Diederick Vermetten

Hao Wang

Thomas Bäck

Carola Doerr

Diederick Verme

Omas Bäck

Towards Dynamic Algorithm Selection for Numerical Black-Box Optimization: Investigating BBOB

 L'archive ouverte pluridisciplinaire

INTRODUCTION

It is well known that, when solving an optimization problem, different stages of the process require di erent search behavior. For example, while exploration is needed in the initial phases, the algorithm needs to eventually converge to a solution (exploitation). State-of-the-art optimization algorithms therefore o en incorporate mechanisms to adjust their search behavior while optimizing, by taking into account the information obtained during the run.

ese techniques are studied under many di erent umbrellas, such as parameter control [START_REF] Endre Eiben | Parameter control in evolutionary algorithms[END_REF], meta-heuristics [START_REF] Boussaïd | A survey on optimization metaheuristics[END_REF], adaptive operator selection [START_REF] Maturana | Adaptive Operator Selection and Management in Evolutionary Algorithms[END_REF], or hyper-heuristics [START_REF] Burke | Hyper-heuristics: a survey of the state of the art[END_REF].

e probably best-known and most widely used techniques for achieving a dynamic search behavior are the one-h success rule [START_REF] Devroye | e compound random search[END_REF][START_REF] Rechenberg | Evolutionsstrategie[END_REF][START_REF] Schumer | Adaptive step size random search[END_REF] and the covariance adaptation technique that the family of CMA-ES algorithms [START_REF] Hansen | Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation[END_REF][START_REF] Hansen | Completely Derandomized Self-Adaptation in Evolution Strategies[END_REF] is build upon. While each of these two control mechanisms tackles the problem of balancing performance in di erent phases of the search in its own way, they are mostly working with a speci c algorithm, aiming to tune its performance by changing internal parameters or algorithm modules. is inherently limits the potential of these methods, since di erent algorithms can have widely varying performances during di erent phases of the optimization process. By switching between these algorithms during the search, these di erences could potentially be exploited to get even be er performance. We coin the problem of choosing which algorithms to switch between, and under which circumstances, the Dynamic Algorithm Selection (dynAS) problem.

Solving the dynAS problem would be an important milestone towards tackling the more general dynamic Algorithm Con guration (dynAC) problem, which also addresses the problem of selecting (and possibly adjusting) suitable algorithm con gurations. Specifically, dynAS is limited to switching between algorithms from a discrete portfolio of pre-con gured heuristics, whereas for dynAC, the algorithms come with (possibly several) parameters whose settings can have signi cant in uence on the performance.

We do not solve dynAS here, but aim to show its potential for numerical optimization. We then aim to develop suitable environments to encourage and enable future research into achieving the identi ed potential of dynAS and, in the longer run, to extend this to the dynAC problem. As a rst step, we need to identify a meaningful collection of algorithms and benchmark problems, which together cover the main characteristics and challenges of the dynAS problem, without imposing too many additional challenges. e Black-Box Optimization Benchmarking (BBOB) environment [START_REF] Hansen | COCO: Performance Assessment[END_REF] with its rich data sets available at [START_REF] Auger | Data from BBOB-workshops and competitions on 24 noiseless functions[END_REF] suggests itself as a natural starting point for such considerations, since the community has already acquired a quite solid understanding of the problems and solvers in this test-bed over the last decade.

We perform a rst assessment of the performance that one could expect to see when applying dynAS to the algorithms in the BBOB data sets, to understand whether the gains would justify further exploration of the dynAS paradigm on this test-bed. We nd that -even when restricting the dynAS problem further to allowing only a single switch between algorithms in the portfolio -promising improvements over the best static solvers can be expected, in particular for the more complex problems (functions [START_REF] Lacroix | Limitations of Benchmark Sets and Landscape Features for Algorithm Selection and Performance Prediction[END_REF][START_REF]Parameter Se ing in Evolutionary Algorithms[END_REF][START_REF] Locatelli | Random Linkage: a family of acceptance/rejection algorithms for global optimisation[END_REF][START_REF] Loshchilov | Bi-Population CMA-ES Agorithms with Surrogate Models and Line Searches[END_REF][START_REF] Mary | Constraint Handling Guided by Landscape Analysis in Combinatorial and Continuous Search Spaces[END_REF][START_REF] Maturana | Adaptive Operator Selection and Management in Evolutionary Algorithms[END_REF].

Our considerations are purely based on a theoretical investigation of the potential, which might be too optimistic for the singleswitch dynAS case -most importantly, because of the problem of warm-staring the algorithms: since the heuristics are adaptive themselves, their states need to be initialized appropriately at the switch. is may be a di cult problem when changing between algorithms of very di erent structure. We do not consider, on the other hand, the possibility to switch more than once, so that our bounds may be too too pessimistic for the full dynAS se ing, in which an arbitrary number of switches is allowed.

Given the above limitations, we therefore also provide a critical assessment of our approach, and highlight ideas for addressing the main challenges in dynAS.

