A. Groß, Fundamental challenges for modeling electrochemical energy storage systems at the atomic scale, Top. Curr. Chem, vol.376, p.17, 2018.

M. V. Fedorov and A. A. Kornyshev, Ionic liquids at electrified interfaces, Chem. Rev, vol.114, pp.2978-3036, 2014.

M. Armand and J. Tarascon, Building better batteries, Nature, vol.451, pp.652-657, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00258391

P. Simon and Y. Gogotsi, Materials for Electrochemical Capacitors, Nat. Mater, vol.7, pp.845-854, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02417326

J. Cheng and M. Sprik, Alignment of electronic energy levels at electrochemical interfaces, Phys. Chem. Chem. Phys, vol.14, pp.11245-11267, 2012.

J. Cheng, X. Liu, J. A. Kattirtzi, J. Vandevondele, and M. Sprik, Aligning electronic and protonic energy levels of proton-coupled electron transfer in water oxidation on aqueous TiO 2, Angew. Chem., Int. Ed, vol.53, pp.12046-12050, 2014.

K. Chan and J. K. Norskov, Electrochemical barriers made simple, J. Phys. Chem. Lett, vol.6, pp.2663-2668, 2015.

M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P. Taberna et al., Efficient Storage Mechanisms for Building Better Supercapacitors, Nat. Energy, vol.1, p.16070, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01480941

J. I. Siepmann and M. Sprik, Influence of Surface-Topology and Electrostatic Potential on Water Electrode Systems, J. Chem. Phys, vol.102, pp.511-524, 1995.

S. K. Reed, O. J. Lanning, and P. A. Madden, Electrochemical Interface Between an Ionic Liquid and a Model Metallic Electrode, J. Chem. Phys, vol.126, p.84704, 2007.

C. Merlet, B. Rotenberg, P. A. Madden, P. Taberna, P. Simon et al., On the Molecular Origin of Supercapacitance in Nanoporous Carbon Electrodes, Nat. Mater, vol.11, pp.306-310, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01153072

W. J. Mortier, S. K. Ghosh, and S. Shankar, Electronegativity-equalization method for the calculation of atomic charges in molecules, J. Am. Chem. Soc, vol.108, pp.4315-4320, 1986.

A. K. Rappe, W. A. Goddard, and I. , Charge equilibration for molecular dynamics simulations, J. Phys. Chem, vol.95, pp.3358-3363, 1991.

P. A. Madden and M. Wilson, covalent' effects in 'ionic' systems, Chem. Soc. Rev, vol.25, pp.339-350, 1996.

R. Vuilleumier, Density functional theory based ab initio molecular dynamics using the car-parrinello approach, Lect. Notes Phys, vol.703, pp.223-285, 2006.

R. Car and M. Parrinello, Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett, vol.55, pp.2471-2474, 1985.

A. Coretti, S. Bonella, and G. Ciccotti, Communication: Constrained molecular dynamics for polarizable models, J. Chem. Phys, vol.149, p.191102, 2018.

S. Bonella, A. Coretti, R. Vuilleumier, and G. Ciccotti, Adiabatic motion and statistical mechanics via mass zero constrained dynamics, Phys. Chem. Chem. Phys, 2020.

L. Scalfi, D. T. Limmer, A. Coretti, S. Bonella, P. A. Madden et al., Charge fluctuations from molecular simulations in the constant-potential ensemble, Phys. Chem. Chem. Phys, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02869879

J. S. Hub, B. L. De-groot, H. Grubmüller, and G. Groenhof, Quantifying Artifacts in Ewald Simulations of Inhomogeneous Systems with a Net Charge, Journal of Chemical Theory and Computation, vol.10, pp.381-390, 2014.

D. T. Limmer, C. Merlet, M. Salanne, D. Chandler, P. A. Madden et al., Charge fluctuations in nanoscale capacitors, Phys. Rev. Lett, vol.111, p.106102, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00839655

J. Ryckaert, A. Bellemans, and G. Ciccotti, The rotation-translation coupling in diatomic molecules, Molecular Physics, vol.44, pp.979-996, 1981.

