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THE BETTI MAP ASSOCIATED TO A SECTION OF AN ABELIAN SCHEME

Y. ANDRÉ, P. CORVAJA, U. ZANNIER

(WITH AN APPENDIX BY Z. GAO)

ABSTRACT. Given a point ξ on a complex abelian variety A, its abelian logarithm can be
expressed as a linear combination of the periods ofA with real coefficients, the Betti coor-
dinates of ξ. When (A, ξ) varies in an algebraic family, these coordinates define a system
of multivalued real-analytic functions. Computing its rank (in the sense of differential ge-
ometry) becomes important when one is interested about how often ξ takes a torsion value
(for instance, Manin’s theorem of the kernel implies that this coordinate system is constant
in a family without fixed part only when ξ is a torsion section).

We compute this rank in terms of the rank of a certain contracted form of the Kodaira-
Spencer map associated to (A, ξ) (assuming A without fixed part, and Zξ Zariski-dense
in A), and deduce some explicit lower bounds in special situations. For instance, we
determine this rank in relative dimension ≤ 3, and study in detail the case of jacobians of
families of hyperelliptic curves.

Our main application, obtained in collaboration with Z. Gao, states that if A → S is
a principally polarized abelian scheme of relative dimension g which has no non-trivial
endomorphism (on any finite covering), and if the image of S in the moduli space Ag
has dimension at least g, then the Betti map of any non-torsion section ξ is generically a
submersion, so that ξ−1Ators is dense in S(C).
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1. INTRODUCTION I: MOTIVATION.

1.1. Let A → S be an abelian scheme of relative dimension g over a (non necessarily
complete) complex algebraic variety, and let ξ : S → A be a section. We assume that ξ is
not identically torsion, i.e. does not take value in the kernel A[n] of multiplication by any
positive integer n in A. A general problem which arises in a number of contexts concerns
the distribution of torsion values of ξ, or more accurately, of the points s ∈ S such that
ξ(s) is a torsion point on the abelian variety As.

Let us introduce the closed subschemes of S:

ξ−1A[n] = {s ∈ S : nξ(s) = 0}, n = 1, 2, . . .

SinceA[n] is finite etale over S, it is the disjoint union of closed subschemes corresponding
to exact m-torsion for m | n, and ξ−1A[n] decomposes accordingly. Each non-empty
component has codimension≤ g in S, in virtue of Serre’s codimension theorem [33, Th. 3,
V-18]. In the general framework of Pink’s conjectures1, the following heuristic dichotomy
then arises:
(A) When dimS < g, one expects under natural assumptions that ξ−1Ators is contained
in
⋃N
n=1 ξ

−1A[n] for some N , hence is not Zariski-dense. This is a typical question in the
theory of “unlikely intersections”, falling into the framework of the Pink-Zilber conjecture
(see [7]).
(B) When dimS ≥ g, one expects on the contrary, under natural assumptions to be dis-
cussed in the sequel, that ξ−1Ators is dense, even in the complex topology. This will be
the guiding thread of this work.

1.2. A useful tool to investigate the distribution of torsion values is provided by the so-
called Betti map: any complex abelian variety A of dimension g may be presented as a
complex torus Cg/L ∼= (L ⊗Z R)/L, and every point ξ of A may then be identified by its
2g real coordinates in a mesh of the lattice L. The aim of this paper is to understand how
these so-called “Betti coordinates” vary when (A, ξ) moves in an algebraic family; in fact,
one gets in this way a multivalued real-analytic map β, the Betti map, from the parameter
space S to R2g .

While this problem could have been raised in the XIXth century, we are not aware of any
trace until recent occurrences in algebraic and diophantine geometry, where the relevance
of the Betti map arises from the fact that its rational values correspond to torsion values of
the section ξ.

1.3. Here is a sample of classical or recent occurrences of torsion value problems and/or
Betti maps.

(i) What may be the first explicit connection between torsion value problems and Betti
maps can be found in a celebrated paper by Yu. Manin [23]. He connected the map with
differential operators, leading to what is nowadays, after Grothendieck, called the Gauss-
Manin connection (for families of curves). A byproduct of his analysis was a characteriza-
tion of the cases when the Betti map is locally constant. If the abelian family has no fixed
part, he proved that the Betti coordinates are locally constant if and only if these constants
are rational, i.e. if and only if the section is identically torsion2.

(ii) Torsion values occur in connection to Poncelet’s game and its higher dimensional
generalizations in a paper by Ph. Griffiths and J. Harris [15]: given two conics, construct a

1formulated in [30] and further discussed in [31]; see also the third author’s book [38], especially chapter 3).
2for the convoluted story of the proof of this theorem, see for instance [5][3, §1].
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polygon which is inscribed in one conic and circumscribed to the other one. Jacobi proved
that the pair of conics determines an elliptic curve with a given point, such that such a
polygon can be constructed if and only if the given point is torsion. Following Jacobi,
Griffiths and Harris took a “variational approach” to this game, by varying the two conics,
so obtaining a section of an elliptic family where the base parametrizes the pairs of conics;
again torsion comes into play, being connected to the existence of such a polygon (and
to the finiteness of the game). They also considered a three-dimensional situation, where
conics are replaced by quadric surfaces and polygons by polyhedra. Again, the Betti map
appears linking the behaviour of the game with variations of the quadrics. In this context,
the density of the torsion values in the base is far from obvious, and they prove it only
in certain hypersurfaces of the base. More recently, the issue of torsion in the context of
Poncelet’s theorem has been revisited by N. Hitchin, and turned out to be related to the
Painlevé VI equation [17] (see also work in progress by G. Wüstholz).

(iii) Torsion values and the Betti map also occur in the context of Pell equations in
polynomials, which were already studied by Abel in connection with integration of dif-
ferentials; motivated by this context, B. Mazur recently raised an issue concerning the
“Pellian” hyperelliptic curves in the space of all hyperelliptic curves of given genus (see
[7]).

(iv) These Pell equations in polynomials have number theoretic significance, but also
appear in investigations related to the spectral theory of periodic discrete Schrödinger equa-
tions (see [19]).

(v) The Pell equation involving the hyperelliptic family of given genus, but now restrict-
ing to field of real numbers, appears also in an issue raised by J.-P. Serre, in connection
with an incomplete argument in a classical paper by R. Robinson [32]. An argument for
filling this gap was given by B. Lawrence, and we offer an independent one in section 9.

(vi) Still from a different perspective, C. Voisin [36] considered very recently a closely
related problem, this time motivated by the investigation of Chow groups. In the context of
Lagrangian fibrations on hyperkähler manifolds, she uses methods of her own for the case
g ≤ 2, and our Corollary 2.2.4 to prove the desired conclusion for g ≤ 4.

(vii) Betti coordinates also occur in a forthcoming work by Z. Gao and Ph. Habegger
on the geometric Bogomolov conjecture [12].

1.4. In this paper, we undertake a systematic study of the Betti map β associated to (A, ξ).
We relate the derivative of the Betti map to the Kodaira-Spencer map; under a suitable
condition on the abelian scheme, expressed in terms of the Kodaira-Spencer map, we prove
that the Betti map of every section not contained in an algebraic subgroup is a submersion;
in the case of an abelian scheme whose generic fibre has no non-trivial endomorphisms,
our result is essentially best possible (see Theorem 2.3.1).

We then deduce the density of torsion values, for every section, under some fairly natural
hypotheses.

Functional transcendence also appears, through a monodromy theorem by the first au-
thor, and also via a very recent result, namely the proof by N. Mok, J. Pila, J. Tsimerman
[25] of a version of Ax-Schanuel conjecture in the context of subvarieties of the moduli
space Ag and its uniformization.

2. INTRODUCTION II: MAIN RESULTS.

2.1. Rank of the Betti map and torsion values. Let A → S be an abelian scheme of
relative dimension g over a smooth complex algebraic variety of dimension d, and let ξ :
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S → A be a section. Let β : S̃ → R2g be the associated (real analytic) Betti map, where S̃
denotes the universal covering of S(C) (cf. §3 for a precise definition and discussion of this
map)3. In this paper, we focus on the (generic) rank of β as defined in differential topology,
namely, the maximal value of the rank of the derivative dβ(s̃) when s̃ runs through S̃. We
denote it by rkβ.

As explained above, the motivation for studying rkβ comes from the relation to torsion
values of ξ. The following proposition, which is a simple consequence of the constant rank
theorem and of the fact that Z[1/p] is dense in R, makes this relation explicit.

2.1.1. Proposition. The following are equivalent:

(1) rkβ ≥ 2g,
(2) β is submersive on a dense open subset of S̃,
(3) the image of β contains a non-empty open subset of R2g ,

and imply4:
(4) for every prime p, ξ−1A[p∞] is dense in S(C) (for the complex topology),
(5) ξ−1Ators is dense in S(C). �

Because rkβ is invariant by dominant pull-back S′ → S, one may assume that for fixed
n ≥ 3, A[n] is a disjoint union of copies of S (i.e. n-torsion is S-rational). One may also
replace A by any isogenous abelian scheme and ξ by the corresponding pull-back, and
assume in particular that A is principally polarized.

This gives then rise to a modular map µA : S → Ag,n such that A is the pull-back by
µA of the universal principally polarized abelian scheme (with level n structure) Xg,n on
Ag,n. Moreover ξ gives rise to a modular map µξ : S → Xg,n lifting µA

A

��

// Xg,n
��

S

µξ ==

µA
// Ag,n

such that ξ is the pull-back by µξ of the diagonal map Xg,n → Xg,n ×Ag,n Xg,n.
If dµξ denotes the dimension of the image of µξ, we have the upper bound

(2.1) rkβ ≤ 2 ·min(dµξ , g).

A plausible guess is that if Zξ is Zariski-dense in A, and A has no fixed part (over any
finite etale covering of S), (2.1) is an equality5.

2.2. Formulas for rkβ. Passing to universal coverings, µA lifts to a map

µ̃A : S̃→Hg, s̃ 7→ Z(s̃),

toward the Siegel space, where Z = Ω2Ω−1
1 is given in terms of abelian periods as usual.

Let also L : S̃ → Cg stand for an abelian logarithm of the section ξ : S → A multiplied
on the right by Ω−1

1 (cf. 4.1).
Our first formula is analytic:

3actually, it also depends on a choice of branch of abelian logarithm λ, cf. 3.1.
4we do not know whether the converse holds: the image of β might be dense without containing a dense open

subset.
5as Z. Gao pointed out [13], this guess should be slightly amended to take into account the fact that the right

hand side of (2.1) is not always additive in A/S.
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2.2.1. Theorem. Assume that A has no fixed part (over any finite etale covering of S),
and Zξ is Zariski-dense in A. Up to replacing S by an affine dense open subset, we may
assume that its tangent bundle is free, generated by d derivations ∂1, . . . , ∂d. Then

(2.2) rkβ = 2 · max
µ0,...,µg∈Cg+1

max
s̃∈S̃

rk
(
µ0∂iLj(s̃)−

∑k=g
k=1 µk∂iZkj(s̃)

)
ij
.

By letting µ0 = 0, one deduces the following criterion for generic submersivity, which
does no longer involve the section:

2.2.2. Corollary. In the same situation, assume that d ≥ g and that rkβ < 2g. Then
for any s̃ ∈ S̃ and any µ ∈ Cg , there exists a complex-analytic subvariety of S̃ passing
through s̃, of dimension ≥ d+ 1− g, on which Z.µ is constant.

Our second formula is nothing but an algebraic intrinsic reformulation of the former in
terms of Kodaira-Spencer maps (cf. §4.4). Recall the Kodaira-Spencer map of A is the
OS-linear map

(2.3) θA : TS ⊗ ΩA → H1
dR(A/S)/ΩA ∼= LieA,

induced by the Gauss-Manin connection. Note that the vector bundle ΩA of invariant
1-forms is the gr1-notch of the Hodge filtration, whereas its dual LieA appears as the
gr0-notch via the polarization (see §4.5 for a presentation and discussion of θA).

