bar to spiral waves excited in

Saturn’s rings by satellites or planetary modes. More recent examples are given by dense rings

discovered around the small Centaur object Chariklo in 2013 (Braga-Ribas et al. 2014), and the

trans-neptunian dwarf planet Haumea in 2017 (Ortiz et al. 2017). Both objects significantly depart

from axisymmetric shapes, and are thus expected to drive strong resonances in their respective

circum-body collisional disks (Sicardy et al. 2019; Sicardy et al. 2020).

For a better understanding of these disks, it is important to clarify and classify the kinematics and

dynamics of the various resonant orbits. Also, considering the variety of shapes assumed by those

bodies, a simple numerical scheme to calculate the resonance strengths is desirable. In the case of a

perturbing satellite, resonance strengths are classically calculated by using operators (denoted Fn in

this paper) acting on Laplace coefficients. Those operators can be found in various publications, see

for instance Murray & Dermott (2000) and Ellis & Murray (2000), MD00/EM00 herein. Here I show

that the Fn operators can in fact be used formally for any non-axisymmetric potential, provided that

some symmetry conditions are met. Those operators encapsulate in a single expression the direct and

indirect terms of the potential, as well as inner and outer resonances (lying inside and outside the

corotation radius, respectively), and and account for both prograde or retrograde particle motions.
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This paper is organized as follows: Section 2 provides the general context of the study, Section 3

classifies the various resonances that occur in that context, Section 4 describes the structure of

the resonant orbits (kinematics and dynamics), Section 5 shows how the Fn operators mentioned

above can be used for a generic potential, with applications to Chariklo and Haumea, assumed to be

homogeneous triaxial ellipsoids. Section 6 provides concluding remarks.

2. PRELIMINAY REMARKS

We consider a body rotating at constant angular speed Ω = 2π/Trot, where Trot is the rotation

period. The following simplifying assumptions are made:

(i) The body rotates around one if its principal axes of inertia, i.e. without wobbling motion;

(ii) The mass distribution of the body is symmetrical with respect to a plane perpendicular to the

rotation axis, called the equatorial plane;

(iii) The mass distribution possesses a plane of symmetry that contains the rotation axis.

An example is a spherical object with a mass anomaly sitting at its equator. Another example is

a triaxial homogeneous ellipsoid rotating around its smallest axis. Further examples are given by

sectoral resonances stemming for normal modes in a gaseous planet1.

The time-averaged gravitational potential created by the body is axisymmetric. From hypothesis

(i), the average vertical angular momentum (the component that is parallel to the rotation axis) of

the orbiting particles is conserved. Consequently, a dissipative collisional set of particles surrounding

the body settles into the equatorial plane, as this configuration minimizes energy for a constant

vertical angular momentum. From hypothesis (ii), no vertical forces are exerted on the equatorial

disk, so that no vertical resonances will be considered here.

Notations are classical: the position vector r of a particle in the equatorial plane (counted from

the center of mass of the body) is expressed in polar coordinates (r, L), where r = ||r|| and L is the

true longitude counted from an arbitrary origin. The orientation of the body is measured by the

longitude λ′ = Ωt of a reference point on its equator, t being the time. The motion of the particle

1 This is a particular case of tesseral resonances, where the potential depends only on longitude, not latitude
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is described by its keplerian orbital elements a, e, λ,$, i.e. the semi-major axis, orbital eccentricity,

mean longitude and longitude of pericenter, respectively.

In an inertial frame, a particle is submitted to a time-dependent potential. From hypotheses (i)

and (ii), this potential takes the form U(r, θ), where θ = L − λ′ = L − Ωt. This time-dependence

is eliminated by writing the equations of motion in the frame co-rotating with the body. In that

frame, the energy of the particle is a constant of motion, called the Jacobi constant. As it moves

in the equatorial plane, the particle has two degrees of freedom, each associated with a fundamental

frequency. One is the radial epicyclic frequency κ = n− $̇ (where the dot denotes time derivative),

the frequency at which the particle returns to its pericenter, and the other is the synodic frequency

n− Ω, the frequency at which the particle returns to a fixed position relative to the body.

As U(r, θ) is 2π-periodic in θ, it can be Fourier-expanded as U(r) =
∑+∞

m=0 Um(r) cos(mθ + ϕm),

where Um and ϕm are uniquely defined. From hypothesis (iii), U(r, θ) is an even function of θ if the

reference point on the body is taken in the vertical plane of symmetry. Then ϕm = 0 and

U(r) =
+∞∑
m=0

Um(r) cos(mθ). (1)

Here, the integer m is called the azimuthal number. It describes the number of cycles completed by

the potential during one revolution around the body. A more symmetric form can be adopted, in

which m assumes both positive and negative values,

U(r) =
+∞∑

m=−∞

Um(r) cos(mθ), with U(−m) = U(m), (2)

the parity condition ensuring the unicity of the coefficients Um(r). In this case, each coefficient

Um(r) is divided by two compared to its value in Eq. 2 (except for U0(r), which remains unchanged).