Related Work

e idea that a dynamic con gurations and/or selection of algorithms can be bene cial in the context of iterative optimization heuristics is almost as old as evolutionary computation itself, in particular in the context of solving numerical optimization problems, see [START_REF]Parameter Se ing in Evolutionary Algorithms[END_REF] for an entire book focusing mostly on dynamic algorithm con guration techniques. However, as mentioned above, existing works almost exclusively focus on changing parameters of selected components of an otherwise stable algorithmic framework. is includes most works on hyper-heuristics [START_REF] Burke | Hyper-heuristics: a survey of the state of the art[END_REF] and related concepts such as adaptive operator selection [START_REF] Maturana | Adaptive Operator Selection and Management in Evolutionary Algorithms[END_REF], and parameter control [START_REF] Endre Eiben | Parameter control in evolutionary algorithms[END_REF].

To the best of our knowledge, the full dynAC problem as described above was only recently formalized [START_REF] Biedenkapp | Towards White-box Benchmarks for Algorithm Control[END_REF]. Biedenkamp et al. introduce dynAC as a Contextual Markov Decision Process (CMDP), where a policy can be learned to switch hyperparameters of a meta-algorithm, with some of these hyperparameters possibly encoding the choice between di erent algorithms. 1 ey also show that arti cial CMDPs can be solved e ectively by using reinforcement learning techniques, providing a promising direction for future research on dynAC.

In the context of evolutionary computation, the concept of switching between di erent algorithms during the optimization process was recently investigated in [START_REF] Sander Van Rijn | Towards an Adaptive CMA-ES Con gurator[END_REF], by a similar theoretical assessment as in this work. e approach was then tested in [START_REF] Verme En | Online selection of CMA-ES variants[END_REF], where it was shown that the predicted gains can indeed materialize, with the caveat that one has to ensure a su ciently accurate estimate for the median anytime performances of each algorithm. ese two works, however, focus on a single family of numerical black-box optimization techniques, the modular CMA-ES framework suggested in [START_REF] Sander Van Rijn | Evolving the structure of Evolution Strategies[END_REF]. Here in this work, in contrast, we explicitly want to go one step further, and study combinations of heuristics that are potentially of very di erent structure, such as, for example combining a Di erential Evolution (DE) algorithm for the global exploration with a CMA-ES for the nal convergence.

While the dynAC problem is solved by an unsupervised reinforcement learning approach in [START_REF] Biedenkapp | Towards White-box Benchmarks for Algorithm Control[END_REF], we observe that dynAC in evolutionary computation is more frequently based on on supervised learning approaches, see [START_REF] Janković | Adaptive landscape analysis[END_REF][START_REF] Mary | Constraint Handling Guided by Landscape Analysis in Combinatorial and Continuous Search Spaces[END_REF][START_REF] Mu | Performance Analysis of Continuous Black-Box Optimization Algorithms via Footprints in Instance Space[END_REF] for examples. ese techniques combine exploratory landscape analysis [START_REF] Mersmann | Exploratory landscape analysis[END_REF] and/or tness landscape analysis [START_REF] Pitzer | A Comprehensive Survey on Fitness Landscape Analysis[END_REF] with supervised learning techniques, such as random forests, support vector machines, etc. While still in its infancy, even in the static algorithm con guration case [START_REF] Belkhir | Per instance algorithm con guration of CMA-ES with limited budget[END_REF][START_REF] Kerschke | Automated Algorithm Selection on Continuous Black-Box Problems By Combining Exploratory Landscape Analysis and Machine Learning[END_REF][START_REF] Kerschke | Automated Algorithm Selection on Continuous Black-Box Problems by Combining Exploratory Landscape Analysis and Machine Learning[END_REF][START_REF] Ñoz | Algorithm selection for black-box continuous optimization problems: A survey on methods and challenges[END_REF], these works may pave an interesting alternative to reinforcement learning, as they may more directly provide insight into (and make use of) the correlation between tness landscapes and algorithms' performance.

PRELIMINARIES 2.1 Dynamic Algorithm Selection

Classically, algorithm selection a empts to nd the best algorithm A from a portfolio A to solve a speci c function f from a set of functions F . Speci cally, this static version of algorithm selection can be de ned as follows:

De nition 2.1 (Static Algorithm Selection). Given an algorithm portfolio A and a function f ∈ F , we aim to nd:

arg min A∈A PERF(A, f) ,
where PERF is a performance measure (which assigns lower values to be er performing algorithms).