The Kodaira-Spencer map of the 1-motive [Z 1 7→ξ→ A] attached to (A, ξ) (in the sense of
[9, X]) is an enhanced version of θA
(2.4) θξ : TS ⊗ gr1 → gr0,

where gr1 = ΩA again, but gr0 is an extension of LieA by OS (cf. 4.5).
Assuming for simplicity that S is affine, we denote by

(2.5) θ$ξ : TS → LieA = (gr1)∨

the contracted map, for any section $ of (gr0)∨.

2.2.3. Theorem. Assume that A has no fixed part, and Zξ is Zariski-dense in A. Then

(2.6) rkβ = 2 · max
($0,...,$g)∈(gr0)∨

max
s∈S

rk θ$ξ (s).

By letting $0 = 0, one deduces the following criterion for generic submersivity in
terms of θA (which again does not involve the section)6:

2.2.4. Corollary. Under the same assumptions, if there exists ω ∈ ΓΩA such that the map

(2.7) θωA : TS→LieA, ∂ 7→ θA(∂ ⊗ ω),

has generic rank g, then rkβ ≥ 2g.

Let us give an indication on the method of proof of Theorem 2.2.1. For any ν ∈ C2g ,
let Iν be the d× g-matrix with entries ∂iΛj +

∑
k

νk∂iΩkj , where Λ is a vector of abelian

logarithms and Ωjk a matrix of abelian periods (cf. (4.5) below). The rank of dβ(s̃) can be
computed in terms of vanishing/non vanishing of minors of I−β(s̃) (cf. (4.7)). The point is
then to show that the vanishing of such a minor identically on S̃ implies the vanishing of
the corresponding minor of Iν for any ν.

6this is the criterion used in [36, th. 0.6]: the proof ot this criterion is presented in [36, §3] in a language more
congenial to Hodge theoretists.
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The idea is to use monodromy via a theorem about relative monodromy of abelian log-
arithms with respect to abelian periods [2, Th. 3]. A straightforward application does not
work directly because I−β is monodromy-invariant. The trick is that, after multiplication

by some power of det

(
Ω1 Ω̄1

Ω2 Ω̄2

)
, I−β becomes a polynomial in holomorphic and anti-

holomorphic multivalued functions on S, so that one can let two copies of π1(S) act on
O(S̃)⊗Ō(S̃), instead of standard monodromy (which corresponds to the diagonal action).

2.3. Applications. Let dµA ≤ d be the dimension of the image of the modular map µA.
Our main application, in collaboration with Z. Gao, is:

2.3.1. Theorem. (with Z. Gao) Assume that the abelian scheme A→ S has no non-trivial
endomorphism over any finite covering of S, and that the section ξ is non-torsion. Assume
moreover that dµA ≥ g. Then rkβ ≥ 2g, hence the set of points s such that ξ(s) is a
torsion point is dense in S(C).

(The first assumption means that the geometric generic fiber satisfies EndAC(S)
= Z).

This theorem is obtained by combining Corollary 2.2.2, a classification of the abelian
schemes under consideration (§6), and the recent theorem of Ax-Schanuel forAg by Mok,
Pila, Tsimerman (cf. App. 2).7

Besides, we study three situations where the rank of the Betti map can be proved to be
maximal by independent and simpler means. In §7, Using Corollary 2.2.4, an elementary
analysis of webs of quadrics, combined with a result of [4], allows to settle the case g ≤ 3:

2.3.2. Theorem. Suppose that the abelian scheme A → S has relative dimension g ≤ 3,
has no fixed part, and dµA ≥ g. Then for every section ξ not contained in a proper
subgroup scheme, rkβ ≥ 2g.

In §8, we settle the hyperelliptic case: letA→M0,2g+2 be the jacobian of the universal
hyperelliptic curve of genus g > 0. By Torelli’s theorem, one has dim µA(S) = 2g − 1.

2.3.3. Theorem. Let S be a finite cover ofM0,2g+2 and ξ : S → A be any non-torsion
section. Then rkβ ≥ 2g.

While this may be considered as a consequence of the previous theorem by [27] or
[1], we offer an elementary proof based on Corollary 2.2.4 combined with an explicit
computation of the Kodaira-Spencer map.

As mentioned above, a real version of the hyperelliptic case is of particular interest and
is treated in section 9 (independently of the main body of the paper); this is relevant to an
issue recently raised by Serre, who pointed out a missing justification in an old work of
Robinson on confinement of conjugates of algebraic integers [32]. We realized that this
issue, although concerning only real points, fits into the present context and can be treated
considering Betti maps. For a point s = (s1, . . . , s2g) ∈ S = P1 \ {0, 1,∞})2g with
pairwise distinct coordinates, consider the corresponding genus g hyperelliptic curve

y2 = x(x− 1)(x− s1) · · · (x− s2g).

It has two points at infinity, denoted as∞+,∞−. Denoting again by A → S the jacobian
scheme of the curve defined by the above equation, we consider the section ξ associating
to each s ∈ S the class of the divisor∞+ −∞−. The abelian scheme and the section are

7In a previous version, an explicit link of these issues with the ”Ax-Schanuel conjecture” was pointed out.
Very recently this conjecture has been proved, making thus possible to apply it to our problem, as done by Gao
in the appendix.
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both defined over the reals, so that for each real point s ∈ S(R) the value ξ(s) is a real
point of the abelian variety As. The tangent space LieA also inherits a real structure, and
we can define the real version of the Betti map as a map βR : S̃(R) → Rg . We prove that
βR is generically a surjection, thus filling the gaps related to Serre’s question.

3. THE BETTI MAP.

3.1. Betti coordinates on an abelian variety. Let us first clarify the “constant case”, i.e.
when the base S is a point. Given a complex abelian variety A, we identify its period
lattice L := H1(A(C),Z) with the kernel of the exponential map

(3.1) expA : LieA→ A.

Given ξ ∈ A(C), we denote by Lξ the lattice in (L ⊗Z R) ⊕ R consisting of pairs (` ∈
LieA,m ∈ Z) such that expA(`) = mξ ; it sits in an extension

(3.2) 0→ L → Lξ
(`,m) 7→mξ→ Zξ → 0.

We fix a splitting λ : Zξ → Lξ (i.e. a branch of the “abelian logarithm”). On the other

hand, let us consider the first projection Lξ
(`,m)7→`→ LieA and its R-linear extension

Lξ ⊗Z R→ LieA . Since the composed map

(3.3) L ⊗Z R→ Lξ ⊗Z R→ LieA

is an isomorphism, we get a retraction Lξ ⊗Z R→ L⊗Z R, and the image of λ(ξ) ⊗ 1
in L ⊗Z R can be expressed, in terms of a basis γ of L, by 2g real coordinates, the Betti
coordinates of ξ 8.

In terms of abelian integrals, the Betti coordinates of ξ are nothing but the 2g real
solutions βi of the system of g inhomogeneous linear equations with complex coefficients

(3.4)
∫ ξ

0

ωj =

2g∑
i=1

βi

∫
γi

ωj , j = 1, . . . g .

3.2. The Betti map attached to a section of an abelian scheme. As explained above, we
are interested in the relative setting, that is, in the variation of the Betti coordinates in the
context of a family of abelian varieties endowed with a section.

Let S be a smooth connected complex algebraic variety, and let A
f→ S be an abelian

scheme of relative dimension g. Its Lie algebra LieA is a rank g vector bundle on S.
Let ξ : S → A be a section of f . The above constructions extend as follows. Let S̃ be

a universal covering of S(C), with its canonical structure of complex analytic manifold.
The kernel of expA is a locally constant sheaf on S(C), which can be viewed as a constant
lattice L on S̃. Similarly, one constructs an exact sequence of lattices on S̃

(3.5) 0→ L → Lξ
(`,m)7→m→ Zξ → 0

and one fixes a splitting λ : Zξ → Lξ.
Let S̃real be the real-analytic manifold underlying S̃, and let OR

S̃real
(resp. OS̃real )

be the sheaf of real-valued (resp. complex valued) real-analytic functions on S̃. The the
composition L ⊗Z OR

S̃real
→ Lξ ⊗Z OR

S̃real
→ LieA ⊗OS OS̃real is an isomorphism

8This terminology, due to D. Bertrand, refers to the fact that these are indeed real-analytic coordinates on any

simply-connected domain in A(C), and that Lξ is nothing but the Betti realization of the 1-motive [Z 1 7→ξ→ A]

attached to (A, ξ) in the sense of [9, X].
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(relative version of (3.3)), whence a canonical retraction Lξ ⊗Z OR
S̃real

→ L ⊗Z OR
S̃real

,
and the image of λ(ξ) ⊗ 1 as a global section of L ⊗Z OR

S̃real
can be expressed, in terms

of a basis γ of the lattice L, by a real-analytic map

(3.6) β = βλ,γ : S̃real → R2g,

which we call the Betti map associated to (A, ξ), or to the smooth 1-motive [Z 1 7→ξ→ A] . It is
compatible with pull-back of (A, ξ) by any morphism S′ → S, with S′ smooth connected.

Pondering the nature of the Betti map, it is clear that its very definition pertains to real-
analytic geometry, but the main technical issues of this paper involve its subtle behaviour
with respect to the complex-analytic and algebraic ambient features.

To begin with, the interpretation of β in terms of abelian integrals being the same as
in (3.4) (“real” and “complex” being understood as “real-valued” and “complex-valued”
respectively), it shows that the fibers of β are complex-analytic subvarieties of S̃ (cf. 4.2).
The non-empty pre-images of the Betti map are complex subvarieties of dimension ≥
dimS − 1

2 rkβ (cf. [7, prop. 2.2]).

4. FROM BETTI TO KODAIRA-SPENCER.

In this section, we relate the derivative of the Betti map β at an arbitrary point s̃ ∈ S̃ to
the corresponding value θ$ξ (s) of the contracted Kodaira-Spencer map for some specific
parameter $ (depending on s̃). Although we work, as above, over a (smooth) complex
algebraic variety S for convenience, the metamorphoses of the derivative of the Betti map
which we display do not actually require the algebraicity of S.

4.1. Setting and notation. Let A→ S be an abelian scheme of relative dimension g over
a smooth connected algebraic C-variety of dimension d. For any holomorphic function g
on the universal covering S̃ of S, we denote by ḡ the conjugate antiholomorphic function.

The problems studied in this paper are Zariski-local on S, and insensitive to replacing
A by an isogenous abelian scheme. Therefore we may and shall assume henceforth that
i) S is affine and admits a system of global (etale) coordinates (z1, . . . , zd); we take

(∂1 = ∂
∂z1

, . . . , ∂d = ∂
∂zd

) as a basis of tangent vector fields to S, also viewed as a basis
of holomorphic derivations of O(S̃),
ii) the vector bundle LieA is trivial, i.e. ΓLieA is a free ΓOS-module of rank g ; its

dual is canonically isomorphic to the coherent sheaf ΩA on S of invariant 1-forms (a.k.a.
differentials of the first kind),
iii) the vector bundleH1

dR(A/S) is trivial,
iv) A is principally polarized.
We fix a basis (ω1, . . . , ωg) of global sections of ΩA ∼= LieA, and complete it into

a symplectic basis (ω1, . . . , ωg, η1, . . . , ηg) of H1
dR(A/S) (which carries the symplectic

form coming from the polarization).
We fix a symplectic basis (γ1, . . . , γ2g) of L.

We set Ω1 :=
(∫
γi
ωj
)
i,j=1,...g

, Ω2 :=
(∫

γi+g
ωj
)
i,j=1,...g

,Ω :=

(
Ω1

Ω2

)
,

The entries of Ω are holomorphic on S̃, and the g× g-matrices Ω1,Ω2 and the 2g× 2g-
matrix

(
Ω,Ω

)
are invertible at every point s̃ ∈ S̃.

