J. N. Israelachvili, Intermolecular and Surface Forces, 1991.

R. J. Hunter, Foundations of Colloid Science, 2001.

L. Blum, Mean spherical model for asymmetric electrolytes, Mol. Phys, vol.30, pp.1529-1535, 1975.

J. Simonin, L. Blum, and P. Turq, Real ionic solutions in the mean spherical approximation. 1. simple salts in the primitive model, J. Phys. Chem, vol.100, pp.7704-7709, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00162536

J. G. Kirkwood, Statistical mechanics of liquid solutions, Chem. Rev, vol.19, pp.275-307, 1936.

M. E. Fisher and B. Widom, Decay of correlations in linear systems, J. Chem. Phys, vol.50, pp.3756-3772, 1969.

R. Evans and T. J. Sluckin, A density functional theory for inhomogeneous charged fluids, Mol. Phys, vol.40, pp.413-435, 1980.

R. Evans, J. Henderson, D. Hoyle, A. Parry, and Z. Sabeur, Asymptotic decay of liquid structure: oscillatory liquid-vapour density profiles and the Fisher-Widom line, Mol. Phys, vol.80, pp.755-775, 1993.

R. J. Carvalho and R. Evans, The decay of correlations in ionic fluids, Mol. Phys, vol.83, pp.619-654, 1994.

P. Attard, Asymptotic analysis of primitive model electrolytes and the electrical double layer, Phys. Rev. E, vol.48, pp.3604-3621, 1993.

R. Kjellander and D. Mitchell, An exact but linear and Poisson-Boltzmann-like theory for electrolytes and colloid dispersions in the primitive model, Chem. Phys. Lett, pp.76-82, 0200.

R. Kjellander and D. J. Mitchell, Dressed-ion theory for electrolyte solutions: A Debye-Hückel-like reformulation of the exact theory for the primitive model, J. Chem. Phys, vol.101, pp.603-626, 1994.

J. Ennis, R. Kjellander, and D. J. Mitchell, Dressed ion theory for bulk symmetric electrolytes in the restricted primitive model, J. Chem. Phys, vol.102, pp.975-991, 1995.

J. Ulander and R. Kjellander, The decay of pair correlation functions in ionic fluids: A dressed ion theory analysis of Monte Carlo simulations, J. Chem. Phys, vol.114, pp.4893-4904, 2001.

P. Keblinski, J. Eggebrecht, D. Wolf, and S. R. Phillpot, Molecular dynamics study of screening in ionic fluids, J. Chem. Phys, vol.113, pp.282-291, 2000.

M. Salanne, C. Simon, P. Turq, and P. A. Madden, Intermediate range chemical ordering of cations in simple molten alkali halides, J. Phys.: Condens. Matter, vol.20, 2008.

J. Jane?ek and R. R. Netz, E?ective screening length and quasiuniversality for the restricted primitive model of an electrolyte solution, J. Chem. Phys, p.74502, 2009.

A. A. Kornyshev, Double-layer in ionic liquids: paradigm change?, J. Phys. Chem. B, vol.111, pp.5545-5557, 2007.

C. Merlet, D. T. Limmer, M. Salanne, R. Van-roij, P. A. Madden et al., The electric double layer has a life of its own, J. Phys. Chem. C, vol.118, pp.18291-18298, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00968897

D. T. Limmer, Interfacial ordering and accompanying divergent capacitance at ionic liquid-metal interfaces, Phys. Rev. Lett, p.256102, 2015.

A. Härtel, S. Samin, and R. Van-roij, Dense ionic fluids confined in planar capacitors: inand out-of-plane structure from classical density functional theory, J. Phys. Condens. Matter, vol.28, p.244007, 2016.

M. Girotto, T. Colla, A. P. Santos, and Y. Levin, Lattice model of an ionic liquid at an electrified interface, J. Phys. Chem. B, vol.121, pp.6408-6415, 2017.

N. B. Ludwig, K. Dasbiswas, D. V. Talapin, and S. Vaikuntanathan, Describing screening in dense ionic fluids with a charge-frustrated Ising model, J. Chem. Phys, p.164505, 2018.

A. Levy, M. Mceldrew, and M. Z. Bazant, Spin-glass charge ordering in ionic liquids, Phys. Rev. Mat, vol.3, p.55606, 2019.