Choosing between Eqs. 1 and 2 is arbitrary. Here I choose Eq. 2 as it offers a more natural way to

expand the potential in resonant terms, see Section 4.

3. RESONANCE TAXONOMY

The potential U(r, θ) can be Fourier-expanded along linear combinations of the fundamental fre-

quencies κ and n− Ω,

νj,m = jκ−m(n− Ω), (3)
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where m can be positive or negative, see above. Without loss of generality, the integer j can be

taken as always positive. It is the order of the resonance, see sub-Section 4.1. Resonances occur for

νj,m = 0. If j = 0 then

n = Ω, (4)

called the corotation resonance. This resonance is discussed in the context of elongated bodies by

Scheeres (1994); Sicardy et al. (2019) and will not be consider further here. Thus, we restrict ourselves

to the case j > 0, and the resonance condition reads

jκ = m(n− Ω). (5)

It means that after |m| radial oscillations, the particle completes exactly j synodic period around

the body. This excites the orbital eccentricity of the particles, a way to create a coupling between

the disk and the body. From $̇ = n− κ, Eq. 5 can be re-expressed as

n− $̇
Ω− $̇

=
m

m− j
, (6)

meaning that in a frame rotating at the particle precession rate $̇, the particle completes m revolu-

tions while the body completes m − j rotations, hence the notation “m/(m − j)” resonance2. The

case m = j corresponds to the apsidal resonance Ω = $̇, in which the particle’s orbit precesses at

the rotation rate of the body. For moderately non-axisymmetric potentials, we have $̇ � Ω, so that

apsidal resonances do not occur and this case is not studied here. Eq. 6 can then be written

n

Ω
∼ m

m− j
. (7)

3.1. Location of resonances

The axisymmetric part of the potential (the term U0(r) in Eq. 2) provides n and κ (Chandrasekhar

1942):

n2(r) =
1

r

dU0(r)

dr
and κ2(r) =

1

r3
d(r4n2)

dr
. (8)

2 In galactic dynamics, κ and Ω are usually very different so that this approximation does not hold, and the notation

m/(m − j) resonance is meaningless. Instead, the cases corresponding to j = 1 are sometimes referred to as a m : 1

(Lindblad) resonance, see e.g. Pfenniger (1984).
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The condition jκ = m(n−Ω) then allows the calculation of the resonance location, see a practical

example in Section 5.

3.2. Prograde and retrograde resonances

A debris disk around a body may result from an impact, so that rings may move in two opposite

directions, prograde or retrograde3. Retrograde resonances then occur for n/Ω ∼ m/(m− j) < 0. As

j > 0, this occurs for

0 < m < j, (9)

while prograde resonances occur for

m < 0 or j < m. (10)

Note in passing that in Eq. 5, κ and n must have the same sign in order to consistently describe

a progade or retrograde motion. Adopting arbitrarily Ω > 0, a prograde orbit has κ, n > 0, while a

retrograde orbit has κ, n < 0.

3.3. Inner and outer resonances

The position of a resonance can be interior to the corotation radius (where n = Ω), in which case

we talk about an inner (or internal) resonance, and |n/Ω| > 1. If the resonance occurs outside the

corotation radius, we talk about an outer (or external) resonance, and |n/Ω| < 1. From Eq. 7,

resonances with m < 0 are always external. For 0 < j < 2m, the resonances are internal and for

2m < j, they are external. The case j = 2m corresponds to the “retrograde corotation resonance”,

in which the particle moves at the corotation radius, but opposite to the body4.

3.4. Lindblad resonances

Here, I restrict the term Lindblad resonances to first-order resonances (j = 1). In the literature,

Eq. 5 is usually written as κ = ±m(n−Ω), with the convention m > 0. This introduces the presence

3 Retrograde motions may also be encountered with exo-planets orbiting a circular binary stellar system, see Morais

& Giuppone (2012).
4 The term retrograde corotation is in fact not appropriate because the particle mean motion does not match any

harmonics of the potential. Actually, this resonance has the same dynamical behavior as the prograde 1/3 resonance,

see sub-Section 4.2. However, to keep in line with the nomenclature of other publications, I still use in the terms

“retrograde corotation” in the text.
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Figure 1. Resonance taxonomy in a (m, j) diagram, where m is the azimuthal number and j is the resonance

order. Squares (resp. dots) are for prograde (resp. retrograde) resonances. Darker (resp. lighter) blue is for

outer (resp. inner) resonances Gray triangles are for apsidal resonances (not treated here) and dots are for

the retrograde corotation.

of numerous ± and ∓ symbols in the equations, a possible source of errors. In contrast, taking both

positive and negative values for m eases the calculations by avoiding the cumbersome use of the ±

symbol.