To extend algorithm selection to the dynamical case, we need to de ne a function which switches between algorithms. We use techniques from [START_REF] Biedenkapp | Towards White-box Benchmarks for Algorithm Control[END_REF] to represent this as a policy function, and modify it as follows:

De nition 2.2 (Dynamic Algorithm Selection (dynAS)). Given an algorithm portfolio A, a f ∈ F and a state description s t ∈ S at time step t of an algorithm run. We want to nd a policy π : S -→ A which minimizes PERF(A π , f) Note that this de nition can be extended to dynamic algorithm con guration by changing the policy to be π : S -→ (A × Θ A), where Θ A is the con guration space of algorithm A.

e BBOB Benchmark

e Black Box Optimization Benchmark (BBOB) is widely accepted as the go-to benchmarking framework within the eld of optimization. While BBOB has grown a lot over the years, the functions within their noiseless suite have remained stable. is suite contains 24 noiseless optimization functions, each of which being theoretically de ned for any number of dimensions. In practice however, the commonly used dimension set is D = {2, 3, 5, 10, 20, 40}. For each function, several transformation methods are de ned, both for the variable as the objective spaces. ese transformations are xed, and di erent combinations lead to di erent versions of the function, called instances. Since these functions are de ned mathematically, the optimal values are known in advance. Because of this, we can de ne target values we wish to reach in terms of closeness to this optimal value, instead of an abstract value. is gives the advantage of comparability between instances, which would not be possible when using raw target values.

e 24 noiseless functions have been studied in detail, not just from a performance perspective. Especially within the landscape analysis community, a lot of analysis of the BBOB-functions has been performed, leading to a lot of useful insights about their properties. ese properties are ideal to use when implementing dynAS in practice, as they are very in uential on the local performance of algorithms. Generally, it is agreed that the 24 BBOB functions cover a broad range of potential challenges for di erent optimization algorithms [START_REF] Mersmann | Exploratory landscape analysis[END_REF], even though certain aspects, i.e., discontinuities or plateaus, are not very well represented [START_REF] Lacroix | Limitations of Benchmark Sets and Landscape Features for Algorithm Selection and Performance Prediction[END_REF].

e popularity of BBOB means that many researchers have benchmarked their algorithms on the BBOB-functions. Most of these have then submi ed versions of their algorithms to competitions or workshops organized by the BBOB-team. Between the rst competition in 2009 [START_REF] Hansen | Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009[END_REF] and the latest workshop in 2019, a total of 226 algorithms have been submi ed and their data made available to the public [START_REF] Auger | Data from BBOB-workshops and competitions on 24 noiseless functions[END_REF]. Because of this large amount of available data, there are plenty of baselines to compare algorithms against and gain inspiration from. ese algorithms have o en been well justi ed and rigorously tested. However, the implementations used are generally not freely available, and even if they are, they might be hard to combine into a single dynAS framework, since BBOB is available in many di erent languages. However, the majority of the algorithms is either directly available online or has been well-documented, making the challenge of implementing them doable.

Additionally, the large amount of algorithms which have been run on BBOB provide a good way to select sets of algorithms from which to build initial dynAS portfolios. However, since the BBOBrepository is largely the result from running competitions, many of the used algorithms are highly tuned, making them hard to beat and giving rise to the question of generalizability of dynAS results to other functions. Eventually, a move to true dynAC would resolve this issue, but these techniques will require a lot of further study to implement.

Since the BBOB-framework provides the functions, algorithms and performance baselines, it is an ideal candidate for initial experiments related to dynAS.

Performance Measures

To measure the performance of the algorithms on the BBOB-dataset, several approaches are possible. ese usually fall into two categories: xed-budget and xed-target. e xed-budget approach asks the question: "What target value is reached a er x function evaluations?", while the xed-target question can be phrased as: "How many function evaluations are needed to reach target ?".

In this paper, we will use the xed-target approach. Since most algorithms in our data set are stochastic in nature, the question of how many function evaluations are needed to reach a certain target is dealing with random variables. For a certain function instance f i ∈ F and dimension d ∈ D, we let t j (A, f (d) i , ϕ) denote the number of evaluations that algorithm A ∈ A needed in the j-th run to evaluate for the rst time a point of target precision at least ϕ. Note that t j (A, f (d) i , ϕ) is a random variable, which is commonly referred to as the Hi ing Time (HT). If run j did not manage to hit target ϕ within its allocated budget, we say that t j (A, f

(d) i , ϕ) = ∞.
While just taking the average of the observed hi ing time gives some estimate of the true mean, previous work [START_REF] Auger | A restart CMA evolution strategy with increasing population size[END_REF] has shown that it is not a consistent, unbiased estimator of the mean of the distribution of hi ing times. Instead, the Expected Running Time (ERT) is used. is is de ned as follows:

De nition 2.3 (Expected Running Time (ERT)). ERT(A, f (d) , ϕ) = n i=1 K j=1 min{t i (A, f (d) j , ϕ), B} n i=1 K j=1 1{t i (A, f (d) j , ϕ) < ∞} .
Here, n is the number of runs of the algorithm, K the number of instances of function f and B the maximum budget for algorithm A on function f

(d) j .
To allow for a fair comparison between instances, the BBOBbenchmark uses target 'precisions' for their analysis, instead of the raw target values seen by the algorithm. e precision is simply de ned as the di erence between the best-so-far-f (x) and the global optimum.

is is done to make runtime comparisons between di erent instances and even di erent functions possible.