Finally, we fix a section ξ of A/S and a determination λ of the abelian logarithm as in
3.1. We may and shall assume that

v) the extensionH1
dR([Z 17→ξ→ A]/S) ofH1

dR(A/S) by OS is trivial.
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We set Λ :=
(∫ ξ

0
ωj

)
j=1,...g

, a row of g holomorphic functions on S̃.

4.2. From real-analytic to holomorphic maps. We write the Betti map β = βλ,γ of the

1-motive [Z 17→ξ→ A] (in the basis (λ(ξ), γ) of Lξ) as a row with 2g entries: by definition,
λ(ξ) ≡

∑2g
1 βiγi in LR, so that

(4.1) Λ = βΩ.

In particular, the fibers β−1(b) of β are the complex-analytic subvarieties of S̃ defined by
Λ(s̃) = bΩ(s̃). From (4.1), one gets

(
Λ,Λ

)
= β

(
Ω,Ω

)
since β is real-valued, whence

(4.2) β =
(
Λ,Λ

) (
Ω,Ω

)−1
.

In particular, the entries of det
(
Ω,Ω

)
· β are polynomials in holomorphic and antiholo-

morphic functions on S̃.
It will be convenient to build the Jacobian matrix J = Jλ,γ of the Betti map using the

system of derivations (∂1, . . . , ∂d, ∂̄1 = ∂
∂z̄1

, . . . , ∂̄d = ∂
∂z̄d

):

(4.3) J =

∂1β1 . . . ∂1β2g

...
...

∂̄dβ1 . . . ∂̄dβ2g

 .

Differentiating (4.2), one gets

(4.4) ∂iβ
(
Ω,Ω

)
=
(
∂iΛ, 0

)
− β

(
∂iΩ, 0

)
, ∂̄iβ

(
Ω,Ω

)
=
(
0, ∂̄iΛ

)
− β

(
0, ∂̄iΩ

)
.

For any ν ∈ C2g , let Iν be the d× g-matrix with holomorphic entries

(4.5) (Iν)ij := ∂iΛj +
∑
k

νk∂iΩkj .

Combining equations (4.4) for i = 1, . . . , d, one gets

(4.6) J(s̃) ·
(
Ω,Ω

)
(s̃) =

(
I−β(s̃) 0

0 I−β(s̃)

)
(s̃),

so that for every s ∈ S̃,

(4.7) rk J(s̃) = rkJ(s̃)
(
Ω,Ω

)
(s̃) = 2 rk I−β(s̃)(s̃).

In particular, rk J(s̃) is even.

4.2.1. Remarks. (1) Just like det
(
Ω,Ω

)
·β, the entries of det

(
Ω,Ω

)
I−β are polynomials

in holomorphic and antiholomorphic functions on S̃.
2) On the other hand, the entries of I−β are monodromy-invariant (hence real-analytic
functions on S). Indeed, there is a natural action of the deck transformation group ∆ :=
Aut(S̃/S) on Lξ which preserves L, and for any δ ∈ ∆, one can write δγ = Mδγ and

δλ(ξ) = λ(ξ) +
∑
k

νδ,kγk (where the entries of Mδ and νδ are integers), whence (by

integration of holomorphic differentials along these cycles)

(4.8) Ω(δs̃) = MδΩ(s̃), Λ(δs̃) = Λ(s̃) + νδΩ(s̃).

Using (4.2), one gets βλ,γ(s̃) + ν = (βδλ,δγ(δs̃))Mδ, whence

(4.9) Jλ,γ(s̃) = Jδλ,δγ(δs̃)Mδ, I−β(s̃)(δs̃) = I−β(s̃)(s̃).
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This shows that rk β(s̃) depends only on the point s ∈ S under s̃. In fact the same
calculation shows that it does not even depend on the auxiliary choice of (λ, γ).

4.3. Going to the Siegel space Hg . We set Z := Ω2 · Ω−1
1 , L := Λ · Ω−1

1 and note that
Z takes values in Hg , i.e. Z is symmetric and =Z > 0 (where = stands for the imaginary
part). From Λ = βΩ, one gets

(4.10) β =
(
L,L

)(I I
Z Z

)−1

,

(where I stands for the g × g identity matrix), whence β = (β1, β2) with

(4.11) β1 + β2Z = L,

(4.12) β2 = =L(=Z)−1, β2 =
1

2
(−L(=Z)−1Z̄ + L̄(=Z)−1Z).

For any µ ∈ Cg , let Hµ be the d× g-matrix with holomorphic entries

(4.13) (Hµ)ij := ∂iLj +
∑
k

µk∂iZkj .

On denoting by β(s̃)1 the first half of the row β(s̃), one draws as above (cf. (4.3) (4.6)):

(4.14) J(s̃) ·
(
I I
Z Z

)
(s̃) =

(
H−β(s̃)1 0

0 H−β(s̃)1

)
(s̃).

A straightforward calculation shows that

(4.15) ∂Λ + ν∂Ω = (∂L+ ν2∂Z)Ω1 + (L+ ν1 + ν2Z)∂Ω1,

so that

(4.16) Hν2(s̃) · Ω1(s̃) = Iν(s̃)

if ν = (ν1 = −L(s̃) − ν2Z(s̃), ν2), i.e. if ν1Ω1 + ν2Ω2 = −Λ. For ν = −β(s̃), one
recovers (4.14) from (4.6) using (4.11); more generally,

(4.17) max
ν∈C2g

rk Iν(s̃) ≥ max
µ∈Cg

rkHµ(s̃).

4.4. From holomorphic to rational functions. We set M :=
(∫ ξ

0
ηj

)
j=1,...g

.

The (1 + 2g)× (1 + 2g)-matrix Yξ :=

1 Λ M
0 Ω1 N1

0 Ω2 N2

 is a full solution of the Gauss-

Manin connection attached to the family of 1-motives [Z 17→ξ→ A], which has the form9

(4.18) ∂Yξ = Yξ

0 `∂ m∂

0 R∂ S∂
0 T∂ U∂

 ,

where the entries of the last displayed matrix lie in O(S), and depend linearly on the tan-
gent vector field ∂ ∈ ΓTS . The advantage of going to the Siegel space, i.e. of considering
Hµ rather than Iν , appears in the following calculations based on (4.18):

(4.19) (∂L) · Ω1 = `∂ + (M − ΛN)T∂

9as in [4], we write this differential system in a slightly non-standard way, with the matrix of the connection
on the right so that the monodromy acts on the left. `∂ is essentially the row of rational functions which occur as
second member of the inhomogeneous scalar differential operator in Manin’s kernel theorem.
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while

(4.20) (∂Z) · Ω1 = ∂Ω2 − Ω2Ω−1
1 ∂Ω1 = (Ω2R∂ +N2T∂)− Ω2Ω−1

1 (Ω1R∂ +N1T∂)

= (N2 − Ω1Ω−1
1 N1)T∂ = tΩ−1

1 (tΩ1N2 − tΩ2N1)T∂ = 2πitΩ−1
1 T∂

(using the symmetry of Z and, at the end, the analogue of the Legendre relation for abelian
varieties).

Let s be the image of s̃ in S. For any µ ∈ Cg , let Gµ be the d× g-matrix with rational
entries

(4.21) (Gµ)ij := (`∂i)j +
∑
k

µk(T∂i)kj ∈ O(S).

It follows from (4.19) and (4.20) that

(4.22) HµΩ2 = GM−ΛN+2πiµ tΩ−1
1
,

and since for fixed s̃, µ 7→M(s̃)− Λ(s̃)N(s̃) + 2πiµ tΩ−1
1 (s̃) is an affine automorphism

of Cg , one concludes that

(4.23) max
µ∈Cg

rkHµ(s̃) = max
µ∈Cg

rkGµ(s).

4.5. Gµ and the Kodaira-Spencer map. Recall that for any variation V = (V,F i,∇) of
(mixed) Hodge structures on S, the Griffiths transversality condition ∇(F i) ⊂ F i−1 im-
plies that the (Gauss-Manin) connection ∇ induces OS-linear maps (the Kodaira-Spencer
maps) θi : TS ⊗ gri → gri−1, where gri = F i/F i+1 are the graded pieces of the Hodge
filtration (cf. [18, 1.3]). In case V comes from an abelian scheme or a 1-motive over S, the
Hodge filtration has only two steps: gr1 and gr0, so that there is only one Kodaira-Spencer
map θ : TS ⊗ gr1 → gr0 (cf. also [4, 1.4]).

Let us consider the family of 1-motives [Z 17→ξ→ A] defined by (A, ξ) [9, X]: in this case,

V = H1
dR([Z 1 7→ξ→ A]/S) is a vector bundle of rank 2g+ 1, and gr1 = ΩA. The associated

Kodaira-Spencer map is a morphism of vector bundles

(4.24) θξ : TS ⊗ΩA → gr0,

whose composition with the canonical projection gr0 → LieA is the usual Kodaira-
Spencer map of A:

(4.25) θA : TS ⊗ΩA → Ω∨A = LieA.

Conditions iii), iv), v) above imply that the Hodge-theoretic graded piece gr0 :=

gr0H1
dR([Z 17→ξ→ A]/S) is a trivial extension of LieA by OS . We denote by ω0 a lift-

ing of 1 in (gr0)∨, so that (ω0, ω1, . . . , ωg) form a basis of sections of (gr0)∨.
Using the basis (ω1, . . . , ωg) and the dual basis (cf. Notation (4.18)), it turns out that

the matrix of the contracted map θA,∂ : ΩA → Ω∨A is nothing but the symmetric matrix

T∂ , cf. [4, 1.4]. Similarly, the matrix of the contracted map θξ,∂ : ΩA → gr0 is
(
`∂
T∂

)
. It

follows that Gµ is the matrix of the contracted map

(4.26) θ$ξ : TS → Ω∨A = LieA, $ =

g∑
k=0

µkωk ∈ (gr0)∨, µ0 = 1.
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Combining (4.6), (4.16) and (4.22), one finally gets

(4.27) J(s̃) ·
(
Ω,Ω

)
(s̃) =

(
θ
$(s̃)
ξ (s) 0

0 θ
$(s̃)

ξ (s)

)
with $(s̃) = ω0 +

∑g
k=1(M − ΛN + 2πiβ2

tΩ−1
1 )k(s̃) · ωk, and β2 given by (4.12);

whence

(4.28) rk J(s̃) ≤ 2 max
$

rk θ$ξ (s).

Combining (4.7), (4.17) and (4.23), one also gets

(4.29) max
$

rk θ$ξ (s) ≤ max
ν∈C2g

rk Iν(s̃).

5. GENERIC RANK OF THE BETTI MAP.

In this section, we show that the generic rank of the (derivative of the) Betti map is
twice the generic rank of the contracted Kodaira-Spencer map θ$ξ for a generic value of
the parameter $. Here, the algebraicity of S is essential, as well as the assumptions of Th.
2.2.1:

(∗) Zξ is Zariski-dense in A, and A has no fixed part.

5.1. A strengthened form of Theorem 2.2.3.

5.1.1. Theorem. Under (∗), rk J = 2 · max
ν∈C2g

rk Iν .

Here, the ranks are the generic ranks. This implies the formula rk J = 2 max
$

rk θ$ξ of
Theorem 2.2.3, due to (4.28) and (4.29). This also implies Theorem 2.2.1, thanks to (4.14)
(or (4.17)).

Inequality ≤ in Theorem 5.1.1 follows from (4.7). If rkβ takes its maximal possible
value 2 min(d, g), we have equality since rk Iν ≤ min(d, g). Hence we may assume that

(∗∗) r := rkJ < 2 min(d, g).
Equivalently (by (4.7)): every minorM−β of order r + 1 in I−β vanishes identically

on S̃. We have to show that every minorMν of order r + 1 in Iν vanishes identically on
S̃ for every ν ∈ C2g .