M. A. Gebbie, M. Valtiner, X. Banquy, E. T. Fox, W. A. Henderson et al., Ionic liquids behave as dilute electrolyte solutions, Proc. Nat. Acad. Sci. (USA) 2013, vol.110, pp.9674-9679

M. A. Gebbie, H. A. Dobbs, M. Valtiner, and J. N. Israelachvili, Long-range electrostatic screening in ionic liquids, Proc. Nat. Acad. Sci. (USA), vol.112, pp.7432-7437, 2015.

S. Perkin, M. Salanne, P. Madden, and R. Lynden-bell, Is a Stern and di?use layer model appropriate to ionic liquids at surfaces?, Proc. Nat. Acad. Sci. (USA) 2013, vol.110, pp.4121-4121

A. M. Smith, A. A. Lee, and S. Perkin, The electrostatic screening length in concentrated electrolytes increases with concentration, J. Phys. Chem. Lett, vol.7, pp.2157-2163, 2016.

A. A. Lee, C. S. Perez-martinez, A. M. Smith, and S. Perkin, Scaling analysis of the screening length in concentrated electrolytes, Phys. Rev. Lett, p.26002, 2017.

A. M. Smith, A. A. Lee, and S. Perkin, Switching the structural force in ionic liquid-solvent mixtures by varying composition, Phys. Rev. Lett, vol.118, p.96002, 2017.

S. W. Coles, A. M. Smith, M. V. Fedorov, F. Hausen, and S. Perkin, Interfacial structure and structural forces in mixtures of ionic liquid with a polar solvent, vol.206, pp.427-442, 2017.

N. Hjalmarsson, R. Atkin, and M. W. Rutland, Switchable long-range double layer force observed in a protic ionic liquid, Chem. Commun, vol.53, pp.647-650, 2017.

P. Gaddam and W. Ducker, Electrostatic screening length in concentrated salt solutions, Langmuir, vol.35, pp.5719-5727, 2019.

B. Rotenberg, O. Bernard, and J. Hansen, Underscreening in ionic liquids: a first principles analysis, J. Phys.: Condens. Matter, vol.30, p.54005, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01896764

B. Uralcan, I. A. Aksay, P. G. Debenedetti, and D. T. Limmer, Concentration fluctuations and capacitive response in dense ionic solutions, J. Phys. Chem. Lett, vol.7, pp.2333-2338, 2016.

F. Coupette, A. A. Lee, and A. Härtel, Screening lengths in ionic fluids, Phys. Rev. Lett, p.75501, 2018.

R. M. Adar, S. A. Safran, H. Diamant, and D. Andelman, Screening length for finite-size ions in concentrated electrolytes, Phys. Rev. E, vol.100, p.42615, 2019.

R. Kjellander, Focus Article: Oscillatory and long-range monotonic exponential decays of electrostatic interactions in ionic liquids and other electrolytes: The significance of dielectric permittivity and renormalized charges, J. Chem. Phys, p.148, 2018.

R. Kjellander, The intimate relationship between the dielectric response and the decay of intermolecular correlations and surface forces in electrolytes, Soft Matter, vol.15, pp.5866-5895, 2019.

C. Park, M. Kandu?, R. Chudoba, A. Ronneburg, S. Risse et al., Molecular simulations of electrolyte structure and dynamics in lithium-sulfur battery solvents, J. Power Sources, vol.373, pp.70-78, 2018.

L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries, vol.350, pp.938-943, 2015.

J. Gao, M. A. Lowe, Y. Kiya, and H. D. Abruña, E?ects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies, J. Phys. Chem. C, vol.115, pp.25132-25137, 2011.

M. Abraham, . Van-der, D. Spoel, E. Lindahl, B. Hess et al., , 2016.

L. X. Dang, Mechanism and thermodynamics of ion selectivity in aqueous solutions of 18-crown-6 ether, J. Am. Chem. Soc, vol.117, pp.6954-6960, 1995.

I. Kalcher and J. Dzubiella, Structure-thermodynamics relation of electrolyte solutions, J. Chem. Phys, p.134507, 2009.

H. J. Berendsen, J. R. Grigera, and T. P. Straatsma, The missing term in e?ective pair potentials, J. Phys. Chem, vol.91, pp.6269-6271, 1987.

M. J. Monteiro, F. F. Bazito, L. J. Siqueira, M. C. Ribeiro, and R. M. Torresi, Transport coe cients, raman spectroscopy, and computer simulation of lithium salt solutions in an ionic liquid, J. Phys. Chem. B, vol.112, pp.2102-2109, 2008.