The various resonances described in this Section are summarized in Fig. 1 in a (m, j) diagram.

4. STRUCTURE OF RESONANT ORBITS

The potential U(r) of Eq. 2 can be expressed in terms of λ′ and (a, e, λ,$), and then expanded in

powers of e under the forms r/a = 1 +
∑+∞

j=1 e
jEj cosj(λ −$) and L = λ +

∑+∞
j=1 e

jLj sinj(λ −$),

where Ej and Lj are numerical coefficients that describe the keplerian motion. In doing so, each

term cos(mθ) in Eq. 2, when combined to the terms cosj, sinj(λ−$), provides two terms of the form

ej cos[mλ′ − (m− j)λ− j$] and ej cos[mλ′ − (m + j)λ + j$]. Noting that the second term can be

written ej cos[(−m)λ′− (−m− j)λ− j$], the expansion of U(r) may be written using only terms of

the form mλ′ − (m − j)λ − j$, where m is positive or negative. After re-ordering those terms, we
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obtain

U(r) = U(a, e, λ,$, λ′) =
+∞∑

k=−∞

Uk(a) cos [k(λ− λ′)]+
+∞∑

m=−∞

+∞∑
j=1

Ūm,j(α)ej cos [mλ′ − (m− j)λ− j$] ,

(11)

where

α =
a

R
, (12)

R being a characteristic dimension of the problem (to be defined later). Note that the first summation

in Eq. 11 describes the corotation resonance.

A given m/(m− j) resonance occurs for νm,j = 0, i.e. for mλ′ − (m− j)λ− j$ stationary. Let us

denote Um,j the potential associated with that resonance, i.e.

Um,j(a, e, λ,$, λ
′) = Ūm,j(α)ej cos (jφm,j) , (13)

where

φm,j =
mλ′ − (m− j)λ− j$

j
(14)

is the resonant argument. Note the dividing factor j, which ensures that the proper choice of canonical

variables is made for use in the Hamiltonian describing the resonance (Peale 1986).

4.1. Resonance order

The term Um,j is of order ej, a property known as the d’Alembert’s characteristics, and j is called

the order of the resonance5. The order j is not entirely determined by the ratio n/Ω, as the same

value n/Ω = m/(m − j) can be achieved with multiples of m and j. Let us denote (m′, j′) the

relatively prime (or irreducible) version of (m, j). Then the same ratio n/Ω is achieved for all couples

of the form (km′, kj′), k integer. Thus, at the same radius, an infinity of resonances of orders j′,

2j′,... exist. Usually, only the resonance of lowest order, j′, is considered, and the higher-order,

weaker resonances are neglected.

5 Higher order terms in eccentricity are in fact present in the amplitude of the term cos(jφm,j), but there are ignored

here.
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The symmetry of the potential, however, may lead to the vanishing of some resonances. If the

potential is invariant under a rotation of 2π/k radians (as it is the case for normal sectoral modes in

gaseous planets, for instance), then only m’s that are multiples of k appear in Eq. 2. Thus, the ratio

n/Ω takes the form

n

Ω
∼ m

m− j
=

kp

kp− j
. (15)

Consequently, only m/(m − j) resonances where m is multiple of k survive in a 2π/k-periodic

potential. For instance, every other k Lindblad resonances (j = 1) remain in this context. This

is discussed in Section 5.2 with the potential of a triaxial ellipsoid, which is invariant under a π-

rotation (k = 2). Then, only every other Lindblad resonances survives, those with even values of

m, see Eq. 27. Similarly, the second-order 1/3 resonance vanishes, leaving the fourth-order 2/6

resonances at its place. The distinction is important because, although corresponding to the same

ratio n/Ω, these two resonances have different phase portraits and different dynamical behaviors. To

make that distinction clear, the 2/6 notation should not be simplified to 1/3.