METHODS

Analysis of Available data

Since the set of available algorithms from the BBOB-competitions is quite large, several issues in terms of data consistency arise. When processing the algorithms, we found that a small subset have issues such as incomplete les or missing data. We decided to ignore these algorithms, and work only with the ones which were made available within the IOHanalyzer tool [9]. is leaves us with a set of 182 out of 226 possible algorithms to do our analysis.

ere are some caveats to this data, mostly related to the lack of a consistent policy for submission to the competitions over the years. For example, the 2009 competition required submission of 3 runs on 5 instances each, while the 2010 version changed this to 1 run on 15 instances. In theory, the instances should have very li le impact on the performance of the algorithms, as they are selected in such a way to preserve the characteristics of the functions. However, in practice there has been some debate about the impact of instances on algorithm performance, claiming that the landscapes of di erent instances of the same function can look signi cantly di erent to an algorithm [START_REF] Kerschke | Automated Algorithm Selection on Continuous Black-Box Problems by Combining Exploratory Landscape Analysis and Machine Learning[END_REF][START_REF] Mu | Exploratory Landscape Analysis of Continuous Space Optimization Problems Using Information Content[END_REF][START_REF] Andrs | Reliability of Exploratory Landscape Analysis[END_REF]. In the following, we ignore this discussion and assume that performance is not signi cantly impacted by the instances.

Another issue with the dataset are the widely inconsistent budgets for the di erent algorithms. ese can be as low as 50D and as large as 10 7 D. However, since we use a xed-target perspective to study the performance of the algorithms, these di erences are not very impactful.

Since the BBOB-competitions see an optimizer as having 'solved' an optimization problem when reaching a target precision of 10 -8 , many of the algorithms will stop their runs a er reaching this point to avoid unnecessary computation. Because of this, we will use the same target value in our computations. However, for some of the more di cult functions, this target can be challenging to reach within their budget. To avoid the problem of dealing with algorithms without any nished runs, we only consider an algorithm in our analysis when it has at least 15 runs on the function, of which at least one managed to reach the target 10 -8 . Figure 1 plots the number of algorithms per each function/dimension pair

F01 F02 F03 F04 F05 F06 F07 F08 F09 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 0 50 100 150 02D 03D 05D 10D 20D 40D
Function ID that satisfy all the requirements mentioned above. We observe large discrepancies between functions and dimensions, with the number of admissible algorithms ranging from 4 to 155, and note that there are no algorithms which are admissible on all functions in all dimensions.

Number of algorithms

DynAS for BBOB-Functions

In this work, we will restrict the dynAS problem on BBOB-functions to using policies which switch algorithms based on the target precisions hit. To get an indication for the amount of improvement which can be gained by dynAC over static algorithm con guration, we use the BBOB-data to theoretically simulate a simple policy which only implements a single switch of algorithm. We can de ne this as follows:

De nition 3.1 (Single-Switch dynAS). Let f (d) be a BBOB-function in dimension d and A the corresponding portfolio of admissible algorithms. A single-split policy is de ned as the triple (A 1 , A 2 , τ) ∈ A × A × Φ, where Φ = 102-0.2i) |i ∈ {0, . . . , 50} is the set of admissible splitpoints. is corresponds to the policy which starts the optimization procedure with algorithm A 1 , and run this until target τ is reached, a er which the algorithm is changed to A 2 . e performance of this single switch method can then be calculated as follows:

T (f (d) , A 1 , A 2 , τ , ϕ) = ERT(A 1 , f (d) , τ) + ERT(A 2 , f (d) , ϕ) -ERT(A 2 , f (d) , τ)
Where ϕ is the nal target precision we want to reach. For the BBOB-functions, we set ϕ = 10 -8 , as noted in Section 3.1.

Generally, to assess the performance of an algorithm selection method, its performance can be compared to the Single Best Solver (SBS), which can be de ned as follows:

De nition 3.2 (Single Best Solver). For each dimension d ∈ D, we have:

SBS static (F (d)) = arg min A∈A f ∈ F PERF(A, f (d) , ϕ)
O en, ERT is used as the performance function, but this value can di er widely between functions, leading to a biased weighting. To avoid this, we can instead use the ranking of ERT per function, to give equal importance to every function. Note that we have nal target precision ϕ = 10 -8 .

While this SBS has a good average performance, it can easily be beaten by a decent algorithm selection technique. As such, a be er baseline for performance is needed. is is the theoretically best algorithm selection method, which is called the Virtual Best Solver.

is can de ned as follows:

De nition 3.3 (Static Virtual Best Solver (VBS static)). For each function f ∈ F and dimension d ∈ D, we have:

VBS static (f (d)) = arg min A∈A PERF(A, f (d))
For the BBOB functions, we use PERF(A,

f (d)) = ERT(A, f (d) , ϕ) with ϕ = 10 -8 .
Note that the VBS static will always perform at least as good as the SBS, and theoretically gives an upper bound for the performance of any real implementation of algorithm selection techniques. us, the di erence between SBS and VBS static gives an indication of the maximal possible performance gained by algorithm selection. For the BBOB-data, the relative ERT between these two methods is visualized in Figure 2. From this, we see that the di erences can be extremely large, highlighting the importance of algorithm selection.