C. Lopes, J. N. Pádua, and A. A. , Molecular force field for ionic liquids composed of triflate or bistriflylimide anions, J. Phys. Chem. B, vol.108, pp.16893-16898, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00130459

N. Dubouis, C. Park, M. Deschamps, S. Abdelghani-idrissi, M. Kandu? et al., Chasing aqueous biphasic systems from simple salts by exploring the LiTFSI/LiCl/H2O phase diagram
URL : https://hal.archives-ouvertes.fr/hal-02124064

. Sci, , vol.5, pp.640-643, 2019.

I. Leontyev and A. Stuchebrukhov, Electronic continuum model for molecular dynamics simulations, J. Chem. Phys, p.85102, 2009.

W. L. Jorgensen, D. S. Maxwell, and J. Tirado-rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids

, J. Am. Chem. Soc, vol.118, pp.11225-11236, 1996.

P. M. Anderson and M. R. Wilson, Developing a force field for simulation of poly (ethylene oxide) based upon ab initio calculations of 1, 2-dimethoxyethane, Mol. Phys, vol.103, pp.89-97, 2005.

L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, PACKMOL: a package for building initial configurations for molecular dynamics simulations, J. Comp. Chem, vol.30, pp.2157-2164, 2009.

T. Darden, D. York, and L. Pedersen, Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems, J. Chem. Phys, vol.98, pp.10089-10092, 1993.

J. Hansen and I. R. Mcdonald, Theory of Simple Liquids

J. Hansen and . Mcdonald, , pp.403-454, 2013.

J. M. Caillol, D. Levesque, and J. J. Weis, Theoretical calculation of ionic solution properties, J. Chem. Phys, vol.85, pp.6645-6657, 1986.

C. Schröder, M. Haberler, and O. Steinhauser, On the computation and contribution of conductivity in molecular ionic liquids, J. Chem. Phys, vol.128, p.134501, 2008.

C. Schröder, J. Hunger, A. Stoppa, R. Buchner, and O. Steinhauser, On the collective network of ionic liquid/ water mixtures. II. Decomposition and interpretation of dielectric spectras, J. Chem. Phys, p.184501, 2008.

K. F. Rinne, S. Gekle, and R. R. Netz, Dissecting ion-specific dielectric spectra of sodiumhalide solutions into solvation water and ionic contributions, J. Chem. Phys, p.214502, 2014.

, As pointed out in Ref. 38, the decay modes in electrolytes can be expressed as the selfconsistent solutions of an Equation similar to Eq. (1) but using renormalized charges, as well as the complex permittivity "(k), with k the wave vector, instead of the dielectric constant

A. Elbourne, S. Mcdonald, K. Voïchovsky, F. Endres, G. G. Warr et al., Nanostructure of the Ionic Liquid-Graphite Stern Layer, ACS Nano, vol.9, pp.7608-7620, 2015.

M. Ricci, P. Spijker, and K. Voïtchovsky, Water-induced correlation between single ions imaged at the solid-liquid interface, Nat. Commun, vol.5, pp.1-8, 2014.

Y. Avni, T. Markovich, R. Podgornik, and D. Andelman, Charge regulating macro-ions in salt solutions: screening properties and electrostatic interactions, Soft Matter, vol.14, pp.6058-6069, 2018.

Y. Avni, D. Andelman, and R. Podgornik, Charge regulation with fixed and mobile charged macromolecules, Curr. Opin. Electrochem, vol.13, pp.70-77, 2019.

Y. Avni, R. M. Adar, and D. Andelman, Charge oscillations in ionic liquids: A microscopic cluster model, Phys. Rev, vol.2020, p.10601

D. Borgis, R. Assaraf, B. Rotenberg, and R. Vuilleumier, Computation of pair distribution functions and three-dimensional densities with a reduced variance principle, Mol. Phys, vol.111, pp.3486-3492, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01078958

S. W. Coles, D. Borgis, R. Vuilleumier, and B. Rotenberg, Computing three-dimensional densities from force densities improves statistical e ciency, J. Chem. Phys, p.64124, 2019.

S. Schön and R. V. Klitzing, A simple extension of the commonly used fitting equation for oscillatory structural forces in case of silica nanoparticle suspensions, Beilstein J. Nanotechnol, vol.9, pp.1095-1107, 2018.

A. A. Lee, J. Hansen, O. Bernard, and B. Rotenberg, Casimir force in dense confined electrolytes, Mol. Phys, vol.116, pp.3147-3153, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01758525

M. Abraham, . Van-der, D. Spoel, E. Lindahl, B. Hess et al., , 2016.

L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, PACKMOL: a package for building initial configurations for molecular dynamics simulations, J. Comp. Chem, vol.30, pp.2157-2164, 2009.