4.2. Structure of the periodic resonant orbits

Contrarily to the order, the kinematic structure of a resonant orbit depends only on the ratio n/Ω,

independently of the symmetry of the potential. The polar equation (in a frame rotating with the

body) of a m/(m− j) resonant periodic orbit is

ρ(θ) = a

[
1− e cos

(
m

j
θ + φm,j

)]
. (16)

It can also be viewed as the polar equation of a perturbed streamline, where the particles move

at different longitudes while sharing a common φm,j. This aspect in discussed in Section 6. The

structure of the periodic orbits is studied in details in Sicardy et al. (2020). Noting again (m′, j′) the

irreducible version of (m, j), results are (see also Fig. 2):

1. the periodic orbit has j′ distinct braids,

2. the periodic orbit is invariant by a rotation of 2π/|m′|, i.e. it possesses |m′| identical sectors,

3. in each sector, the periodic orbit has (j′ − 1) self-crossing points,
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4. thus, the total number of self-crossing points is6:

Nc = |m′|(j′ − 1), (17)

5. consequently, Lindblad resonances (j = 1) do not lead to self-crossing7,

6. the only resonances that result in a unique self-crossing point are for |m′| = 1 and j′ = 2,

corresponding to the second-order prograde 1/3 and retrograde 1/-1 resonances.

7. the lowest possible order of a retrograde resonance is j′ = 2 (obtained with m′ = 1 and n/Ω =

1/-1). Thus, there are no retrograde Lindblad resonances,

8. resonances having the same |m′| and the same j′ correspond to orbits that have the same shape,

and more precisely, that are homothetic. They have the same number of sectors, braids and

self-crossing points, i.e. they have the same kinematic behavior. I qualify two such resonances

as twins. Note that twin resonances correspond to different ratios |n/Ω|.

9. two resonances that have the same |m| and j have not only the same kinematic behavior, but

also the same order, i.e. the same dynamical behavior. I qualify two such resonances as true

twins. (while false twins are two resonances that have the same |m′| and j′, but different |m|

and j). An example of true twins are the 1/3 and 1/-1 resonances mentioned above8. Fig. 1

shows that any outer prograde resonance (m < 0) has a true twin that is either a retrograde

(inner or outer) resonance, or an inner prograde resonance.

The same ratio |n/Ω|, and thus the same orbital radius, corresponds to two different resonances,

one prograde (n/Ω > 0) and one retrograde (n/Ω < 0). This is achieved for a pairs of (m′p, j
′
p) and

(m′r, j
′
r) satisfying m′p/(m

′
p− j′p) = −m′r/(m′r− j′r), where the subscripts “p” and “r” refer to prograde

6 The eccentricity e must be small enough to obtain only the essential self-crossing points, that are present even for

vanishingly small eccentricities.
7 The reciprocal is not true. For instance the second-order 2/4 resonant orbit has no self-crossing point, but it is

not a Lindblad resonance.
8 An example of a 1/-1 resonance is the retrograde asteroid 2015 BZ509 that shares Jupiter’s orbit

(Wiegert et al. 2017; Morais & Namouni 2017). An example of a 1/3 resonance is given by the Trans-

Neptunian Object (136120) 2003 LG7 that completes one prograde orbit while Neptune completes three

(https://minorplanetcenter.net/db search/show object?object id=136120).
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and retrograde motions, respectively. The couples (m′p, j
′
p) and (m′r, j

′
r) being each irreducible, so

are both couples (m′p,m
′
p − j′p) and (m′r,m

′
r − j′r). Gauss’ theorem thus implies that |m′r| = |m′p|.

More precisely, since m′r > 0 (Fig. 1), we must have m′r = |m′p|. Distinguishing the cases m′p = m′r

and m′p = −m′r, accounting for the fact that m′p < 0 or m′p > j′p (Eq. 10) and that j′p, j
′
r > 0 by

convention, it is easy to show that if m′p < 0, then m′r = −m′p and j′r = j′p − 2m′p, while if m′p > j′p,

then m′r = m′p and j′r = 2m′p − j′p.

In all cases, j′r > j′p. Thus, at a given orbital radius, retrograde resonances are always of higher

order than prograde resonances, a result already found by Morais & Giuppone (2012). For instance,

the 3/2 prograde resonance is of order one (m′ = 3, j′ = 1), while the 3/-2 retrograde resonance is of

order five (m′ = 3, j′ = 5).

5. RESONANCE STRENGTH

We now calculate the terms Ūm,j(α) of Eq. 11, first in the case of a mass anomaly, and then

generalizing the results to any potential of the form of Eq. 2.