Similar to the way we de ned VBS static , we can de ne a Dynamic Virtual Best Solver, VBS dyn , as follows:

De nition 3.4 (Dynamic Virtual Best Solver). For each BBOBfunction f ∈ F and dimension d ∈ D, we have:

VBS dyn (f (d)) = arg min (A 1 ,A 2 ,τ)∈(A×A×Φ) T (f (d) , A 1 , A 2 , τ , ϕ)

RESULTS

Since the number of algorithms considered in this paper is relatively large, many of the results are only shown for a subset of functions, dimensions or algorithms. e complete data is made available at [START_REF] Verme En | Github repository with Project Data[END_REF]. An example of the available data is also shown in Table 1.

Overall Gain of Single-Switch DynAS

Before investigating the possible improvements to be gained by dynamic algorithm selection, we investigate the performance of the static algorithms from the BBOB-dataset. To achieve this, we look at the distribution of ERTs among the BBOB-functions. For dimension 5, this is visualized in Figure 3. 2 is gure shows the large di erences in performance, both between the algorithms as well as between the di erent functions. We marked the performance of the VBS static and VBS dyn , and see that their di erences also vary largely between functions.

To zoom in on the di erences between the VBS static and VBS dyn we see in Figure 3, we can compute for each function, dimension and corresponding algorithm portfolio the relative ERT of a the [START_REF] Verme En | Github repository with Project Data[END_REF]. Abbreviations: FID = function ID (as in [START_REF] Hansen | COCO: Performance Assessment[END_REF], τ = splitpoint target, speedup = ERT stat/ERT dyn. We also shortened DTS-CMA-ES 005-2pop v26 1model to DTS-CMA-ES for readability Single-Switch VBS dyn over VBS static . Speci cally, this is calculated as

ERT(VBS dynamic (f (d))) ERT(VBS static (f (d)))
. is value is shown for each (function, dimension)-pair in Figure 4. From this gure, we can see that for most functions, the improvements when using a single con guration change are quite large. Especially for the functions which are traditionally considered more di cult for a black-box optimization algorithm to solve, the possible improvement is massive. In terms of the median over all (function, dimension)-pairs, the VBS dyn is 1.49 faster than the VBS static .

Selected Algorithm Combinations

Since the VBS dyn shows a lot of potential improvement over the classical VBS static , it makes sense to study its behaviour in more detail.

To achieve this, we can zoom in on a single (function, dimension)pair and study the behaviour of the VBS dyn and split algorithm con gurations in general. In Figure 5, we show the ERT of the best possible switch between any combination of algorithms in our portfolio A, on function 21 in dimension 10.

is gure shows some clear pa erns in the horizontal and vertical lines. A horizontal line, such as the one for the MLSL-algorithm [START_REF] Locatelli | Random Linkage: a family of acceptance/rejection algorithms for global optimisation[END_REF], indicates that an algorithm adds to the performance of most algorithms by being the A 1 -algorithm. is can be interpreted as having a good exploratory search behaviour, but poor exploitation.

ere are also vertical lines present, which indicate the algorithms which perform well as A 2 -algorithms. ese are less pronounced than the horizontal lines, which might indicate that the choice of A 2 algorithms has less impact on the performance than the choice of A 1 .

We see that there are di erent algorithms which perform well as either the rst or second part of the search. is gives rise to the question of how to quantify these di erences, and more generally, how to quantify the bene t which can be gained by selecting an algorithm as A 1 or A 2 . is can be done by executing the following steps to compute a quantitative value for the bene t gained by selecting an algorithm for a part of the search:

De nition 4.1 (Improvement-values).
e initial performance value I 1 and nishing performance value I 2 of algorithm A on function f (d) can be de ned as:

I 1 (A) = min A 2 ∈A,τ ∈Φ T (A, A 2 , τ , ϕ) min A 1 ,A 2 ∈A,τ ∈Φ T (A 1 , A 2 , τ , ϕ) I 2 (A) = min A 1 ∈A,τ ∈Φ T (A 1 , A, τ , ϕ) min A 1 ,A 2 ∈A,τ ∈Φ T (A 1 , A 2 , τ , ϕ)
Note that for the VBS dyn = (A 1 , A 2 , τ), we always have I 1 (A 1) = 1 = I 2 (A 2), and values can not be below 1. Intuitively, the larger the value of I 1 , the worse the algorithm can perform as the rst part of the search, and similarly for I 2 .

e values of I 1 and I 2 for dimension 5 are shown in Figures 6 and7 respectively. To ensure the readability of the gures, only a subset of algorithms is chosen. is is done by selecting the algorithm with the best value for each function, and then adding to it the set of algorithms which have the best average value over all functions 3 . From these gures, we see clear di erences, both between functions and between algorithms. While some algorithms occur in both Figures 6 and7, many are included only once, indicating that they are relatively good choices for one part of the search, but not the remainder. e clearest example of this is HMLSL [START_REF] Pál | Benchmarking a hybrid multi level single linkagealgorithm on the bbob noiseless testbed[END_REF], which performs very well as A 1 , but has relatively high I 2 -values. is is caused by the fact that this algorithm typically converges quickly to a value close to the optimum, but has issues in the nal exploitation phase, thus only being bene cial to use at the start of the search. We also notice that in general, the I 2 -values are much lower across all algorithms, indicating that the choice of starting algorithm is the most important for dynAS, while most good algorithms can provide similar bene ts to the nal part of the search.