M. Parrinello and A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, J. App, Phys, vol.52, pp.7182-7190, 1981.

T. Darden, D. York, and L. Pedersen, Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems, J. Chem. Phys, vol.98, pp.10089-10092, 1993.

G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, J. Chem. Phys, p.14101, 2007.

I. Kalcher and J. Dzubiella, Structure-thermodynamics relation of electrolyte solutions, J. Chem. Phys, p.134507, 2009.

L. X. Dang, Mechanism and thermodynamics of ion selectivity in aqueous solutions of 18-crown-6 ether, J. Am. Chem. Soc, vol.117, pp.6954-6960, 1995.

M. J. Monteiro, F. F. Bazito, L. J. Siqueira, M. C. Ribeiro, and R. M. Torresi, Transport coefficients, raman spectroscopy, and computer simulation of lithium salt solutions in an ionic liquid, J. Phys. Chem. B, vol.112, pp.2102-2109, 2008.

H. J. Berendsen, J. R. Grigera, and T. P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem, vol.91, pp.6269-6271, 1987.

Z. Li, G. Jeanmairet, T. Méndez-morales, B. Rotenberg, and M. Salanne, Capacitive Performance of Water-in-Salt Electrolytes in Supercapacitors: A Simulation Study, J. Phys. Chem. C, vol.122, pp.23917-23924, 2018.

W. L. Jorgensen, D. S. Maxwell, and J. Tirado-rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc, vol.118, pp.11225-11236, 1996.

P. M. Anderson and M. R. Wilson, Developing a force field for simulation of poly (ethylene oxide) based upon ab initio calculations of 1, 2-dimethoxyethane, Mol. Phys, vol.103, pp.89-97, 2005.

C. Lopes, J. N. Pádua, and A. A. , Molecular force field for ionic liquids composed of triflate or bistriflylimide anions, J. Phys. Chem. B, vol.108, pp.16893-16898, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00130459

L. X. Dang, Development of nonadditive intermolecular potentials using molecular dynamics: solvation of Li+ and F-ions in polarizable water, J. Chem. Phys, vol.96, pp.6970-6977, 1992.

B. Hess, H. Bekker, H. J. Berendsen, and J. G. Fraaije, LINCS: a linear constraint solver for molecular simulations, J. Comput. Chem, vol.18, pp.1463-1472, 1997.

I. Leontyev, M. Vener, I. Rostov, M. Basilevsky, and M. D. Newton, Continuum level treatment of electronic polarization in the framework of molecular simulations of solvation effects, J. Chem. Phys, vol.119, pp.8024-8037, 2003.

I. Leontyev and A. Stuchebrukhov, Electronic continuum model for molecular dynamics simulations, J. Chem. Phys, p.85102, 2009.

I. Leontyev and A. Stuchebrukhov, Electronic polarizability and the effective pair potentials of water, J. Chem. Theory Comput, vol.6, pp.3153-3161, 2010.

I. Leontyev and A. Stuchebrukhov, Electronic continuum model for molecular dynamics simulations of biological molecules, J. Chem. Theory Comput, vol.6, pp.1498-1508, 2010.

I. V. Leontyev and A. A. Stuchebrukhov, Polarizable mean-field model of water for biological simulations with AMBER and CHARMM force fields, J. Chem. Theory Comput, vol.8, pp.3207-3216, 2012.

C. Park, A. Ronneburg, S. Risse, M. Ballauff, M. Kandu? et al., Structural and transport properties of Li/S battery electrolytes: role of the polysulfide species, J. Phys. Chem. C, vol.123, pp.10167-10177, 2019.

C. Park, M. Kandu?, R. Chudoba, A. Ronneburg, S. Risse et al., Molecular simulations of electrolyte structure and dynamics in lithium-sulfur battery solvents, J. Power Sources, vol.373, pp.70-78, 2018.

C. Schröder, M. Haberler, and O. Steinhauser, On the computation and contribution of conductivity in molecular ionic liquids, J. Chem. Phys, vol.128, p.134501, 2008.

A. M. Smith, A. A. Lee, and S. Perkin, The electrostatic screening length in concentrated electrolytes increases with concentration, J. Phys. Chem. Lett, vol.7, pp.2157-2163, 2016.

J. Hansen and I. R. Mcdonald, Theory of Simple Liquids

J. Hansen and . Mcdonald, , pp.403-454, 2013.