5.2. Separation of the holomorphic and antiholomorphic variables. By Remark 4.2.1
(1), det(Ω,Ω)rM−β is a polynomial in holomorphic functions and antiholomorphic func-
tions on S̃, i.e. lies in the image of the “diagonal” ring homomorphism

(5.1) ι : O(S̃)⊗ Ō(S̃)→ O(S̃real), f(z)ḡ(w) 7→ f(z)ḡ(z).

5.2.1. Lemma. ι is injective.

Proof. If
∑
fi(z)ḡi(z) = 0, then

∑
fi(z)gi(w) ∈ O(S̃× S̃) vanishes on the real-analytic

subvariety of S̃ × S̃ given by the equation z = w̄, hence on the smallest complex-analytic
subvariety which contains it, which is S̃× S̃ (the computation being local, one may replace
S̃ by a open subset of Cd; looking at tangent spaces, the result follows by induction on d).
�

In fact, det(Ω,Ω)r.M can be written as a polynomial P in the components of
Λ, ∂Λ,Ω, ∂Ω and their complex-conjugates. By the previous lemma, one has

(5.2) P (Λ(s̃), ∂Λ(s̃),Ω(s̃), ∂Ω(s̃),Λ(s̃′), ∂Λ(s̃′),Ω(s̃′), ∂Ω(s̃′)) = 0

for any pair (s̃, s̃′) ∈ S̃2.
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5.3. Taking advantage of the monodromy: from a single equation to a parametrized
system of equations. If we temporarily fix s̃′, (5.2) becomes an identity in
C[Λ, ∂Λ,Ω, ∂Ω]. In particular, it is invariant under the monodromy group, which acts
on Λ and Ω by the formulas (4.8) (which are independent of s̃′). It is also invariant under
its Zariski closure, which coincides with the differential Galois group of (4.18).

According to [2, Th. 3], under assumption (∗), the kernel of the map of algebraic

monodromy groups {
(

1 νδ
0 Mδ

)
}Zarδ∈∆ → {Mδ}Zarδ∈∆ is Zariski-dense in C2g (this result

can be interpreted as a theorem of linear independence of abelian logarithms with respect
to periods, cf. also [3, §1] for a more concise and transparent proof Therefore, if one
replaces (Λ, ∂Λ) by (Λ + νΩ, ∂Λ + ν∂Ω) for any ν ∈ C2g , (5.2) still holds.

5.3.1. Remarks. (1) [2, Th. 3] relies on the “theorem of the fixed part” for the variation

of mixed Hodge structures attached to the 1-motive [Z ξ→ A] over S. In [2], this property
is checked by proving that the variation is “good” (which is established in lemma 5 of loc.
cit. when S is a curve, and one reduces to this case restricting to a sufficiently general
curve on S, or alternatively using the fact that “goodness” may be checked in dimension 1,
cf. also [37, Th. 2.2]), and then applying the theorems of Steenbrink-Zucker-Schmid about
good variations of mixed Hodge structures.

Here is a sketch of a much simpler proof of the “theorem of the fixed part” in this case:

passing to the Cartier dual of [Z ξ→ A], one deals instead with a semi-abelian scheme,
which allows one to conclude by the standard Deligne-Katz argument, using a suitable
relative compactification [18, 4.3.4].
(2) [2, Th. 3] deals with relative algebraic monodromy. It is not clear whether the same
maximality property holds for relative monodromy before taking Zariski closures10 (this is
an interesting open problem, but unrelated to our problem).
(3) Equation (5.2) expresses the annulation of an (arbitrary) minor of ι−1(I−β ·det(Ω,Ω))).
If one replaces (Λ, ∂Λ) by (Λ+νΩ, ∂Λ+ν∂Ω), then (by (4.2)) ι−1(β) becomes ι−1(β)+
νι−1((Ω,Λ)(Ω,Ω)−1), and ι−1(I−β · det(Ω,Ω))) becomes ι−1(Iν̆ · det(Ω,Ω))), with
ν̆ = (0, ν Ω(s̃′))(Ω(s̃),Ω(s̃′))−1. Since ν̆ depends only on g parameters (instead of 2g),
this is not enough to conclude. This is why we have to “double” the monodromy action,
using Lemma 5.1.

Instead of keeping s̃′ fixed, we will use monodromy of the second factor as well (and
simultaneously), i.e. the action of π1(S × S, (s, s′)) ∼= π1(S, s) × π1(S′, s′) (up to
complex-conjugation on the second factor, this amounts to applying [2, Th. 3] in the
product situation [Z2 → A2]/S2). On the second factor, we have to replace (Λ, ∂Λ

′
)

by (Λ + ν′Ω, ∂Λ + ν′∂Ω) for any ν′ ∈ C2g . Then ι−1(I−β · det(Ω,Ω)) becomes
ι−1(Iν̆ · det(Ω,Ω)), with

(5.3) ν̆ = (ν′Ω(s̃), ν Ω(s̃′))(Ω(s̃),Ω(s̃′))−1.

For fixed (s̃, s̃′), it is then clear that ν̆ can take arbitrary values in C2g when (ν, ν′) varies
in C4g . One concludes that every minorMν̆ of order r+ 1 in Iν̆ vanishes identically on S̃
for every ν̆ ∈ C2g as wanted. This finishes the proof of Theorems 5.1.1 and 2.2.3. �

Proof of Cor. 2.2.2. In this situation d ≥ g. As we have seen, by (4.14), Theorem 5.1.1
implies that rk J = 2·max

µ∈Cg
rkHµ. If J is nowhere submersive, we have rk J < 2g, hence

10in this respect, the presentation of [2, Th. 3] in [36, §3] is an overinterpretation.
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for any µ, rkHµ < g. This amounts to saying that for any (µ0, µ1, . . . , µg) ∈ Cg+1, all
g-g-minors of the matrix with entries µ0∂iLj +

∑
k µk∂iZkj vanish. For µ0 = 0, consider

the anaytic map sending s̃ ∈ S̃ to Z(s̃).µ ∈ Cg . Its (complex-analytic) rank is < g, hence
its non-empty fibers are complex analytic subvarieties of dimension ≥ dimS + 1− g. �

5.3.2. Remarks. (1) Assumption (∗) is essential for 5.1.1: for instance, it is known that
θA = 0 if and only if A becomes constant on a finite etale covering (cf. [4, 1.4.2 ii]),
and by the same argument, θξ = 0 (equivalently: θ$ξ = 0 for all $) if and only if (A, ξ)
becomes constant on a finite etale covering; on the other hand, J = 0 whenever ξ is a
torsion section, even if A is non isotrivial.
(2) When d = g, Theorem 2.2.1 expresses the condition “β is nowhere submersive” in the
form: for any s̃, (∂iLj(s̃)) and (∂iZkj(s̃)), k = 1, . . . , g, span a vector space of singular
matrices. One recognizes a special case of the notoriously difficult Dieudonné problem:
describe vector spaces of singular (symmetric) matrices, cf. [22]11.
(3) Given an abelian scheme A/S, the vector bundle ΩA on S is endowed with a DS-
module structure by the Gauss-Manin connection. The Kodaira-Spencer map θA is the
OS-linear map TS ⊗ ΩA → H1

dR(A/S)/ΩA induced by the Gauss-Manin connection. It
is then natural to introduce and compare the following ‘ranks’, as done in [4]:
r = r(A/S) = rkDSΩA/ΩA,
r′ = r′(A/S) = rk θ = rkD≤1

S ΩA/ΩA,
r′′ = r′′(A/S) = max∂ rk θ∂ .

One always has r′′ ≤ r′ ≤ r ≤ g. Usually, by rank of the Kodaira-Spencer map one means
the integer r′, and one says that the Kodaira-Spencer map is non-degenerate if r′ = g,
which amounts to the condition [4, Lemma 1.4.5]

(5.4) ∀ω 6= 0, ∃∂, θA,∂ ω 6= 0.

On the other hand, for d = g, the hypothesis of our Cor. 2.2.4 reads:

(5.5) ∃ω, ∀∂ 6= 0, θA,∂ ω 6= 0.

There is no implication between (5.4) and (5.5) in either direction in general (but we shall
see that the conditions are related if g ≤ 3).

6. ABELIAN SCHEMES WITH EndSA = Z AND dµA ≥ g . MAIN THEOREM.

6.1. In this section, we prepare the proof of Theorem 2.3.1 by reducing to the case of
maximal monodromy, the proof of which is treated in detail in App. 2.

6.1.1. Theorem. Let A→ S be a principally polarized abelian scheme of relative dimen-
sion g, such that

(1) A has no non-trivial endomorphism over any finite covering of S,
(2) dµA := dim Im(µA : S → Ag) is at least g.

Then the monodromy of A→ S is Zariski-dense in Sp2g .

Proof. One uses the representation-theoretic classification of abelian varieties B with
EndB = Z given by Borovoi [6] (which one applies to a general fiber B of A → S).
He proves that the special Mumford-Tate group is Q-simple, and more precisely has the
form G = ResF/QH where F is a totally real number field and H is an absolutely simple

11we are grateful to M. Brion for this reference.
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F -group. Thus GR decomposes as a product Πm
1 Hi of absolutely simple real groups (ob-

tained from H at the various real places of F ), and it follows from Satake’s classification
that only H1 is non-compact (up to permutation). Accordingly, H1(B,C) decomposes as
a tensor product ⊗Vi where each Vi is an irreducible symplectic C-representation of HiC.
They are conjugate under the Galois group of F gal/Q, and in particular have the same
dimension 2d, so that

(6.1) (2d)m = 2g,

and m is odd (again by the symplectic condition).
In order to prove the theorem, one may assume that thatA[n] is constant for some n, and

relplace S by the smallest special subvariety of Ag,n containing S, and A by the universal
abelian scheme over it (cf. e.g. App. 2. Lemma 2.6). The conclusion of the theorem
amounts to saying that generic Mumford-Tate group is GSp2g , or equivalently that the
special Mumford-Tate group G of a general fiber B is Sp2g .

It is known that, taking the above notation, H1 is actually a classical absolutely simple
R-group: in particular, H1C belongs to one of the series A`, B`, C`, D` (with ` ≥ 2, 3, 1, 4
respectively12), and accordingly the hermitian symmetric domain X1 = S̃ belongs to one
of the series XA` = SU(r, `+ 1− r)/S(U(r)× U(`+ 1− r)), r ∈ {1, . . . , `},

XB` = SO(2, 2`− 1)/SO(2)× SO(2`− 1),

XC` = H`, the Siegel space,

XDR
`

= SO(2, 2`− 2)/SO(2)× SO(2`− 2),

“quaternionic version” of the latter, XDH
`

= SO(2`)H/U(`).
Their real dimensions are respectively

(6.2) 2r(`+ 1− r), 2(2`− 1), `(`+ 1), 4(`− 1), `(`− 1).

For such A→ S, condition (2) in the theorem means that dimRX1 ≥ 2g, which becomes
in each case:

(6.3) 2r(`+ 1− r) ≥ (2d)m, 2(2`− 1) ≥ (2d)m, `(`+ 1) ≥ (2d)m,

4(`− 1) ≥ (2d)m, `(`− 1) ≥ (2d)m.

To relate ` and d, one needs one more piece of information about the representation V1C:
according to Deligne, it is minuscule [10]. The classification of minuscule representations
shows that in case A`, V1C is a wedge power ∧iVst of the standard representation, in case
B` the spin representation of dimension 2d = 2`, in case C` the standard representation
Vst of dimension 2d = 2`, in case D` either the standard representation or the half-spin
representations of dimension 2d = 2`−1.

