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ABSTRACT
One of the most challenging problems in evolutionary computation
is to select from its family of diverse solvers one that performs well
on a given problem. �is algorithm selection problem is compli-
cated by the fact that di�erent phases of the optimization process
require di�erent search behavior. While this can partly be con-
trolled by the algorithm itself, there exist large di�erences between
algorithm performance. It can therefore be bene�cial to swap the
con�guration or even the entire algorithm during the run. Long
deemed impractical, recent advances in Machine Learning and in ex-
ploratory landscape analysis give hope that this dynamic algorithm
con�guration (dynAC) can eventually be solved by automatically
trained con�guration schedules. With this work we aim at pro-
moting research on dynAC, by introducing a simpler variant that
focuses only on switching between di�erent algorithms, not con-
�gurations. Using the rich data from the Black Box Optimization
Benchmark (BBOB) platform, we show that even single-switch dy-
namic Algorithm selection (dynAS) can potentially result in signi�-
cant performance gains. We also discuss key challenges in dynAS,
and argue that the BBOB-framework can become a useful tool in
overcoming these.

CCS CONCEPTS
•�eory of computation→ Bio-inspired optimization; Online al-
gorithms;

1 INTRODUCTION
It is well known that, when solving an optimization problem, dif-
ferent stages of the process require di�erent search behavior. For
example, while exploration is needed in the initial phases, the al-
gorithm needs to eventually converge to a solution (exploitation).
State-of-the-art optimization algorithms therefore o�en incorpo-
rate mechanisms to adjust their search behavior while optimizing,
by taking into account the information obtained during the run.
�ese techniques are studied under many di�erent umbrellas, such
as parameter control [10], meta-heuristics [5], adaptive operator
selection [24], or hyper-heuristics [6]. �e probably best-known
and most widely used techniques for achieving a dynamic search
behavior are the one-��h success rule [7, 32, 33] and the covariance
adaptation technique that the family of CMA-ES algorithms [14, 15]
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is build upon. While each of these two control mechanisms tackles
the problem of balancing performance in di�erent phases of the
search in its own way, they are mostly working with a speci�c
algorithm, aiming to tune its performance by changing internal
parameters or algorithm modules. �is inherently limits the poten-
tial of these methods, since di�erent algorithms can have widely
varying performances during di�erent phases of the optimization
process. By switching between these algorithms during the search,
these di�erences could potentially be exploited to get even be�er
performance. We coin the problem of choosing which algorithms
to switch between, and under which circumstances, the Dynamic
Algorithm Selection (dynAS) problem.

Solving the dynAS problem would be an important milestone to-
wards tackling the more general dynamic Algorithm Con�guration
(dynAC) problem, which also addresses the problem of selecting
(and possibly adjusting) suitable algorithm con�gurations. Specif-
ically, dynAS is limited to switching between algorithms from a
discrete portfolio of pre-con�gured heuristics, whereas for dynAC,
the algorithms come with (possibly several) parameters whose set-
tings can have signi�cant in�uence on the performance.

We do not solve dynAS here, but aim to show its potential for
numerical optimization. We then aim to develop suitable environ-
ments to encourage and enable future research into achieving the
identi�ed potential of dynAS and, in the longer run, to extend this
to the dynAC problem. As a �rst step, we need to identify a mean-
ingful collection of algorithms and benchmark problems, which
together cover the main characteristics and challenges of the dynAS
problem, without imposing too many additional challenges. �e
Black-Box Optimization Benchmarking (BBOB) environment [12]
with its rich data sets available at [1] suggests itself as a natural
starting point for such considerations, since the community has
already acquired a quite solid understanding of the problems and
solvers in this test-bed over the last decade.

We perform a �rst assessment of the performance that one could
expect to see when applying dynAS to the algorithms in the BBOB
data sets, to understand whether the gains would justify further
exploration of the dynAS paradigm on this test-bed. We �nd that
– even when restricting the dynAS problem further to allowing
only a single switch between algorithms in the portfolio – promis-
ing improvements over the best static solvers can be expected, in
particular for the more complex problems (functions 19-24).