5.1. Mass anomaly

We consider a spherical body of mass M and radius R, with a mass anomaly ma sitting on its

equator. The potential U(r) then takes the form (Sicardy et al. 2019)

U(r) = −GM
r
− GMµ

R

{
1

2

+∞∑
m=−∞

[
b
(m)
1/2

( r
R

)
− qδ(|m|,1)

( r
R

)]
cos(mθ)

}
, (18)

where q = Ω2R3/GM is the rotation parameter, µ = ma/M is the normalized mass anomaly, b
(m)
1/2 is

the classical Laplace coefficient b
(m)
γ (α) = (2/π)

∫ π
0

cos(mθ)/[1 + α2 − 2α cos(θ)]γdθ and the symbol

δ(|m|,1) is the Kronecker delta function stemming from the indirect part of the potential in U(r), while

the terms b
(m)
1/2 describe the direct part of the potential. This potential is formally identical to that

caused by a satellite on a circular orbit (corresponding to q = 1), except that the mass anomaly

revolves at angular velocity Ω (instead of the keplerian velocity of a satellite) at the surface of the

body. This effect is encapsulated in the parameter q.
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(a) (c)

(b)
(d)

(e)

(f)

m=	-5
j=	1
n/Ω=	5/6

m=	-5
j=	3
n/Ω=	5/8

m=	+1
j=	2
n/Ω=	1/-1

m=	-2
j=	4
n/Ω=	2/6

m=	-1
j=	2
n/Ω=	1/3

m=	+2
j=	4
n/Ω=	2/-2

Figure 2. Pole-on view of various m/(m− j) resonant periodic orbits around a body that is either a sphere

with a mass anomaly sitting at its equator, or an elongated ellipsoidal object. The grey crosses correspond

to the radius of the corotation orbit, where particles revolve at the same angular speed as the spin rate

of the body. Each orbit has an eccentricity of 0.15. The blue dots mark the self-crossing points. (a) The

periodic orbit corresponding to the 5/6 (first-order) outer Lindblad resonance. (b) The same for the 5/8

outer (third-order) resonance. The orbit has 3 braids, 5 identical sectors and |m|(j − 1) = 10 self-crossing

points, thus satisfying Eq. 17. (c) The retrograde “corotation” orbit, actually corresponding to the second-

order retrograde resonance 1/-1. (d) The true twin of Case (c), corresponding to the 1/3 outer resonance.

The two orbits (c) and (d) have the same kinematics and same dynamical behaviors. They also are the only

periodic orbits with a single self-crossing point (|m′|(j′ − 1) = 1). (e) The same as Case (c), but with an

ellipsoidal central body. The resonance is now of order four and is labelled as 2/-2. The cases (c) and (e)

correspond to false twins, with same kinematics but different orders, hence different dynamical behaviors.

(f) The true twin orbit of Case (e), corresponding to the 2/6 fourth-order outer resonance.

The coefficients Ūm,j(α) are calculated using the formal expansions of the disturbing potential due

to a satellite on a circular orbit, see MD00/EM00. For instance, consider the first-order resonant

argument φm,1 = mλ′ − (m − 1)λ − $ with m > 0 corresponding to an external perturber. The
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aforementioned references then provide9

Ūm,1(α) = −GMµ

R
f27, (19)

where

f27 =
1

2
[−2m− αD][b

(m)
1/2 (α)− qδ(|m|,1)α], with D =

d

dα
. (20)

The factor f27 can be re-written

f27 = F27

[
b
(m)
1/2 (α)− qδ(|m|,1)α

]
, (21)

where F27 = (1/2)[−2m−αD] is now a linear operator. Note that we have included here the indirect

part of the potential, qαδ|m|,1. It is easy to verify that the operator Fn can be generically applied to

that indirect term, so that there is no need to look at the entries of the indirect parts in the tables10.

Actually, since the indirect part of the potential is linear in α, the differential operators Dp = dp/dαp

applied to the indirect term reduce the simple form

αpDp = αδ(p,1). (22)

For m < 0, then the factor usually considered in Eq. 19 is f31 instead of f27. However, this com-

plication is not necessary, as f31 is a mere avatar of f27, that can be deduced from it through the

transformation m → 1 −m and α → 1/α. Note that in doing so, we may have α > 1. This poses

a priori a problem from a computational point of view, as classical series expansions of b
(m)
1/2 (α) use

series in powers of α that converge only for α < 1. However, this problem is easily resolved by using

the identity b
(m)
1/2 (α) = b

(m)
1/2 (1/α)/α.