The only symplectic cases among them are: in caseA`, ∧(`+1)/2Vst if ` ≡ 1(4), in case
B` the spin representation if ` ≡ 1, 2, 5, 6(8), in case C` the standard representation Vst,
and in case D` the half-spin representations if ` ≡ 2(4) (cf. also Mustafin’s table [28]).
These conguences imply ` ≥ 5 in the A` and B` cases, and ` ≥ 6 in the D` case.

The above inegalities become

(6.4) 2r(`+ 1− r) ≥
(

`+ 1
(`+ 1)/2

)m
, 2(2`− 1) ≥ 2`m,

`(`+ 1) ≥ (2`)m, 4(`− 1) ≥ 2(`−1)m, `(`− 1) ≥ 2(`−1)m,

with m odd.

12more convenient here than the usual convention 1, 2, 3, 4: but A1 = C1 and B2 = C2.
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Let us first consider the third inequality (C` case). Since m is odd, it is fulfilled if and
only if m = 1; this corresponds to the usual universal family Xg,n → Ag,n with g = ` and
G = Sp2g . We claim that the other cases are impossible. For this, it suffices to consider
m = 1. A simple inspection shows that the first two inequalities are impossible for ` ≥ 5
(and any r), and the last two ones are impossible for ` ≥ 6. �

6.2. Proof of Theorem 2.3.1. Theorem 6.1.1 reduces the proof of Theorem 2.3.1 to the
special case where the Zariski-closure of the monodromy of the scheme A → S is the full
symplectic group Sp2g . In this situation, Gao’s Theorem 10.1.1 shows that our Corollary
2.2.2 applies, and this ends the proof of Theorem 2.3.1. �

6.3. An example. Beyond the case End = Z, even for abelian scheme with simple geo-
metric generic fiber, the condition in Cor. 2.2.4 may fail, in which case for any section ξ,
our method fails to establish whether β is generically a submersion.

Here is an example. Let L+ be a real quadratic field and L a totally imaginary qua-
dratic extension of L+. Let A → S be a principally polarized abelian scheme of relative
dimension 16, with level n ≥ 3 structure, complex multiplication by OL, and Shimura
type (rν , sν) = (0, 8), (4, 4) (for the two embeddings ν1, ν2 of F+ in C), and level n
structure. In the universal case, the base is a Shimura variety of PEL type of dimension∑
rν · sν = 16.
By functoriality, θA commutes with the OL-action, hence respects the decomposition

H1
dR = ⊕ρ:L→CH1

dRρ and the restriction of θA,ρ to the summands for ρ above ν1 satisfy
θA,ρ = 0 since rk ΩA ∩H1

dRρ = 0 or 8. Therefore maxω rk θωA ≤ 8 < 16.

In the next three sections, we study instances where the Betti map is of maximal rank,
independently of Theorem 2.3.1.

7. CASE STUDY I: g ≤ 3.

In this section, we shall use linear-algebraic arguments to tackle the case g ≤ 3, proving
Theorem 2.3.2 (actually, the case g = 3 is less elementary and we use a result from [4]).
We also notice that Theorem 2.3.2 does not extend to g = 4 (Remark 7.2.1 (1)).

7.1. We have to show that under the assumptions of Theorem 2.3.2, condition (5.5) holds.
We may replace S by a smooth locally closed subvariety of its image under µA (in order
to reduce to the case d = dµA = g ≤ 3), and A by the restriction to S of the universal
abelian scheme Xg,n. In this situation, for any s ∈ S, the map

(7.1) TS,s→Sym2Ω∨As , ∂ → θA,∂(s),

induced by Kodaira-Spencer is injective (cf. [4, 2.1.2]).

7.1.1. Lemma. Suppose g ≤ 3 and let W be a vector space of dimension g of quadratic
forms on Cg , containing a non-degenerate quadratic form. There exists a vector on Cg
which is not in the kernel of any non-zero quadratic form in W .

Proof. We focus on the case g = 3, leaving to the reader the (easy) verification for g ≤ 2
(in that case, the assumption that W contains a non-degenerate form is in fact automatic).
The content of the above lemma can be rephrased as follows: P(W ) ⊂ P(Sym2((C3)∨))
is a two-dimensional linear system of conics in P2 which, by hypothesis, contains at least
one smooth conic. The lemma asserts that there exists a point p ∈ P2 such that no conic of
the linear system P(W ) is singular at p.
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Recall that singular conics are either pairs of distinct lines or double lines. In our setting,
we start by proving that the set of double lines in P(W ) is finite. In fact, P(W ) is generated
by three conics, and if it contains three double lines, these must be in general position
(otherwise every conic in P(W ) would contain their intersection and would be singular at
that point). But in that case, W is generated by the squares of three independent linear
forms, so in suitable coordinates W would consist of the space of diagonal matrices, and
P(W ) then contains exactly three double lines.

Thus the set of points which belong to some double line in P(W ) is one-dimensional
or empty. Also, since the generic conic in P(W ) is smooth, the set of singular conics in
P(W ) is (at most) one-dimensional; each such singular conic either is a double line or has
exactly one singular point. Hence the set of points p ∈ P2 such that p is singular for at
least one conic in P(W ) is (at most) one-dimensional, so there is a point outside. �

7.2. In order to apply this lemma to (7.1) and derive (5.5), it is enough to show that,
under our assumption, at least one θA,∂ is of rank g, i.e. the Kodaira-Spencer map is
non-degenerate in the sense of (5.4).

For g ≤ 2, this is automatic. For g = 3, one has the following general theorem of [4],
which relies on the theory of automorphic vector bundles: (5.4) holds if A/S is of “re-
stricted PEM type” (cf. [4, 4.2.2]), which means i) (“PEM”) that the connected algebraic
monodromy group is maximal with respect to the polarization and the endomorphisms,
and ii) (“restricted”) that, in case the center F of EndSA⊗Q is a CM field, ΩA is a free
F ⊗Q OS-module.

It is well-known that all cases with g = 3 are of PEM type (the first case not of PEM type
is the Mumford family with g = 4), and even of restricted PEM type, except whenEndSA
is an imaginary quadratic order (over any finite covering of S). But in this exceptional case,
one has dµA = 2 < g = 3 [4, 4.1.2], which is ruled out by our assumptions. �

7.2.1. Remarks. (1) One can follow the pattern of proof of Lemma 7.1.1 for higher values
of g. This works provided the web W of quadratic forms satisfies the following condition:
for each g′ = 0, . . . , g, the algebraic subvariety of W formed of quadratic forms of rank
≤ g′ has dimension ≤ g′. This is not automatic for g > 3: for g = 4, consider the
web of quadratic forms spanned by x2

0, x0x1, x
2
1, x2x3, which is connected with a four-

dimensional family of abelian varieties not satisfying condition (5.5). This family consists
of the productsA×E2, whereA is a principally polarized abelian surface andE an elliptic
curve. 13

(2) The Kodaira-Spencer map of A/S can be described as a trilinear form Θ on V0 ⊗
V1 ⊗ V2, where V0, V1 = V2 are (geometric fibers of) TS , ΩA respectively - or else, after
a choice of basis, as a higher matrix of size d × g × g. It is symmetric in the last two
variables. Conditions (5.4) and (5.5) are non-degeneracy conditions relative to the 1- and
2-slices (resp. 0-slice).

Cayley himself started generalizing his theory of determinants to “trilinear matrices”,
and the theory of the hyperdeterminant Det was carried out in full generality by Gelfand-
Kapranov-Zelevinsky (if g ≤ d ≤ 2g − 1, Det gives the equation of the dual variety of
the Segre variety Pd−1 × Pg−1 × Pg−1). Let us make precise the connection, referring to
the survey [29]. In [29], two further conditions are introduced: “non-degeneracy” and “0-
non-degeneracy”, which in our situation can be translated respectively into the following

13Gao has shown [13] that this construction leads to a counter-example to the conclusion of Theorem 2.3.1 if
we drop the assumptions.
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properties:

(7.2) ∀θ, ω, η 6= 0, (θA,∂(ω) = θA,∂(η) = 0⇒ ∀∂′, θA,∂′(ω) · η = 0),

(7.3) ∀ω, η 6= 0,∃∂, θA,∂(ω) · η 6= 0,

the latter being stronger than (5.4). Condition (7.2) is equivalent to DetΘ 6= 0 if g ≤ d ≤
2g− 1, and to (7.3) if d ≥ 2g− 1 [29, 4.2, 6.1]. The “boundary format” d = 2g− 1 occurs
in the next section.

8. CASE STUDY II: COMPLEX HYPERELLIPTIC CASE.

8.1. We treat here the universal hyperelliptic family, where the Kodaira-Spencer map can
be made explicit.

Hyperelliptic curves of genus g ≥ 2 admit a plane model given by an equation of the
form y2 = f(x), where f(x) ∈ C[x] is a polynomial of degree 2g + 1 without repeated
roots. Up to affine transformations on the variable x, one can suppose that two of the roots
are 0 and 1; so the curve is given by

(8.1) Ys : y2 = x(x− 1)(x− s0) · · · (x− s2g−2) =: f(x);

our base is

S := {s = (s0, . . . , s2g−2) ∈ C2g−1 | si 6= 0, 1, si 6= sj for i 6= j} ⊂ C2g−1.

To the curve Ys we associate its jacobian As, thus obtaining a (2g − 1)-dimensional fam-
ily of abelian varieties, over the base S. In this case, the map µ to the moduli space of
principally polarized genus g abelian varieties is generically finite.

We identify the tangent space at Ys to the Torelli locus (of jacobians) in Ag , with the
dual of the vector space of quadratic differentials on Ys (which in turn is isomorphic to
H1(Ys, TYs) by Serre’s duality). A basis for the space Γ(Ys,Ω

1
Ys

) consists of the 1-forms
ωj := xjdx

y , j = 0, . . . , g − 1.
The quadratic differentials form a vector space Ω⊗2

Ys
of dimension 3g − 3 on which the

hyperelliptic involution ι acts. The 2g−1 quadratic differentials xjdx2

y2 , j = 0, . . . , 2g−2,

form a basis of ι-invariants. Note that this space has the same dimension as the moduli
space of genus g hyperelliptic curves.

The Kodaira-Spencer map θA of A/S, in the form of (1.14) in [4], can be viewed,
fiberwise, as a linear map θA(s) : TS(s) → Sym2(LieAs) ∼= Sym2Γ(Ys,ΩYs)

∨. It
is compatible with the Kodaira-Spencer map θY of Y/S in the sense that θA(s) is the
composition of θY (s) : TS(s) → Γ(Ys,Ω

⊗2
Ys

)∨ with the transpose of the natural map
Sym2Γ(Ys,ΩYs)→ Γ(Ys,Ω

⊗2
Ys

). The following computation of the Kodaira-Spencer map
of Y/S is probably well-known to experts, but we could not find a reference.

8.1.1. Proposition. In the above setting, for each i = 0, . . . , 2g − 2, there exists a non-
zero number ci = ci(s), depending on the point s = (s0, . . . , sd) ∈ S, such that for all
j = 0, . . . , 2g − 2

(8.2) θY,∂/∂si

(
xjdx2

y2

)
= cisi

j .

Also, for all j = 0, . . . , g − 3, θY,∂/∂si
(
xjdx2

y

)
= 0. In particular, the Kodaira-Spencer

map induces an isomorphism between the tangent space TS(s) at s and the space of linear
functionals on Γ(Ys,Ω

⊗2
Ys

) vanishing on the subspace of odd quadratic differentials.
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This enables to deduce Thm. 2.3.3 from Cor. 2.2.4: since for any j = 0, . . . , g − 1,
multiplication by ωi,s induces an injection Γ(As,ΩAs)

∼= Γ(Ys,ΩYs)→ Γ(Ys,Ω
⊗2
Ys

)even,
one deduces that formula (5.5) holds with ω = ωj .