Our considerations are purely based on a theoretical investiga-
tion of the potential, which might be too optimistic for the single-
switch dynAS case – most importantly, because of the problem
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of warm-staring the algorithms: since the heuristics are adaptive
themselves, their states need to be initialized appropriately at the
switch. �is may be a di�cult problem when changing between
algorithms of very di�erent structure. We do not consider, on the
other hand, the possibility to switch more than once, so that our
bounds may be too too pessimistic for the full dynAS se�ing, in
which an arbitrary number of switches is allowed.

Given the above limitations, we therefore also provide a critical
assessment of our approach, and highlight ideas for addressing the
main challenges in dynAS.

1.1 Related Work
�e idea that a dynamic con�gurations and/or selection of algo-
rithms can be bene�cial in the context of iterative optimization
heuristics is almost as old as evolutionary computation itself, in
particular in the context of solving numerical optimization prob-
lems, see [20] for an entire book focusing mostly on dynamic al-
gorithm con�guration techniques. However, as mentioned above,
existing works almost exclusively focus on changing parameters
of selected components of an otherwise stable algorithmic frame-
work. �is includes most works on hyper-heuristics [6] and related
concepts such as adaptive operator selection [24], and parameter
control [10].

To the best of our knowledge, the full dynAC problem as de-
scribed above was only recently formalized [4]. Biedenkamp et
al. introduce dynAC as a Contextual Markov Decision Process
(CMDP), where a policy can be learned to switch hyperparameters
of a meta-algorithm, with some of these hyperparameters possi-
bly encoding the choice between di�erent algorithms.1 �ey also
show that arti�cial CMDPs can be solved e�ectively by using rein-
forcement learning techniques, providing a promising direction for
future research on dynAC.

In the context of evolutionary computation, the concept of switch-
ing between di�erent algorithms during the optimization process
was recently investigated in [35], by a similar theoretical assess-
ment as in this work. �e approach was then tested in [37], where
it was shown that the predicted gains can indeed materialize, with
the caveat that one has to ensure a su�ciently accurate estimate
for the median anytime performances of each algorithm. �ese two
works, however, focus on a single family of numerical black-box op-
timization techniques, the modular CMA-ES framework suggested
in [36]. Here in this work, in contrast, we explicitly want to go one
step further, and study combinations of heuristics that are poten-
tially of very di�erent structure, such as, for example combining
a Di�erential Evolution (DE) algorithm for the global exploration
with a CMA-ES for the �nal convergence.

While the dynAC problem is solved by an unsupervised rein-
forcement learning approach in [4], we observe that dynAC in evo-
lutionary computation is more frequently based on on supervised
learning approaches, see [16, 23, 27] for examples. �ese techniques

1Note here that there is a long-standing debate about the classi�cation of algorithm
con�guration vs. algorithm selection. �at is, while some consider a parametrized
algorithm framework an algorithm with di�erent con�gurations, others argue that
each such con�guration is an algorithm by itself. We omit this discussion here, and
use the convention that an algorithm can have possibly di�erent con�gurations. Note,
though, that – in the context of this work – this only makes a di�erence in the
terminology. All concepts and ideas can be equivalently described using the other,
possibly mathematically more stringent, convention.

combine exploratory landscape analysis [25] and/or �tness land-
scape analysis [31] with supervised learning techniques, such as
random forests, support vector machines, etc. While still in its in-
fancy, even in the static algorithm con�guration case [3, 17, 18, 28],
these works may pave an interesting alternative to reinforcement
learning, as they may more directly provide insight into (and make
use of) the correlation between �tness landscapes and algorithms’
performance.

2 PRELIMINARIES
2.1 Dynamic Algorithm Selection
Classically, algorithm selection a�empts to �nd the best algorithm
A from a portfolio A to solve a speci�c function f from a set of
functions F . Speci�cally, this static version of algorithm selection
can be de�ned as follows:

De�nition 2.1 (Static Algorithm Selection). Given an algorithm
portfolio A and a function f ∈ F , we aim to �nd:

arg min
A∈A

PERF(A, f ) ,

where PERF is a performance measure (which assigns lower values
to be�er performing algorithms).