J. Ryckaert, G. Ciccotti, and H. J. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, J. Comput. Phys, vol.23, pp.327-341, 1977.

B. J. Leimkuhler and R. D. Skeel, Symplectic numerical integrators in constrained Hamiltonian systems, Journal of Computational Physics, vol.112, pp.117-125, 1994.

, We recall that the R ? are fixed parameters in the potential. This prescription can be relaxed to include the location of the Gaussian charges to change but this extension of the model

, This scheme is more rigorous but its implementation in MetalWalls turned out to be impractical. Use of the conjugate gradient minimisation, vol.17

G. Ciccotti and J. Ryckaert, Molecular dynamics simulation of rigid molecules, Comp. Phys. Rep, vol.4, pp.346-392, 1986.

A. P. Willard, S. K. Reed, P. A. Madden, and D. Chandler, Water at an electrochemical interface -a simulation study, Faraday Discuss, vol.141, pp.423-441, 2009.

D. T. Limmer, A. P. Willard, P. Madden, and D. Chandler, Hydration of metal surfaces can be dynamically heterogeneous and hydrophobic, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.4200-4205, 2013.

A. P. Willard, D. T. Limmer, P. A. Madden, and D. Chandler, Characterizing heterogeneous dynamics at hydrated electrode surfaces, J. Chem. Phys, vol.138, p.184702, 2013.

D. T. Limmer and A. P. Willard, Nanoscale heterogeneity at the aqueous electrolyte-electrode interface, Chem. Phys. Lett, vol.620, pp.144-150, 2015.

M. Simoncelli, N. Ganfoud, A. Sene, M. Haefele, B. Daffos et al., Blue energy and desalination with nanoporous carbon electrodes: Capacitance from molecular simulations to continuous models, Phys. Rev. X, vol.8, p.21024, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01826410

J. B. Haskins and J. W. Lawson, Evaluation of molecular dynamics simulation methods for ionic liquid electric double layers, J. Chem. Phys, vol.144, p.134701, 2016.

S. Park and J. G. Mcdaniel, Interference of electrical double layers: Confinement effects on structure, dynamics and screening of ionic liquids, J. Chem. Phys, vol.152, p.74709, 2020.

Z. Li, G. Jeanmairet, T. Mendez-morales, B. Rotenberg, and M. Salanne, Capacitive performance of water-in-salt electrolytes in supercapacitors: a simulation study, J. Phys. Chem. C, vol.122, pp.23917-23924, 2018.

H. J. Berendsen, J. R. Grigera, and T. P. Straatsma, The Missing Term in Effective Pair Potentials, J. Phys. Chem, vol.91, pp.6269-6271, 1987.

T. Werder, J. H. Walther, R. L. Jaffe, T. Halicioglu, and P. Koumoutsakos, On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes, J. Phys. Chem. B, vol.107, pp.1345-1352, 2003.

T. R. Gingrich and M. Wilson, On the ewald summation of gaussian charges for the simulation of metallic surfaces, Chem. Phys. Lett, vol.500, pp.178-183, 2010.

Z. Wang, Y. Yang, D. L. Olmsted, M. Asta, and B. B. Laird, Evaluation of the constant potential method in simulating electric double-layer capacitors, The Journal of Chemical Physics, vol.141, p.184102, 2014.

G. Jeanmairet, B. Rotenberg, D. Borgis, and M. Salanne, Study of a watergraphene capacitor with molecular density functional theory, J. Chem. Phys, vol.151, p.124111, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02348703

J. Carrasco, A. Hodgson, and A. Michaelides, A molecular perspective of water at metal interfaces, Nat. Mater, vol.11, pp.667-674, 2012.

Y. Tu, S. Delmerico, and J. G. Mcdaniel, Inner layer capacitance of organic electrolytes from constantvoltage molecular dynamics, J. Phys. Chem. C, vol.124, pp.2907-2922, 2020.