We just outline the strategy of the proof. Given a derivation ∂ on the base S (e.g.
∂ = ∂/∂si) one can cover the total space of the fibration π : Y → S by open sets Uα on
which there exist derivations ∂α ∈ Γ(Uα, TY) such that π∗(∂α) = ∂. On Uα ∩ Uβ ∩ Ys
the differences ∂α− ∂β are derivations on Ys and form a cocyle. One can write ∂α− ∂β in
Uα ∩ Uβ as ∂̃α − ∂̃β for meromorphic derivations ∂̃α (resp. ∂̃β) on Uα (resp. Uβ).

Then given a quadratic differential ω1 ⊗ ω2 and given a point P ∈ Ys ∩ Uα we can
calculate the residue at P of the meromorphic 1-form ω1(∂̃α) · ω2. The sum over P ∈ Ys
of these numbers equals the value of θY,∂(ω1 ⊗ ω2) of the Kodaira-Spencer map at this
quadratic differential ω1 ⊗ ω2. The outcome of this calculation leads to the formula of
Theorem 8.1.1. To be more explicit, let us consider the open set Ux in which the x-function
(as appearing in equation (8.1)) is regular and has non-zero differential and similarly for
Uy . Note that (Ux ∪ Uy) ∩ Ys contains Ys except the unique point at infinity.

Then observe that ξ := xg/y is a local parameter at infinity. Denote by Uξ a neighbor-
hood of the point at infinity so small so that in Uξ \ {∞} the three functions ξ, x, y are
regular with non-zero differential.

We then define the derivations ∂i,x, ∂i,y, ∂i,ξ as the unique derivations on the cor-
responding open sets extending the derivation ∂

∂si
on S and such that ∂i,uu = 0 for

u ∈ {x, y, ξ}. This leads to explicit formulas for δx, δy, δz and explicit choices for
δ̃x, δ̃y, δ̃z and an easy calculation of residues gives our formula (8.2).

This shows that for suitable bases of TS(s) and Γ(Ω⊗2, Ys)
∨, the matrix of the Kodaira-

Spencer map has the form (T, 0), for a square matrix T of order 2g − 1, which is a Van-
dermonde matrix, hence non-singular. �

9. CASE STUDY III: REAL HYPERELLIPTIC CASE.

In the present section we illustrate a result related to the Betti map for a certain section
of the family of Jacobians of hyperelliptic curves of given genus, restricting however to
curves and points over R. This leads to issues of a different kind compared to the purely
complex case, and we shall present a treatment quite independent of the rest of the paper.

The issues are relevant concerning the paper [32] by R.M. Robinson, as was noted by
Serre (see [34]). An independent proof was given recently by B. Lawrence in [20]. Our
purpose is to give an alternative argument depending on the Betti map.

9.1. The relevant family of curves and Jacobians. The family we consider is again the
hyperelliptic family, but we need to change slightly the notation with respect to the previous
section, considering equations of even degree. For s = (s0, . . . , s2g+1) ∈ C2g+2, let
fs(x) = x2g+2 + s2g+1x

2g+1 + . . .+ s1x+ s0, let ∆(s) be its discriminant, and consider
the open set S ⊂ C2g+2 consisting of the points with ∆(s) 6= 0.

We consider the family π : J → S of the Jacobians Js, of curves Ys of genus g, for
s ∈ S, where Ys is affinely defined by the equation

(9.1) y2 = fs(x)

and completed by adding the two poles of the function x. We denote them by∞±, where
the sign can be specified e.g. by stipulating that y − xg+1 has a pole at∞+ of order ≤ g.
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The curve Ys has genus g = dim Js. We consider the section σ (of π) on S to J such
that σ(s) = class of [∞+] − [∞−] in Js, for s ∈ S; it takes real values for every real
s ∈ S ∩ R2g+2. We want to present a proof of the following

9.1.1. Theorem. The set of real s ∈ S ∩ R2g+2 such that σ(s) is a torsion point of Js is
dense in S ∩ R2g+2 (for the Euclidean topology).

A main issue here is that we are concerned with real points of the base S. For clarity
we recall the Betti map for this case.

9.2. Periods, abelian logarithms and the Betti map. There is a locally finite covering
of S by open polydisks Uα ⊂ S, α ∈ I , trivializing the holomorphic vector bundle over
S given by the tangent spaces to the Js, which becomes holomorphically equivalent to
Uα ×Cg over each Uα. Through this trivialization, for each α there are column vectors of
analytic functions ω1α, . . . , ω2gα : Uα → Cg forming a basis for a lattice Λα,s ⊂ Cg such
that the torus Ts = Cg/Λα,s ∼= Js analytically (through an exponential map expα,s).

Note that Uα ∩ R2g+2 is connected for each α ∈ I and Uα ∩ Uβ is connected for any
α, β ∈ I (if only because the Uα are convex).

9.2.1. Subtori of real points. For real s ∈ Uα ∩ R2g+2, the lattice Λα,s has a sublattice
Λ′α,s of rank g, spanning over R a vector space Vα,s := RΛ′α,s of dimension g, such that the
connected component of the identity in the group Js(R) of real points of Js corresponds to
Vα,s/Λ

′
α,s. It is known that Js(R) is a finite union of translates, by torsion points of order

2, of this component; see e.g. Prop. 1.1 in the paper [15] by B. Gross and J. Harris.
It is not difficult to see that we may also choose the above bases so that

ω1α(s), . . . , ωgα(s) span Vα,s over R for s ∈ Uα ∩ R2g+2.

9.2.2. Transition functions. Let ωα denote the g × 2g matrix whose columns are the ωiα.
Then on Uα ∩ Uβ we have a transition formula

(9.2) ωβ = Lβα · ωα ·Rαβ ,
where Lβα ∈ GLg(OUα∩Uβ ) expresses a change of basis of Cg , and where Rαβ ∈
GL2g(Z) expresses a change of basis for the lattice Λα,s.

9.2.3. Abelian logarithms. Since the Uα are simply connected, an abelian logarithm λα
of σ may be defined on each Uα as an analytic function to Cg . It satisfies expα,s λα(s) =
σ(s). For s ∈ Uα, the value λα(s) is uniquely determined up to a vector in Λα,s =
ωα(s)Z2g . On an intersection Uα ∩ Uβ as above, such uniqueness and the above transfor-
mations (9.2) imply

(9.3) λβ = Lβαλα + ωβvαβ ,

for suitable integer column vectors vαβ ∈ Z2g (constant in Uα ∩ Uβ).

9.2.4. Betti coordinates and a restricted Betti map. For s ∈ Uα we may write uniquely

(9.4) λα(s) =

2g∑
i=1

Biα(s)ωiα(s) =: ωα(s)Bα(s),

for real numbers Biα(s) (and a column vector Bα(s) ∈ R2g). On taking complex con-
jugates, we see that this gives rise to real functions Biα on Uα which are real-analytic in
the variable s ∈ Uα ⊂ C2g+2 ∼= R4g+4. The above transition transformations (9.2), (9.3)
yield, on Uα ∩ Uβ ,

(9.5) Bβ = R−1
αβBα + vαβ .
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By definition we have the (real-analytic) Betti map

Bα : Uα → R2g, Bα(s) = t(B1,α(s), . . . , B2g,α(s)).

Since for real s ∈ A ∩ R2g+2 the points∞± lie in Ys(R), the values λα(s) of λα on
Uα ∩ R2g+2 lie, modulo Λα,s, in one of the above mentioned finitely many translates of
Vα,s. Now, recalling that the translates in question are obtained by torsion points of order
2, this yields that Bα(Uα ∩ R2g+2) is inside Rg × {0} + 1

2Z
2g , due to the present choice

of ω1α, . . . , ωgα. By continuity and connectedness, the last g coordinates of the map are
constant on Uα ∩ R2g+2.

Then let us now denote by BRα : Uα ∩ R2g+2 → Rg the projection to the first g
coordinates of the map Bα restricted to real points; this is still real-analytic. This really
is meaningful only if the relevant set is non-empty, so, also for later reference, we define
I0 ⊂ I as the subset of the α ∈ I such that Uα ∩ R2g+2 is non-empty.

9.3. The differential of the restricted Betti map. Let s ∈ Uα; then the value σ(s) is
torsion on Js if and only if Bα(s) ∈ Q2g . Then, to prove Theorem 9.1.1 it will suffice to
prove

9.3.1. Theorem. For each α ∈ I0 the map BRα on Uα ∩R2g+2 attains rational values on
a dense subset of Uα ∩ R2g+2.

For this, the first thing we want to show is that its differential has maximal rank g at
some real point s ∈ Uα ∩ R2g+2 in case this set is non-empty, and in turn we shall prove
this by comparison with the dimension of the fibers. We start with:

9.3.2. Proposition. Suppose that for a certain α ∈ I0 and every point s ∈ Uα ∩ R2g+2

the differential of BRα has rank < g at s. Then, for all points u ∈ Uα ∩ R2g+2 the fiber
B−1
α (Bα(u)) ⊂ Uα is a complex variety in Uα of complex dimension > g + 2.

Proof. The assumption implies, through the (real) implicit function theorem, that at all
points u in an open dense subset of Uα ∩ R2g+2 the fiber B−1

Rα(BRα(u)) of BRα on Uα ∩
R2g+2 has real dimension > g + 2. So, the complex fiber B−1

α (Bα(u)) ⊂ Uα at such real
points u has a real subset (that is, a subset inside Uα ∩ R2g+2) of real dimension > g + 2,
since this complex fiber contains the respective fiber B−1

Rα(BRα(u)) ⊂ Uα ∩ R2g+2.
But the fibers of Bα (on Uα) are complex varieties inside Uα; in fact, the

fiber B−1
α (b1, . . . , b2g) is defined in Uα by the complex-analytic equation λα(z) =∑2g

i=1 biωiα(z). We deduce that the complex dimension at u of the fiber B−1
α (Bα(u))

(as a subset of Uα) is > g + 2 for all u in a suitable open dense subset of Uα ∩ R2g+2.
The sought conclusion of the Proposition now follows immediately from the following

result, used also in the recent paper [7], to which we refer for a proof:
For every k ∈ N, the set {s ∈ Uα : dimsB

−1
α (Bα(s)) ≥ k} is closed in Uα. �

Next, we want to extend the conclusion of the proposition (keeping the same assump-
tion) to a whole connected component of S ∩ R2g+2:

9.3.3. Proposition. Suppose that for some α ∈ I0 and every point s ∈ Uα ∩ R2g+2

the differential of BRα has rank < g at s. Then for every u ∈ A ∩ R2g+2 lying in the
same connected component of Uα ∩ R2g+2, and for every γ such that u ∈ Uγ , the fiber
B−1
γ (Bγ(u)) ⊂ S has complex dimension > g + 2 at u.

Proof. Let I ′0 be the subset of indices β ∈ I0 such that the differential of BRβ has rank
< g everywhere on Uβ ∩ R2g+2. We contend that the union

⋃
β∈I′0

(Uβ ∩ R2g+2) is open
and closed in A ∩ R2g+2, hence a union of connected components of S ∩ R2g+2.
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Now, this union is open since every Uα is open. To prove it is closed in S ∩ R2g+2, let
γ ∈ I ′0 and let δ ∈ I0 be such that Uγ ∩ Uδ ∩ R2g+2 is non-empty.

Note that the transformation (9.5) (and our convention about the choice and orderings
of the bases ωγ , ωδ) yields that BRδ = ΓγδBRγ + 1

2 ṽγδ on Uγ ∩Uδ ∩R2g+2, for a suitable
integral g × g matrix Γγδ and a suitable ṽγδ ∈ Zg .