To extend algorithm selection to the dynamical case, we need
to de�ne a function which switches between algorithms. We use
techniques from [4] to represent this as a policy function, and
modify it as follows:

De�nition 2.2 (Dynamic Algorithm Selection (dynAS)). Given an
algorithm portfolio A, a f ∈ F and a state description st ∈ S at
time step t of an algorithm run. We want to �nd a policy π : S −→ A
which minimizes PERF(Aπ , f )

Note that this de�nition can be extended to dynamic algorithm
con�guration by changing the policy to be π : S −→ (A × ΘA),
where ΘA is the con�guration space of algorithm A.

2.2 �e BBOB Benchmark
�e Black Box Optimization Benchmark (BBOB) is widely accepted
as the go-to benchmarking framework within the �eld of optimiza-
tion. While BBOB has grown a lot over the years, the functions
within their noiseless suite have remained stable. �is suite contains
24 noiseless optimization functions, each of which being theoreti-
cally de�ned for any number of dimensions. In practice however,
the commonly used dimension set is D = {2, 3, 5, 10, 20, 40}. For
each function, several transformation methods are de�ned, both
for the variable as the objective spaces. �ese transformations are
�xed, and di�erent combinations lead to di�erent versions of the
function, called instances. Since these functions are de�ned mathe-
matically, the optimal values are known in advance. Because of this,
we can de�ne target values we wish to reach in terms of closeness
to this optimal value, instead of an abstract value. �is gives the
advantage of comparability between instances, which would not
be possible when using raw target values.

�e 24 noiseless functions have been studied in detail, not just
from a performance perspective. Especially within the landscape
analysis community, a lot of analysis of the BBOB-functions has
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been performed, leading to a lot of useful insights about their prop-
erties. �ese properties are ideal to use when implementing dynAS
in practice, as they are very in�uential on the local performance of
algorithms. Generally, it is agreed that the 24 BBOB functions cover
a broad range of potential challenges for di�erent optimization
algorithms [25], even though certain aspects, i.e., discontinuities or
plateaus, are not very well represented [19].

�e popularity of BBOB means that many researchers have
benchmarked their algorithms on the BBOB-functions. Most of
these have then submi�ed versions of their algorithms to compe-
titions or workshops organized by the BBOB-team. Between the
�rst competition in 2009 [13] and the latest workshop in 2019, a
total of 226 algorithms have been submi�ed and their data made
available to the public [1]. Because of this large amount of available
data, there are plenty of baselines to compare algorithms against
and gain inspiration from. �ese algorithms have o�en been well
justi�ed and rigorously tested. However, the implementations used
are generally not freely available, and even if they are, they might
be hard to combine into a single dynAS framework, since BBOB
is available in many di�erent languages. However, the majority
of the algorithms is either directly available online or has been
well-documented, making the challenge of implementing them
doable.

Additionally, the large amount of algorithms which have been
run on BBOB provide a good way to select sets of algorithms from
which to build initial dynAS portfolios. However, since the BBOB-
repository is largely the result from running competitions, many
of the used algorithms are highly tuned, making them hard to beat
and giving rise to the question of generalizability of dynAS results
to other functions. Eventually, a move to true dynAC would resolve
this issue, but these techniques will require a lot of further study to
implement.

Since the BBOB-framework provides the functions, algorithms
and performance baselines, it is an ideal candidate for initial exper-
iments related to dynAS.

2.3 Performance Measures
To measure the performance of the algorithms on the BBOB-dataset,
several approaches are possible. �ese usually fall into two cate-
gories: �xed-budget and �xed-target. �e �xed-budget approach
asks the question: ”What target value is reached a�er x function
evaluations?”, while the �xed-target question can be phrased as:
”How many function evaluations are needed to reach target y?”.