The same approach can be used for any resonance m/(m − j), considering only the entries with

cosine arguments of the form mλ′− (m− j)λ−$ in order to find Fn (in practice, the entries labeled

“4Dj.1” in MD00/EM00). Then the fact that the perturber is internal or external is automatically

accounted for through the values of m and j. So, the term Um,j(α) in Eq. 13 is given by

Ūm,j(α) = Fn

[
−
(
GMµ

R

)
[b

(m)
1/2 (α)− qδ(|m|,1)α]

]
. (23)

9 Note that MD00/EM00 denote the azimuthal number j, while we use m here.
10 This point is mentioned in Agnor & Lin (2012), p. 6.
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Table 1. Resonant terms Ūm,j(α) (Eq. 13)

Order j Ūm,j Operators Fn (Eq. 24)

1 2eF27[Um(α)] cos(φm,1) F27 = (1/2)[−2m− αD] (Lindblad resonances)

2 2e2F45[Um(α)] cos(2φm,2) F45 = (1/8)[−5m+ 4m2 + (−2 + 4m)αD + α2D2]

3 2e3F82[Um(α)] cos(3φm,3) F82 = (1/48)[−26m+ 30m2 − 8m3 + (−9 + 27m− 12m2)αD

+(6− 6m)α2D2 − α3D3]

4 2e4F90[Um(α)] cos(4φm,4) F90 = (1/384)[−206m+ 283m2 − 120m3 + 16m4

+(−64 + 236m− 168m2 + 32m3)αD

+(48− 78m+ 24m2)α2D2 + (−12 + 8m)α3D3 + α4D4]

Note—The operators Fn are found in Murray & Dermott (2000) or Ellis & Murray (2000). The resonant

argument φm,j is given in Eq. 14 and D is the radial derivative operator, D = d/dα. When applied to

indirect terms, αpDp = αδ(p,1) (Eq. 22). In the case of a homogeneous triaxial ellipsoid, the operator αpDp

reduces to a multiplicative factor αpDp = (−1)p(|m|+ 1)...(|m|+ p) (Eq. 31).

Comparing Eqs. 2 and 18, from the unicity of the Fourier expansion, and from the linearity of the

operators Fn, we finally obtain for a generic potential as given by Eq. 2

Ūm,j(α) = 2Fn[Um(α)]. (24)

This is the central equation of this Section, as it gives the amplitude Ūm,j(α) of any m/(m − j)

resonance term, whether internal or external, and whether direct or indirect in nature, and for any

potential of the form of Eq. 2, i.e. satisfying the conditions (i)-(iii) at the start of Section 2. As a

word of caution, note that if Eq. 1 is used instead of Eq. 2, then we must use Ūm,j(α) = Fn[Um(α)]

instead of Eq. 24.

The operators Fn for resonances of order 1, 2, 3 and 4 are listed in Table 1.

5.2. Triaxial homogeneous ellipsoid

We now consider the example of a triaxial homogeneous ellipsoid with semi-axes A > B > C,

rotating around its minor axis C, see details in Sicardy et al. (2019); Sicardy et al. (2020). The

reference radius R of the ellipsoid is defined by

3

R2
=

1

A2
+

1

B2
+

1

C2
, (25)
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and its elongation and oblateness are measured by the dimensionless parameters ε and f

ε =
A2 −B2

2R2
and f =

A2 +B2 − 2C2

4R2
. (26)

Because of the symmetry of the body, its potential is invariant under a π-rotation, so that only

even values of m appear in the Fourier expansion in Eq. 2, thus eliminating the indirect part of the

potential. Posing m = 2p, the resonance condition 7 now reads

n

Ω
∼ 2p

2p− j
, (27)

which eliminates (among others) every other Lindblad resonances, keeping only those with m even.

For instance, the 4/3 resonance (m = 4, j = 1) survives as a Lindblad resonance, while the 5/4

resonance vanishes, leaving its place to the second-order resonance 10/8 resonance (m = 10, j = 2).

At lower order in ε and f , U(r) is given by Sicardy et al. (2019); Sicardy et al. (2020)

U(r) = −GM
R

+∞∑
m=−∞

(
R

r

)|m|+1

ε|m/2|S|m/2| cos (mθ) (m even), (28)

where S|p| is recursively defined by

S|p|+1 = 2
(|p|+ 1/4)(|p|+ 3/4)

(|p|+ 1)(|p|+ 5/2)
× S|p| with S0 = 1. (29)

By comparing Eqs. 2 and 28, we obtain

Um(α) = −
(
GM

R

)
ε|m/2|S|m/2|
α|m|+1

(m even), (30)

where again α is given by Eq. 12. Due to the form of Um(α), a power of α, the differential operator

αpDp reduces here to a mere multiplicative factor

αpDp = (−1)p(|m|+ 1)...(|m|+ p) (m even), (31)

so that the operators Fn in Table 1 are multiplicative factors that are polynomial functions of m and

|m|. From Eq. 24,

Ūm,j(α) = −
(
GM

R

)
ε|m/2|

(
2S|m/2|Fn
α|m|+1

)
ej cos(jφm,j) (m even), (32)

This is a convenient way to express Ūm,j(α) as the product of
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1. a potential term −GM/R that globally scales the problem in terms of mass and length,

2. a dimensionless term ε|m/2| that measures the departure of the body from axisymmetry (akin

to a mass anomaly),

3. a dimensionless factor 2S|m/2|Fn/α
|m|+1 that is intrinsic to the resonance, i.e. to the azimuthal

number m (Table 1) and the order j, through the value of α,

4. a term ej that defines the resonance order, and

5. a trigonometric term cos(jφm,j), where φm,j is defined by Eq. 14.