Then the differential of BRδ shall have rank < g on Uγ ∩ Uδ ∩ R2g+2, hence on the
whole Uδ ∩ R2g+2, for the former set is non-empty and open in the latter, the latter is
connected and the relevant map is real-analytic. In other words, δ ∈ I ′0 too.

The closure of
⋃
β∈I′0

(Uβ ∩ R2g+2) follows: let s ∈ A ∩ R2g+2 lie in the complement
(with respect to S ∩ R2g+2); this s lies in some Uη ∩ R2g+2 and then, by what we have
seen, Uη ∩ R2g+2 shall be disjoint from our set. Therefore the complement of our set is
open, as asserted.

It follows that if α ∈ I ′0, then γ ∈ I ′0 for every γ ∈ I0 such that Uγ ∩ R2g+2 is in the
same connected component of Uα ∩ R2g+2 (relative to S ∩ R2g+2).

Now, Proposition 9.3.3 follows on applying Proposition 9.3.2 to each such γ. �

9.4. Discussion around Proposition 9.3.3. To contradict the conclusion of this propo-
sition, hence proving that its assumption cannot hold, let us first inspect the connected
components of S ∩ R2g+2. Each point s ∈ A ∩ R2g+2 corresponds to a real monic poly-
nomial of degree 2g + 2 with no multiple complex root. Let 2r(s) be the number of real
roots, so r(s) is an integer, 0 ≤ r(s) ≤ g + 1. It is easy to see that r(s) is locally constant
in S ∩ R2g+2 and then it readily follows that each (non-empty) connected component is
defined in S ∩ R2g+2 by an equation r(s) = r, where r is a given integer in [0, g + 1].

We have the following elementary lemma, whose proof we leave to the interested reader:

9.4.1. Lemma. For each r ∈ {0, 1, . . . , g + 1} there exist a monic polynomial P ∈ R[x]
of degree g + 1 and a real number p 6= 0 such that P (x)2 − p has precisely 2r simple real
roots and no multiple complex root.

Let now α ∈ I0 be such that the assumption of Proposition 9.3.3 holds for Uα ∩R2g+2,
and let K be the connected component of Uα ∩R2g+2 in S ∩R2g+2. In the above descrip-
tion,K corresponds to an integer r ∈ [0, g+1]. Let us apply the lemma to it and let P (x), p
the polynomial and real number coming from the lemma. Then the polynomial P (x)2 − p
corresponds, in our opening notation, to a point s ∈ K, so that fs(x) = P (x)2 − p.

The identity P (x)2−fs(x) = p 6= 0 shows that the function P (x)+y on Ys has divisor
(g+ 1)([∞+]− [∞−]), hence σ(s) is torsion in Js, of order (dividing but in fact equal to)
g + 1. Thus, for every γ with s ∈ Uγ , the point ρ := Bγ(s) is a rational point in Q2g with
denominator dividing g + 1.

Let us look at the complex fiber B−1
γ (ρ) around s: it consists of complex points t ∈ S

such that σ(t) has torsion order dividing g + 1 on the Jacobian Jt of Yt. Hence for such a
t there is a rational function on Yt with divisor (g+ 1)([∞+]− [∞−]); this corresponds to
a polynomial Pt of degree g+ 1 such that Pt(x)2 = ft(x) + pt for some nonzero complex
number pt. This Pt(x) is monic of degree g + 1, hence it depends on ≤ g + 1 complex
parameters; taking also pt into account, we see that the complex dimension of the said fiber
cannot be > g + 2, yielding the sought contradiction.

9.5. Conclusion of the argument. We have thus proved that for every α ∈ I0 there exists
some point s ∈ Uα∩R2g+2 such that the differential of BRα has rank≥ g, hence maximal
rank g, at s. Then such differential has maximal rank on a dense open subset U ′α of (real)
points in Uα ∩ R2g+2. At this stage we can invoke the following general fact:
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Let f : X → Y be a continuous map between topological spaces; suppose there is an
open dense subset X ′ of X such that f|X′ : X ′ → Y is open. Let Z be a dense subset of
Y . Then f−1(Z) is dense in X .

Proof . Suppose not. Then, there is a non-empty open subset V ofX such that f(V )∩Z
is empty. Since X ′ is dense, X ′ ∩ V is not empty. Because f|X′ is open, f(X ′ ∩ V ) is
open in Y and does not intersect Z : this contradicts the fact that Z is dense in Y .

Now we may apply this statement to X = Uα ∩ R2g+2, f = BRα and to X ′ = U ′α,
taking for Z the set of rational points in BRα(X). Theorem 9.3.1 follows.

Remark. One might ask about a p-adic analogue; it seems to us that a density statement
does not hold.

10. APPENDIX BY Z. GAO: AN APPLICATION OF THE PURE AX-SCHANUEL
THEOREM.

10.1. Main Result. Let Ag be the moduli space of principally polarized abelian varieties
of dimension g, possibly with some level structure.

Let S be a complex irreducible algebraic variety. Let π: A→ S be an abelian scheme of
relative dimension g. We may assume that A/S is principally polarized up to replacing A
by an isogeneous abelian scheme. Then π: A → S induces a modular map µA: S → Ag .
We assume dimµA(S) ≥ g.

Next we want to understand when S satisfies the conclusion of Cor. 2.2.2. More pre-
cisely, let Hg be the Siegel upper half space and let u : Hg → Ag be the uniformization.
Denote by S̃ a complex analytic irreducible component of u−1(µA(S)) in Hg . We name

Condition ACZ For any s̃ ∈ S̃ and any c ∈ Cg , there exists a complex analytic sub-
variety C̃ ⊂ Ũ of dimension dimµA(S) − g + 1 passing through s̃ ∈ Hg such that s̃′c is
constant for any s̃′ ∈ C̃. Here we view c ∈ Cg as a column vector and s̃′c is the usual
matrix product (recall that every point in Hg is a g × g matrix).

Our main result is:

10.1.1. Theorem. If Condition ACZ is satisfied, then µA(S) is contained in a proper spe-
cial subvariety of Ag .

10.1.2. Remark. There are several equivalent ways to state the conclusion of Theo-
rem 10.1.1. In fact for any irreducible subvariety S ofAg , we shall prove in Lemma 10.2.6
that the following statements are equivalent:

(i) The variety S is not contained in any proper special subvariety of Ag .
(ii) The variety S contains a point with Mumford-Tate group GSp2g .

(iii) The monodromy group of A/S is Zariski dense in Sp2g .

In practice, condition (i) is often checked by computation of the Mumford-Tate group
(hence condition (ii)) or of the monodromy group (hence condition (iii)). For example as
A/S is not isotrivial by Assumption 1, if we denote by V = H1(As,C) for any s ∈ S,
then condition (iii) holds if (and only if) the symmetric square S2V is irreducible for the
monodromy action by Beukers-Brownawell-Heckman [8, Theorem 2.2].

In fact, Theorem 10.1.1 can be deduced from a more technical and more general theo-
rem. In order to state the theorem we need to introduce some notation.

Recall the uniformization u : Hg → Ag . The natural embedding Hg ⊂ Cg(g+1)/2

endows Hg with a structure of “complex algebraic variety”, and hence u gives rise to a
bi-algebraic system. Say a complex analytic irreducible subset Ỹ of Hg is bi-algebraic if
Ỹ is algebraic in Hg and u(Ỹ ) is algebraic in Ag . See §10.2 for more details.
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Denote by H◦S the connected algebraic monodromy group of A/S, namely H◦S is the
neutral component of the Zariski closure of im(π1(S, s) → π1(Ag, s)) ⊂ Sp2g(Z) in
Sp2g . Denote by S̃biZar the smallest bi-algebraic subset of Hg which contains S̃. It exists
by Lemma 10.2.3.

Recall that every element of Hg is a g × g-matrix. For any c ∈ Cg and any s̃ ∈ Hg ,
denote by

Hc,s̃ := {Z ∈ Hg : Zc = s̃c}.

10.1.3. Theorem. There does not exist an abelian scheme A/S with dimµA(S) ≥ g
satisfying the following three properties:

(i) The connected algebraic monodromy group H◦S is simple;
(ii) There exist c ∈ Cg and s̃ ∈ S̃ such that codimS̃biZar(Hc,s̃ ∩ S̃biZar) = g.

(iii) Condition ACZ is satisfied.

10.2. Review on the bi-algebraic system ofAg and Ax-Schanuel. We focus on the case
Ag . We shall consider the uniformization u: Hg → Ag , where Hg is the Siegel upper half
space defined as the following.

Hg =
{
Z = X +

√
−1Y ∈ Matg×g(C) : Z = Zt, Y > 0

}
.

Later on we will study subvarieties of Hg andAg at the same time. To distinguish them we
often use letters to denote subsets of Ag and add a ∼ on top to denote subsets of Hg .

Consider
pg =

{
Z ∈ Matg×g(C) : Z = Zt

}
.

Then pg ∼= Cg(g+1)/2 as C-vector spaces. The Siegel upper half space is open (in the usual
topology) and semi-algebraic in pg . The complex structure on pg thus induces a structure
of complex analytic variety on Hg . Following Pila, Ullmo and Yafaev, we define

10.2.1. Definition. A subset Ỹ of Hg is said to be irreducible algebraic if it is a complex
analytic irreducible component of Hg ∩ Ỹ c for some algebraic subvariety Ỹ c of pg .

Hence we have the following definition.

10.2.2. Definition. (1) A subset F̃ of Hg is said to be bi-algebraic if it is irreducible
algebraic in Hg and u(F̃ ) is an algebraic subvariety of Ag .

(2) An irreducible subvariety F ofAg is said to be bi-algebraic if one (and hence any)
complex analytic irreducible component of u−1(F ) is irreducible algebraic in Hg .

Before moving on, let us make the following observation.

10.2.3. Lemma. Let F1 and F2 be two bi-algebraic subvarieties of Ag , and let F be an
irreducible component of F1 ∩ F2. Then F is also bi-algebraic.

Proof. First F is clearly irreducible algebraic. Consider a complex analytic irreducible
component F̃ of u−1(F ). It is contained in both F̃1, an irreducible component of u−1(F1),
and F̃2, an irreducible component of u−1(F2). Let F̃ ′ be an irreducible component of
F̃1∩ F̃2 which contains F̃ . Then F = u(F̃ ) = u(F̃ ′) ⊂ u(F̃1)∩u(F̃2) = F1∩F2. Taking
the Zariski closures, we get F ⊂ u(F̃ ′)Zar ⊂ F1 ∩ F2. Now since F̃ ′ is irreducible,
we know that u(F̃ ′)Zar is irreducible. Hence F = u(F̃ ′)Zar since F is an irreducible
component of F1 ∩ F2. Therefore F = u(F̃ ′) and so F̃ = F̃ ′ is algebraic. So F is
bi-algebraic. �
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Based on this observation, for any irreducible subvariety Y of Ag , there exists a unique
smallest bi-algebraic subvariety of Ag which contains Y . Then for any complex analytic
irreducible subset Ỹ of Hg , there exists a unique smallest bi-algebraic subset of Hg which
contains Ỹ : it is an irreducible component of the smallest bi-algebraic subvariety of Ag
which contains u(Ỹ )Zar.

There is a better characterization of bi-algebraic subvarieties ofAg using Hodge theory
and group theory. They are precisely the so-called weakly special subvarieties of Ag de-
fined by Pink [30, Definition 4.1.(b)]. This is proven by Ullmo-Yafaev [35, Theorem 1.2].
Moonen has also studied these subvarieties and proved that they are precisely the totally
geodesic subvarieties of Ag . See [26, 4.3]. Linearity properties in Shimura varieties was
first studied by Moonen in loc.cit. For our purpose we prove the following lemma.

10.2.4. Lemma. Let F̃ be a bi-algebraic subset of Hg . Then it is affine linear, meaning
that it is the intersection of Hg with some affine linear subspace of pg .