In this paper, we will use the �xed-target approach. Since most
algorithms in our data set are stochastic in nature, the question
of how many function evaluations are needed to reach a certain
target is dealing with random variables. For a certain function
instance fi ∈ F and dimension d ∈ D, we let tj (A, f (d )i ,ϕ) denote
the number of evaluations that algorithm A ∈ A needed in the j-th
run to evaluate for the �rst time a point of target precision at least
ϕ. Note that tj (A, f (d )i ,ϕ) is a random variable, which is commonly
referred to as the Hi�ing Time (HT). If run j did not manage to hit
target ϕ within its allocated budget, we say that tj (A, f (d )i ,ϕ) = ∞.

While just taking the average of the observed hi�ing time gives
some estimate of the true mean, previous work [2] has shown
that it is not a consistent, unbiased estimator of the mean of the

distribution of hi�ing times. Instead, the Expected Running Time
(ERT) is used. �is is de�ned as follows:

De�nition 2.3 (Expected Running Time (ERT)).

ERT(A, f (d ),ϕ) =
∑n
i=1

∑K
j=1 min{ti (A, f (d )j ,ϕ),B}∑n

i=1
∑K
j=1 1{ti (A, f

(d )
j ,ϕ) < ∞}

.

Here, n is the number of runs of the algorithm, K the number of
instances of function f and B the maximum budget for algorithm
A on function f

(d )
j .

To allow for a fair comparison between instances, the BBOB-
benchmark uses target ’precisions’ for their analysis, instead of the
raw target values seen by the algorithm. �e precision is simply
de�ned as the di�erence between the best-so-far-f (x) and the global
optimum. �is is done to make runtime comparisons between
di�erent instances and even di�erent functions possible.

3 METHODS
3.1 Analysis of Available data
Since the set of available algorithms from the BBOB-competitions is
quite large, several issues in terms of data consistency arise. When
processing the algorithms, we found that a small subset have issues
such as incomplete �les or missing data. We decided to ignore
these algorithms, and work only with the ones which were made
available within the IOHanalyzer tool [9]. �is leaves us with a set
of 182 out of 226 possible algorithms to do our analysis.

�ere are some caveats to this data, mostly related to the lack of a
consistent policy for submission to the competitions over the years.
For example, the 2009 competition required submission of 3 runs
on 5 instances each, while the 2010 version changed this to 1 run on
15 instances. In theory, the instances should have very li�le impact
on the performance of the algorithms, as they are selected in such
a way to preserve the characteristics of the functions. However, in
practice there has been some debate about the impact of instances
on algorithm performance, claiming that the landscapes of di�erent
instances of the same function can look signi�cantly di�erent to an
algorithm [18, 26, 29]. In the following, we ignore this discussion
and assume that performance is not signi�cantly impacted by the
instances.

Another issue with the dataset are the widely inconsistent bud-
gets for the di�erent algorithms. �ese can be as low as 50D and as
large as 107D. However, since we use a �xed-target perspective to
study the performance of the algorithms, these di�erences are not
very impactful.

Since the BBOB-competitions see an optimizer as having ’solved’
an optimization problem when reaching a target precision of 10−8,
many of the algorithms will stop their runs a�er reaching this point
to avoid unnecessary computation. Because of this, we will use
the same target value in our computations. However, for some
of the more di�cult functions, this target can be challenging to
reach within their budget. To avoid the problem of dealing with
algorithms without any �nished runs, we only consider an algo-
rithm in our analysis when it has at least 15 runs on the function,
of which at least one managed to reach the target 10−8. Figure 1
plots the number of algorithms per each function/dimension pair
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Figure 1: Number of algorithmswith at least 15 independent
runs and at least one them reaching the target ϕ = 10−8.

that satisfy all the requirements mentioned above. We observe
large discrepancies between functions and dimensions, with the
number of admissible algorithms ranging from 4 to 155, and note
that there are no algorithms which are admissible on all functions
in all dimensions.