In order to isolate what is intrinsic to the resonance geometry and to the non-axisymmetry of the

body, I define the strength of a m/(m− j) resonance as the dimensionless coefficient

Sm,j = ε|m/2|
(

2S|m/2|Fn
α|m|+1

)
(m even). (33)

The factors Fn are given in Table 1 and S|m/2| is defined in Eq. 29. The factor α can be calculated

from the condition jκ(a) = m[n(a)− Ω] and the expressions of n(a) and κ(a) as a function of GM ,

ε and f . To lowest order in ε and f , we have from Eq. 8 and Sicardy et al. (2019); Sicardy et al.

(2020)11

n2(r) ∼ GM

a3

[
1 +

3f

5

(
R

a

)2
]

and κ2(r) ∼ GM

a3

[
1− 3f

5

(
R

a

)2
]
, (34)

and α = a/R can be numerically determined through an iterative process if f is sufficiently small,

see e.g. Renner & Sicardy 2006.

As examples, the factors Sm,jej are listed in Table 2 in the cases of Chariklo and Haumea, assumed

to be homogeneous triaxial bodies. The following points can be noted:

1. because of the term ε|m/2|, the resonance strength rapidly tends to zero as m tends to infinity,

i.e. as one approaches the corotation radius, see an example in Fig. 2 of Sicardy et al. (2019).

This contrasts with the case of a perturbing satellite, for which Sm,j increases as m increases

(for j fixed), since the particles orbit closer and closer to the satellite,

11 If need be, higher order terms in f and ε can be introduced in Eq. 34, using the expansions of Sicardy et al.

(2019); Sicardy et al. (2020).
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2. some resonances are not replicated Table 2 (symbols ****) because only the lowest order in

eccentricity has been considered for a given ratio n/Ω. For instance, the m = −2, j = 2

case, corresponding to the second-order εe2-resonance (n/Ω = 2/4), is not considered in its

fourth-order version ∝ ε2e4 with m = −4, j = 4 (n/Ω = 4/8).

6. CONCLUDING REMARKS

In this paper, I have investigated the structure of the jκ = m(n − Ω) sectoral resonances in the

equatorial plane of a non-axisymmetric object rotating at rate Ω. The cases j = 0 (corotation) and

m = j (apsidal) are not studied here. Fig. 1 summarizes the general taxonomy for those resonances

and Fig. 2 illustrates some of the results on the structure of resonant orbits.

The kinematic structure of a resonant orbit associated with (m, j) is entirely encapsulated in the

couple (m′, j′), the irreducible (relatively prime) version of (m, j). Thus, the kinematic structure of

the orbit only depends on n/Ω ∼ m/(m − 1) = m′/(m′ − j′), i.e. on the resonance location, and

is independent of the nature of the potential. More precisely, the resonant orbit has j′ braids, |m′|

identical sectors and |m′|(j′ − 1) self-crossing points.

The existence of a resonance, and therefore its order j for a given n/Ω ratio, depends on the

symmetry of the potential. In particular, a potential that is invariant under a 2π/k-rotation creates

only resonances of the form kp/(kp − j). This is why, for instance, the second-order 1/3 resonance

around a spherical body with a mass anomaly, which has m = −1, j = 2, k = 1, is replaced by the

fourth-order resonance 2/6 around a homogeneous ellipsoid, which has m = −2, j = 4, k = 2.

Resonances that have opposite m and same j have periodic orbits that possess the same kinematic

structure and the same order, i.e. the same dynamical behavior. Here, they are called true twin

resonances. Resonances with opposite m′ and same j′, but different |m| and j are called false twin

resonances, because they correspond to the same kinematic, but to different dynamical behaviors.