Small Portfolio: Case Study

Since the algorithm space we consider is quite large, it can be challenging to gain insights into the individual algorithms. To show that dynamic algorithm selection is also applicable to smaller portfolio's, we limit ourselves to 5 algorithms. ese are representative of some widely used algorithm families: Nelder-Doerr [START_REF] Doerr | BBOB: Nelder-Mead with resize and halfruns[END_REF], DE-Auto [START_REF] Voglis | MEMPSODE: an empirical assessment of local search algorithm impact on a memetic algorithm using noiseless testbed[END_REF], Bipop-aCMA-Step [START_REF] Loshchilov | Bi-Population CMA-ES Agorithms with Surrogate Models and Line Searches[END_REF], HMLSL [START_REF] Pál | Benchmarking a hybrid multi level single linkagealgorithm on the bbob noiseless testbed[END_REF] and PSO-BFGS [START_REF] Voglis | MEMPSODE: comparing particle swarm optimization and di erential evolution within a hybrid memetic global optimization framework[END_REF].With this reduced algorithm portfolio, we can study the improvements over their respective VBS static in more detail, and nd interesting algorithms combinations to explore further.

In Figure 8, we show the relative improvement in ERT over VBS static of the best combination of two algorithms. In each subplot, all 24 functions are represented. Note that the diagonal represents the static algorithms, which can never lead to an improvement over the VBS static . We notice some clear trends in this gure. Speci cally, we notice that using HMSLS as A 2 is rarely e ective, while it provides large bene ts when used in the initial part of the search. We also note that Nelder-Doerr has the reverse behaviour, seemingly performing much be er in the nal exploitation phase.

To illustrate the con guration switches which can be considered in this algorithm portfolio, we can zoom in on function 12 in dimension 3 and look at the xed-target curve showing ERT. is is done in Figure 9, where we also indicate the best switching points between algorithms. is gure highlights the di erent behaviors of the algorithms in the portfolio, and thus indicates where switching algorithms would be bene cial. e best possible switch in this function would occur from PSO-BFGS to Nelder-Doerr, at target 10 -6.4 , leading to a relative speedup of 1.76 over VBS static .

To decide which algorithms to use in an algorithm portfolio such as the one used here, two main ways of selecting the algorithms are possible. e rst is to use some knowledge about the algorithms to determine which are important. is is useful for initial exploration, but might lead to useful algorithms being ignored. Instead, one can use performance information, such as the I 1 and I 2 -values, to provide some initial representation of the usefulness of algorithms to the portfolio. is approach is much more generic, however the choice of measures can be challenging. For example, the I 1 and I 2 measures are hard to extend to more general k-switch dynAS methods. Instead, an extension of marginal contributions [START_REF] Xu | Evaluating Component Solver Contributions to Portfolio-Based Algorithm Selectors[END_REF] and related concepts such as measures building on Shapley values (like those suggested in [START_REF] Fréche E | Using the Shapley Value to Analyze Algorithm Portfolios[END_REF]) would capture algorithm contribution to a portfolio in a much more robust sense, and thus be useful additions to the dynAS se ing.

DISCUSSION AND FUTURE WORK

Summary. e previous results have shown that there is still a large amount of improvement possible over the VBS static by using dynamic algorithm selection. We have shown several methods to gain insights into the di erences between di erent algorithms and functions. However, the results shown in the previous sections rely on an underlying assumption of feasibility of algorithm switching. For many algorithms, this switching mechanism can be implemented in a relatively straightforward manner, i.e. between di erent population-based algorithms, such as di erent CMA-ES variants, for which the algorithm switching methods have already been implemented [START_REF] Verme En | Online selection of CMA-ES variants[END_REF].

Warm-start. For other algorithms combinations, a dynamic switch during the optimization procedure might be more challenging. For example, a switch from a single-solution algorithm to a populationbased one gives rise to an information de cit, which needs to be dealt with to properly initialize the new population. Because of this, the gains indicated by simply combining the ERT values might be tough to achieve in practice. More generally, internal parameters are di erent between algorithms. So the rst challenge to overcome is that one needs to decide how to "warm-start" the algorithms, to assure an optimal internal state for the required phase of the optimization process. To be able to achieve the performance of the VBS dyn , such warmstart techniques will need to be implemented without the need of additional function evaluations, which could be a big challenge. We would considering to use reinforcement learning approaches to be a promising rst step for this task, but since those are quite expensive in terms of computational cost, we hope to see other approaches evolve in the near future.