Proof. This follows from Ullmo-Yafaev’s characterization and the Harish-Chandra real-
ization of Hermitian symmetric domains. Let us explain the details. We use the language
of Shimura data in the proof.

By a result of Ullmo-Yafaev [35, Theorem 1.2], bi-algebraic subsets of Hg are precisely
the weakly special subsets of Hg . Hence F̃ is a weakly special subset of Hg . By defi-
nition of weakly special subvarieties (see [35, Definition 2.1] or [30, Definition 4.1.(b)]),
there exist a connected Shimura subdatum (G,X ) of (GSp2g,Hg) and a decomposition
(Gad,X ) = (G1,X1)× (G2,X2) and a point x̃2 ∈ X2 such that F̃ = X1 × {x̃2}.

Take any point (x̃1, x̃2) ∈ X1 × {x̃2} ⊂ X , we have the Harish-Chandra embedding
of X into T(x̃1,x̃2)X , the tangent space of X at (x̃1, x̃2). We have also the Harish-Chandra
embedding of Hg into T(x̃1,x̃2)Hg . These two embeddings are compatible in the following
sense: T(x̃1,x̃2)X is a linear subspace of T(x̃1,x̃2)Hg and X = Hg ∩ T(x̃1,x̃2)X . This is
proven in Helgason [16, Chapter VIII, §7]. We refer to [24, Chapter 5, §2, Theorem 1] for
the presentation. In particular, the Harish-Chandra embedding realizes Hg as the unit ball
in Cg(g+1)/2.

The natural embedding of the Hermitian symmetric space Hg into pg can be realized as
the Harish-Chandra embedding mentioned above composed with a linear transformation
which we call `. Define p = `(T(x̃1,x̃2)X ). Then p is an affine subspace of pg . Now by the
compatibility mentioned in the last paragraph, we have that X = p ∩ Hg .

The decomposition of Hermitian symmetric spacesX = X1×X2 gives a decomposition
p = p1 × p2 as complex spaces, and F̃ = X1 × {x̃2} is then (p1 × {0}) ∩ X = (p1 ×
{0}) ∩ Hg . Hence we are done. �

Now we are ready to state the Ax-Schanuel theorem for Ag . It is recently proven by
Mok-Pila-Tsimerman [25]. This theorem has several equivalent forms, whose equivalences
are not hard to show. For our purpose we only need the following weak form.

10.2.5. Theorem. Let Ỹ be an irreducible complex analytic subvariety of Hg . Let Ỹ biZar

be the smallest bi-algebraic subset of Hg which contains Ỹ . Then

dim Ỹ Zar + dimu(Ỹ )Zar ≥ dim Ỹ + dim Ỹ biZar.

Here Ỹ Zar means the smallest irreducible algebraic subset of Hg which contains Ỹ .

We end this section by proving the equivalence of the following statements.
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10.2.6. Lemma. Let S be an irreducible subvariety of Ag . Then the following statements
are equivalent:

(i) The variety S is not contained in any proper special subvariety of Ag .
(ii) The variety S contains a point with Mumford-Tate group GSp2g .

(iii) The monodromy group of A/S is Zariski dense in Sp2g .
(iv) The variety S is not contained in any proper bi-algebraic subvariety of Ag of

positive dimension.
(v) There exists a point s ∈ S(C) such that the following condition holds: s is not

contained in any proper bi-algebraic subvariety of Ag of positive dimension.

Proof. By Deligne-André, a very general point in S(C) has the same Mumford-Tate group
which we denote by MT(S). The Mumford-Tate group MT(S) is a reductive group, and
a subgroup of finite index of the monodromy group is contained in MT(S)der. Here “very
general” means that the point is taken outside an at most countable union of proper subva-
rieties of S. We refer to [2, Lemma 4] for these facts.

Now let us prove (iii)⇒ (i). If the monodromy group of A/S is Zariski dense in Sp2g ,
then Sp2g is a subgroup of MT(S)der < GSpder

2g = Sp2g . Hence MT(S)der = Sp2g . So
MT(S) = GSp2g .14

For (ii)⇒ (iii), we use a stronger result of André. Let H◦S be the neutral component of
the Zariski closure of the monodromy group of A/S in GSp2g . Then by [2, Theorem 1],
we have that H◦S is a non-trivial normal subgroup of GSpder

2g = Sp2g . But Sp2g is simple,
so H◦S = Sp2g .

Let us prove (i) ⇒ (ii). The smallest special subvariety of Ag which contains S is
defined by a Shimura subdatum with underlying group MT(S). If MT(S) 6= GSp2g , then
the smallest special subvariety of Ag is not Ag , which contradicts the assumption of (i).

We have (iv)⇒ (i) since every special subvariety of Ag is bi-algebraic.
The implication (v)⇒ (iv) is easy.
It remains to prove (ii)⇒ (v). Let s ∈ S(C) be such that MT(s) = GSp2g . Take s̃ ∈

u−1(s). Let F be a bi-algebraic subvariety of Ag which contains s with dimF > 0. Let
F̃ be an irreducible component of u−1(F ) which contains s̃. It suffices to prove F̃ = Hg .

The proof goes as follows. By a result of Ullmo-Yafaev [35, Theorem 1.2], bi-algebraic
subsets of Hg are precisely the weakly special subsets of Hg . Hence F̃ is a weakly special
subset of Hg . By definition of weakly special subvarieties (see [35, Definition 2.1] or [30,
Definition 4.1.(b)]), there exist a connected Shimura subdatum (G,X ) of (GSp2g,Hg)

and a decomposition (Gad,X ) = (G1,X1) × (G2,X2) and a point x̃2 ∈ X2 such that
F̃ = X1 × {x̃2}. The condition MT(s̃) = GSp2g implies that the smallest Shimura
subdatum of (GSp2g,Hg) whose underlying space contains s̃ is (GSp2g,Hg). Therefore
(G,X ) = (GSp2g,Hg). But then Gad = GSpad

2g is a simple group, and hence either
F̃ = Hg or F̃ is a point. But dim F̃ > 0, so F̃ = Hg . �

10.3. Proof of Theorem 10.1.1. We may replace S by µA(S) and hence assume that S is
an irreducible subvariety of Ag of dimension ≥ g. Recall the uniformization u: Hg → Ag
and our convention that S̃ is a complex analytic irreducible component of u−1(S).

The key to prove Theorem 10.1.1 is the following proposition, whose proof uses Ax-
Schanuel.

14By Hodge theory, Gm = Z(GSp2g) is contained in MT(S). In this paper we only need Sp2g < MT(S).
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10.3.1. Proposition. Suppose Condition ACZ is satisfied. Then for any s̃ ∈ S̃, there exists
a bi-algebraic subset F̃ of positive dimension, properly contained in Hg , such that s̃ ∈ F̃ .

Proof. Fix a c ∈ Cg and define the following subspace of Hg

Hc,s̃ := {Z ∈ Hg : Zc = s̃c}.

Then Hc,s̃ has codimension g in Hg . Apply Condition ACZ to this s̃ ∈ S̃ and c ∈ Cg .
Hence we obtain a complex analytic variety C̃ of dimension dimS−g+1 passing through
s̃ such that C̃ ⊂ S̃ ∩Hc,s̃. Now C̃ ⊂ Hc,s̃, so we have

(10.1) dim C̃Zar ≤ dimHc,s̃ = dimHg − g.

On the other hand C̃ ⊂ S̃, so u(C̃) ⊂ u(S̃) = S. Hence

(10.2) dimu(C̃)Zar ≤ dimS.

Apply Ax-Schanuel, namely Theorem 10.2.5, to C̃. We obtain

(10.3) dim C̃Zar + dimu(C̃)Zar ≥ dim C̃ + dim C̃biZar.

Assume C̃biZar = Hg . Then we have (dimHg − g) + dimS ≥ dim C̃ + dimHg by
(10.1), (10.2) and (10.3). But this cannot hold since dim C̃ = dimS − g + 1 > 0. Hence
C̃biZar 6= Hg . On the other hand dim C̃biZar > 0 since dim C̃ = dimS − g + 1 ≥ 1. So
we can take the desired F̃ to be C̃biZar. �

Before moving on, we point out that we have not yet used the full strength of Condi-
tion ACZ since we did not vary the variable c. Now let us proof Theorem 10.1.1.

Proof of Theorem 10.1.1. Suppose Theorem 10.1.1 is not true. By condition (v) of
Lemma 10.2.6, there exists a point s ∈ S(C) such that s is not contained in any proper
bi-algebraic subvariety of Ag of positive dimension. Take s̃ to be a point in u−1(s) for
this s. Applying Proposition 10.3.1 to s̃, we get a bi-algebraic subset F̃ of positive dimen-
sion, properly contained in Hg , such that s̃ ∈ F̃ . But then u(F̃ ) is a proper bi-algebraic
subvariety of Ag of positive dimension which contains s. Now we get a contradition. �

10.4. Proof of Theorem 10.1.3. In fact the same techniques for Theorem 10.1.1 can be
used to prove Theorem 10.1.3.

Proof of Theorem 10.1.3. Suppose we have an abelian scheme A/S satisfying the three
properties. Let c ∈ Cg and s̃ ∈ S̃ be as in condition (ii) of Theorem 10.1.3. Then for
Hc,s̃ = {Z ∈ Hg : Zc = s̃c} ⊂ Hg , we have

(10.4) codimS̃biZar(Hc,s̃ ∩ S̃biZar) = g.

Now that S̃biZar is affine linear in Hg by Lemma 10.2.4. So for such a c, (10.4) holds for
any s̃ ∈ S̃ because Hc,s̃ is also affine linear in Hg . Hence we may assume that s̃ is Hodge
generic in S̃, namely MT(s̃) = MT(S).

Applying Condition ACZ to this s̃ and c, we obtain a complex analytic variety C̃ of
dimension dimS − g + 1 passing through s̃ such that C̃ ⊂ S̃ ∩Hc,s̃. Then (10.4) implies

(10.5) dim C̃Zar ≤ dim(Hc,s̃ ∩ S̃biZar) = dim S̃biZar − g.

On the other hand C̃ ⊂ S̃, so u(C̃) ⊂ u(S̃) = S. Hence

(10.6) dimu(C̃)Zar ≤ dimS.
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Apply Ax-Schanuel, namely Theorem 10.2.5, to C̃. We obtain

(10.7) dim C̃Zar+dimu(C̃)Zar ≥ dim C̃+dim C̃biZar = dimS−g+1+dim C̃biZar.

By (10.5), (10.6) and (10.7), we get dim S̃biZar > dim C̃biZar. Thus in order to get
a contradiction, it suffice to prove S̃biZar = C̃biZar. We shall use condition (i) of Theo-
rem 10.1.3 to prove this fact.

The logarithmic Ax theorem for Ag says that S̃biZar = H◦S(R)+s̃. We refer to [11,
Theorem 8.1] for this theorem. Recall that s̃ is Hodge generic in S̃. Hence H◦S is normal
in MT(s̃) by André [2, Theorem 1].

By Ullmo-Yafaev [35, Theorem 1.2], bi-algebraic subsets of Hg are precisely the
weakly special subsets of Hg . Now C̃biZar contains s̃ which is Hodge generic in S̃, and
C̃biZar ⊂ S̃biZar ⊂ MT(s̃)(R)+s̃. So by definition of weakly special subvarieties (see [35,
Definition 2.1] or [30, Definition 4.1.(b)]), we have C̃biZar = N(R)+s̃ for some normal
subgroupN of MT(s̃). NowN(R)+s̃ ⊂ H◦S(R)+s̃, bothN andH◦S are normal subgroups
of the reductive group MT(s̃), andH◦S is simple by condition (i) of Theorem 10.1.3. Hence
N(R)+s̃ = H◦S(R)+s̃, and so C̃biZar = S̃biZar. �
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