A retrograde resonance (n/Ω < 0) is always of higher order than the corresponding prograde

resonance occurring at the same radius, but with n/Ω > 0. This shows that there are no retrograde

Lindblad (j = 1) resonances.
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Table 2. Resonance strengths around homogenous ellipsoids

Azimuthal number

m→ -8 -6 -4 -2 2 4 6 8

Order j ↓ Charikloa

1 0.0105ε4e 0.0207ε3e 0.0439ε2e 0.102εe inside −0.0408ε2e −0.0200ε3e −0.0103ε4e

210 [8/9] 214 [6/7] 223 [4/5] 250 [2/3] [2/1] 169 [4/3] 178 [6/5] 182 [8/7]

2 **** 0.0641ε3e2 **** 0.143εe2 apsidal **** 0.0336ε3e2 ****

223 [8/10] 232 [6/8] 250 [4/6] 300 [2/4] [2/0] [4/2] 160 [6/4] 169 [8/6]

3 0.125ε4e3 **** 0.185ε2e3 0.190εe3 inside inside **** inside

237 [8/11] 250 [6/9] 275 [4/7] 348 [2/5] [2/-1] [4/1] [6/3] [8/5]

4 **** 0.331ε3e4 **** 0.251εe4 0.00251εe4 **** inside ****

250 [8/12] 267 [6/10] 300 [4/8] 392 [2/6] 196 [2/-2] [4/0] [6/2] [8/4]

Order j ↓ Haumeab

1 0.0163ε4e 0.0294ε3e 0.0570ε2e 0.121εe inside inside inside inside

1238 [8/9] 1263 [6/7] 1313 [4/5] 1463 [2/3] [2/1] [4/3] [6/5] [8/7]

2 **** 0.0937ε3e2 **** 0.171εe2 apsidal **** inside ****

1313 [8/10] 1363 [6/8] 1463 [4/6] 1752 [2/4] [2/0] [4/2] [6/4] [8/6]

3 0.204ε4e3 **** 0.248ε2e3 0.229εe3 inside inside **** inside

1388 [8/11] 1463 [6/9] 1609 [4/7] 2025 [2/5] [2/-1] [4/1] [6/3] [8/5]

4 **** 0.500ε3e4 **** 0.302εe4 0.00286εe4 **** inside ****

1463 [8/12] 1561 [6/10] 1752 [4/8] 2285 [2/6] 1164 [2/-2] [4/0] [6/2] [8/4]

aUsing M = 6.3× 1018 kg, Trot = 2π/Ω = 7.004 h, A×B × C = 57× 139× 86 km, R = 115 km, f = 0.20,

ε = 0.61 (Leiva et al. 2017).

bUsing M = 4.006× 1021 kg, Trot = 3.915341 h, A×B ×C = 1161× 852× 513 km, R = 712 km, f = 0.55,

ε = 0.76 (Ortiz et al. 2017).

Note—In each box, the factor Sm,jej is calculated for the specified values of m and j, using Eq. 33. Below

each factor are the corresponding resonant radius (km) and the ratio [n/Ω]. The term “inside” means that

the resonance formally occurs inside the physical volume of the body, and is thus unphysical. Note that the

apsidal resonances also occur formally inside the body, and are not treated here. The **** symbols indicate

resonances that are already listed elsewhere in the Table under a lower order version, see text.
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The resonance strengths can be calculated using a unique operator (for a given couple (m, j)) that

acts on the direct and indirect parts of the potential, and that is valid for inner, outer, prograde

and retrograde resonances, see Eq. 24. These operators are in fact the classical operators Fn used

for satellite perturbations. In the case of a homogeneous triaxial ellipsoid, they reduce to mere

multiplicative factors (Table 1) that are easily implemented in numerical schemes. Examples are

given in Table 2 for Chariklo and Haumea, assumed to be homogeneous triaxial ellipsoids.

This study is intended to be general enough to serve in a broad range of contexts. For instance,

the results can easily be generalized in cases where the central body has several equatorial mass

anomalies. Then, it is enough to split the potential in elementary, single-anomaly potentials, and

accounting for the fact that those potentials are out of phase.

As mentioned earlier, Eq. 16 can be seen as describing a streamline of particles in a collisional disk.

Then difficulties arise because self-crossing cause singularities in the hydrodynamical equations that

describe the flow of particles near the resonance. Moreover, and except for the Lindblad resonances,

these equations involve non-linear perturbations because they are of order j > 1 in eccentricity, a

further source of complications.

However, not having the appropriate hydrodynamical equations does mean that those resonances

have no effects on the disk. In that context, it would be interesting to use works already done

on granular flows or kinetic theories to describe neighbor-streamline crossings in waves excited by

Lindblad resonances, see e.g. Borderies et al. (1985); Shu et al. (1985). Another approach is to

rely on collisional codes that include a realistic description of particulate collisions in rings. This

can be relevant to Chariklo’s and Haumea’s rings, as both ring systems are found to orbit near the

second-order 1/3 (or fourth-order 2/6) resonance with their host body (Ortiz et al. 2017; Sicardy

et al. 2020), a subject of future works.

The work leading to these results has received funding from the European Research Council under

the European Community’s H2020 2014-2020 ERC Grant Agreement n◦ 669416 “Lucky Star”. I
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