Stochasticity. Assuming such warm-start mechanisms are implemented, as was previously done for example within CMA-ES, it has been shown that the theoretical improvements can still be tough to achieve in practice [START_REF] Verme En | Online selection of CMA-ES variants[END_REF]. is is largely caused by the fact that hi ing times are stochastic with relatively large variances, which can cause ERT to be unstable. When selecting the (A 1 , A 2 , τ)-triple, di erences in ERT might be obscured by the variance of the hi ing times, leading to a worse performance than expected. ese e ects might become even more important when dealing with larger algorithm spaces, or when incorporating hyperparameters in the search (see paragraph Hyperparameter tuning). Analyzing the robustness of common solvers therefore seems to be an essential building block for the development of reliable dynAC approaches. Switch point. Another challenge which needs to be overcome to achieve e ective dynamic algorithm selection is the question how to identify suitable switching points. In this work we used target precision, which is usually not applicable in practice, since the algorithm has no knowledge about the precise value of the optimum. Because of this, we would need to nd some other way to use the knowledge of the algorithm to determine when to switch, i.e., the state of internal parameters, landscape features computed from additionally or previously evaluated points, the evolution of tness values, population diversity, etc.

True dynamic switching. While improving the way a switching point is detected is a big challenge to overcome, it also provides new opportunities to improve performance. e estimates shown in this paper consider only a single algorithm switch, whereas a truly dynamic approach could bene t from switching more o en, to fully exploit the di erences in search behaviour of the di erent algorithms.

Hyperparameter tuning. A second factor of improvement can come from adding hyperparameter tuning into the dynamic process; i.e., when moving from the algorithm selection se ing to a dynamic variant of Combined Algorithm Selection and Hyperparameter optimization (CASH [START_REF] Chris Ornton | Auto-WEKA: Combined selection and hyperparameter optimization of classi cation algorithms[END_REF][START_REF] Verme En | Integrated vs. Sequential Approaches for Selecting and Tuning CMA-ES Variants[END_REF]). A dynamic CASH approach would allow the algorithms to specialize even more, so they can focus even more on performing as good as possible on their speci c part of the optimization process.

Extensions. As any benchmark study, our results are -for the time being -limited to the 24 noiseless BBOB functions. Extending them to other classes of numerical black-box optimization problems forms another important avenue for future research. In this context, we consider supervised learning approaches building on exploratory landscape analysis [START_REF] Mersmann | Exploratory landscape analysis[END_REF] as particularly promising. It has previously been shown to yield promising results for the task of conguring the hyper-parameters of CMA-ES [START_REF] Belkhir | Per instance algorithm con guration of CMA-ES with limited budget[END_REF]. Note, though, that all existing studies concentrate on static algorithm con guration and/or selection. We would therefore need to extend exploratory landscape analysis to the dynamic se ing. First steps into this direction have been made in [START_REF] Janković | Adaptive landscape analysis[END_REF], where it is shown that the tness landscapes, as seen by the algorithm, can change quite drastically during the run. Short-term. All the objectives listed above are quite ambitious. We therefore also formulate a few short-term goals for our research. Building on the techniques used to select interesting algorithms in Section 4.3, we aim to create smaller algorithm portfolio's of algorithms for intial implementations of dynAS. is could be done based on techniques studied in this paper, or using measures like the Shapley value [START_REF] Fréche E | Using the Shapley Value to Analyze Algorithm Portfolios[END_REF], allowing for much smaller portfolios which nonetheless capture the di erent performances of the algorithms. With such a portfolio we can then more e ciently carry out research on the problems mentioned above, i.e., how to warm-start the algorithms and how to decide when to switch from one algorithm to another.

Figure 1 :

 1 Figure 1: Number of algorithms with at least 15 independent runs and at least one them reaching the target ϕ = 10 -8 .

Figure 2 :

 2 Figure 2: Relative ERT of the SBS over the VBS static . e selected SBS are: Nelder-Doerr (2D), HCMA(3, 10 and 20D) and BIPOP-aCMA-STEP (5D). Dimension 40 was removed because no algorithm hit the nal target on all functions in this dimension.

F01Figure 3 :

 3 Figure 3: Distribution of ERTs among all algorithms for all 24 BBOB-functions in dimension 5. Please recall from Fig. 1 that the number of data points varies between functions. Also shown are the ERTs of the VBS static and VBS dyn .

Figure 4 :Figure 5 :

 45 Figure 4: Heatmap of the ratio of ERTs between the Virtual Best Static Solver and the Virtual Best Dynamic Solver, for each (function, dimension)-pair.