3.2 DynAS for BBOB-Functions
In this work, we will restrict the dynAS problem on BBOB-functions
to using policies which switch algorithms based on the target pre-
cisions hit. To get an indication for the amount of improvement
which can be gained by dynAC over static algorithm con�guration,
we use the BBOB-data to theoretically simulate a simple policy
which only implements a single switch of algorithm. We can de�ne
this as follows:

De�nition 3.1 (Single-Switch dynAS). Let f (d ) be a BBOB-function
in dimension d and A the corresponding portfolio of admissible
algorithms. A single-split policy is de�ned as the triple (A1,A2,τ ) ∈
A × A × Φ, where Φ =

{
102−0.2i) |i ∈ {0, . . . , 50}

}
is the set of ad-

missible splitpoints. �is corresponds to the policy which starts
the optimization procedure with algorithm A1, and run this until
target τ is reached, a�er which the algorithm is changed to A2.

�e performance of this single switch method can then be calcu-
lated as follows:

T (f (d ),A1,A2,τ ,ϕ) = ERT(A1, f
(d ),τ )

+ ERT(A2, f
(d ),ϕ) − ERT(A2, f

(d ),τ )

Where ϕ is the �nal target precision we want to reach. For the
BBOB-functions, we set ϕ = 10−8, as noted in Section 3.1.

Generally, to assess the performance of an algorithm selection
method, its performance can be compared to the Single Best Solver
(SBS), which can be de�ned as follows:

De�nition 3.2 (Single Best Solver). For each dimension d ∈ D, we
have:

SBSstatic(F (d )) = arg min
A∈A

∑
f ∈F

PERF(A, f (d ),ϕ)

O�en, ERT is used as the performance function, but this value can
di�er widely between functions, leading to a biased weighting. To
avoid this, we can instead use the ranking of ERT per function, to
give equal importance to every function. Note that we have �nal
target precision ϕ = 10−8.

While this SBS has a good average performance, it can easily be
beaten by a decent algorithm selection technique. As such, a be�er
baseline for performance is needed. �is is the theoretically best
algorithm selection method, which is called the Virtual Best Solver.
�is can de�ned as follows:

De�nition 3.3 (Static Virtual Best Solver (VBSstatic)). For each
function f ∈ F and dimension d ∈ D, we have:

VBSstatic(f (d )) = arg min
A∈A

PERF(A, f (d ))

For the BBOB functions, we use PERF(A, f (d )) = ERT(A, f (d ),ϕ)
with ϕ = 10−8.

Note that the VBSstatic will always perform at least as good as the
SBS, and theoretically gives an upper bound for the performance of
any real implementation of algorithm selection techniques. �us,
the di�erence between SBS and VBSstatic gives an indication of
the maximal possible performance gained by algorithm selection.
For the BBOB-data, the relative ERT between these two methods
is visualized in Figure 2. From this, we see that the di�erences
can be extremely large, highlighting the importance of algorithm
selection.

Similar to the way we de�ned VBSstatic, we can de�ne a Dynamic
Virtual Best Solver, VBSdyn, as follows:

De�nition 3.4 (Dynamic Virtual Best Solver). For each BBOB-
function f ∈ F and dimension d ∈ D, we have:

VBSdyn(f (d )) = arg min
(A1,A2,τ )∈(A×A×Φ)

T (f (d ),A1,A2,τ ,ϕ)

4 RESULTS
Since the number of algorithms considered in this paper is relatively
large, many of the results are only shown for a subset of functions,
dimensions or algorithms. �e complete data is made available
at [38]. An example of the available data is also shown in Table 1.

4.1 Overall Gain of Single-Switch DynAS
Before investigating the possible improvements to be gained by
dynamic algorithm selection, we investigate the performance of
the static algorithms from the BBOB-dataset. To achieve this, we
look at the distribution of ERTs among the BBOB-functions. For
dimension 5, this is visualized in Figure 3.2 �is �gure shows the
large di�erences in performance, both between the algorithms as
well as between the di�erent functions. We marked the performance
of the VBSstatic and VBSdyn, and see that their di�erences also vary
largely between functions.