Figure 6 :

 6 Figure 6: I 1 -values for a group of 15 selected algorithms in dimension 5. Darker colors correspond to better values.

Figure 7 :

 7 Figure 7: I 2 -values for a group of 15 selected algorithms in dimension 5. Darker colors correspond to better values.

Figure 8 :

 8 Figure 8: Overview of the best possible ERTs of the combination of algorithms A 1 and A 2 over VBS static . Each plot represents a single A 1 (X-axis), A 2 (Y-axis) combination, where each bar represents a single function, in dimension 3. Values are capped at 2.

Figure 9 :

 9 Figure 9: ERT-curves for a selected algorithm portfolio of size 5 on F12 in 3D. Markers indicate optimal switch points between algorithms. eir color and symbol indicate the starting and nishing algorithms respectively.(star = Nelder-Doerr, triangle = DE-AUTO, cross = BIPOP-aCMA-STEP, square = HMLSL and pentagon = PSO-BFGS).

Table 1 :

 1 Relative gain of optimal single-switch dynamic algorithm combination VBS dyn over the best static algorithm VBS static for all 24 BBOB functions in dimension 5. ERT values are computed from data available at h ps://coco.gforge.inria.fr/doku.php? id=algorithms-bbob. We only consider algorithms with at least 15 runs, one of which reaching target precision ϕ = 10 -8 , which is also the target used for the ERT calculations.

	FID	VBS static	ERT of VBS static	A 1	A 2	log 10 (τ)	ERT of VBS dyn	speedup
	1	fminunc	13.0	HMLSL	HCMA	1.2	6.6	1.97
	2	LSfminbnd	94.7	BrentSTEPrr	LSfminbnd	2.0	52.4	1.81
	3	BrentSTEPrr	315.5	STEPrr	BrentSTEPif	-0.2	246.8	1.28
	4	BrentSTEPif	763.9	STEPrr	BrentSTEPif	-0.2	578.1	1.32
	5	MCS	10.8	ALPS	MCS	1.8	6.0	1.80
	6	MLSL	1050.9	fmincon	GLOBAL	-7.0	928.2	1.13
	7	PSA-CMA-ES	1129.8	GP5-CMAES	PSA-CMA-ES	0.0	792.3	1.43
	8	fminunc	399.1	OQNLP	DE-BFGS	0.6	304.7	1.31
	9	fminunc	188.3	fminunc	DE-AUTO	0.0	152.3	1.24
	10	DTS-CMA-ES	262.4	fmincon	DTS-CMA-ES	-2.0	199.8	1.31
	11	DTS-CMA-ES	268.3	HMLSL	DTS-CMA-ES	-2.2	153.6	1.75
	12	NELDERDOERR	1909.7	HMLSL	BFGS-P-StPt	-3.2	1041.5	1.83
	13	IPOPsaACM	835.1	DE-AUTO	IPOPsaACM	-3.6	661.7	1.26
	14	DTS-CMA-ES	546.6	DE-BFGS	DE-SIMPLEX	-6.0	348.6	1.57
	15	PSA-CMA-ES	10029.7	LHD-10xDefault-MATSuMoTo	PSA-CMA-ES	0.4	6982.4	1.44
	16	IPOPsaACM	6767.1	GLOBAL	CMA-ES-TPA	-0.4	5115.0	1.32
	17	PSA-CMA-ES	4862.3	PSA-CMA-ES	IPOP400D	-5.8	4201.8	1.16
	18	PSA-CMA-ES	6717.4	PSA-CMA-ES	CMA-ES multistart	-5.2	5687.3	1.18
	19	DTS-CMA-ES	18768.0	OQNLP	DTS-CMA-ES	-1.6	463.0	40.54
	20	DEctpb	10670.3	DEctpb	OQNLP	-0.4	3360.7	3.18
	21	GLOBAL	2095.5	MLSL	NELDERDOERR	0.0	1209.8	1.73
	22	GLOBAL	1079.9	RAND-2xDefault-MATSuMoTo	GLOBAL	0.4	844.1	1.28
	23	CMA-ES-MSR	18971.4	DTS-CMA-ES	SSEABC	-2.6	10295.0	1.84
	24	OQNLP	285173.0	GP5-CMAES	CMAES-APOP-Var2	0.0	52387.0	5.44

e full version of this table, also for other dimensions, is available at

Note here that there is a long-standing debate about the classi cation of algorithm con guration vs. algorithm selection. at is, while some consider a parametrized algorithm framework an algorithm with di erent con gurations, others argue that each such con guration is an algorithm by itself. We omit this discussion here, and use the convention that an algorithm can have possibly di erent con gurations. Note, though, that -in the context of this work -this only makes a di erence in the terminology. All concepts and ideas can be equivalently described using the other, possibly mathematically more stringent, convention.

Note that for function F05, the linear slope, most algorithms simply move outside the search-space to nd an optimal solution, which is accepted by the BBOB-competitions, but leads to a disadvantage to those algorithms which respect the bounds.

Missing values and values larger than 3 are set to 3 to reduce the large impact of outliers on the average.

ACKNOWLEDGMENTS

is work has been supported by the Paris Ile-de-France region.