To zoom in on the di�erences between the VBSstatic and VBSdyn
we see in Figure 3, we can compute for each function, dimension
and corresponding algorithm portfolio the relative ERT of a the
2Note that for function F05, the linear slope, most algorithms simply move outside the
search-space to �nd an optimal solution, which is accepted by the BBOB-competitions,
but leads to a disadvantage to those algorithms which respect the bounds.
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FID VBSstatic ERT of VBSstatic A1 A2 log10(τ ) ERT of VBSdyn speedup
1 fminunc 13.0 HMLSL HCMA 1.2 6.6 1.97
2 LSfminbnd 94.7 BrentSTEPrr LSfminbnd 2.0 52.4 1.81
3 BrentSTEPrr 315.5 STEPrr BrentSTEPif -0.2 246.8 1.28
4 BrentSTEPif 763.9 STEPrr BrentSTEPif -0.2 578.1 1.32
5 MCS 10.8 ALPS MCS 1.8 6.0 1.80
6 MLSL 1050.9 fmincon GLOBAL -7.0 928.2 1.13
7 PSA-CMA-ES 1129.8 GP5-CMAES PSA-CMA-ES 0.0 792.3 1.43
8 fminunc 399.1 OQNLP DE-BFGS 0.6 304.7 1.31
9 fminunc 188.3 fminunc DE-AUTO 0.0 152.3 1.24

10 DTS-CMA-ES 262.4 fmincon DTS-CMA-ES -2.0 199.8 1.31
11 DTS-CMA-ES 268.3 HMLSL DTS-CMA-ES -2.2 153.6 1.75
12 NELDERDOERR 1909.7 HMLSL BFGS-P-StPt -3.2 1041.5 1.83
13 IPOPsaACM 835.1 DE-AUTO IPOPsaACM -3.6 661.7 1.26
14 DTS-CMA-ES 546.6 DE-BFGS DE-SIMPLEX -6.0 348.6 1.57
15 PSA-CMA-ES 10029.7 LHD-10xDefault-MATSuMoTo PSA-CMA-ES 0.4 6982.4 1.44
16 IPOPsaACM 6767.1 GLOBAL CMA-ES-TPA -0.4 5115.0 1.32
17 PSA-CMA-ES 4862.3 PSA-CMA-ES IPOP400D -5.8 4201.8 1.16
18 PSA-CMA-ES 6717.4 PSA-CMA-ES CMA-ES multistart -5.2 5687.3 1.18
19 DTS-CMA-ES 18768.0 OQNLP DTS-CMA-ES -1.6 463.0 40.54
20 DEctpb 10670.3 DEctpb OQNLP -0.4 3360.7 3.18
21 GLOBAL 2095.5 MLSL NELDERDOERR 0.0 1209.8 1.73
22 GLOBAL 1079.9 RAND-2xDefault-MATSuMoTo GLOBAL 0.4 844.1 1.28
23 CMA-ES-MSR 18971.4 DTS-CMA-ES SSEABC -2.6 10295.0 1.84
24 OQNLP 285173.0 GP5-CMAES CMAES-APOP-Var2 0.0 52387.0 5.44

Table 1: Relative gain of optimal single-switch dynamic algorithm combination VBSdyn over the best static algorithmVBSstatic
for all 24 BBOB functions in dimension 5. ERT values are computed from data available at h�ps://coco.gforge.inria.fr/doku.php?
id=algorithms-bbob. We only consider algorithms with at least 15 runs, one of which reaching target precision ϕ = 10−8, which
is also the target used for the ERT calculations. �e full version of this table, also for other dimensions, is available at [38].
Abbreviations: FID = function ID (as in [12], τ = splitpoint target, speedup = ERT stat/ERT dyn. We also shortened DTS-CMA-
ES 005-2pop v26 1model to DTS-CMA-ES for readability
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Figure 2: Relative ERT of the SBS over the VBSstatic. �e
selected SBS are: Nelder-Doerr (2D), HCMA(3, 10 and 20D)
andBIPOP-aCMA-STEP (5D). Dimension 40was removed be-
cause no algorithm hit the �nal target on all functions in
this dimension.

Single-Switch VBSdyn over VBSstatic. Speci�cally, this is calcu-

lated as ERT(VBSdynamic(f (d )))
ERT(VBSstatic(f (d )))

. �is value is shown for each (function,
dimension)-pair in Figure 4. From this �gure, we can see that for
most functions, the improvements when using a single con�gura-
tion change are quite large. Especially for the functions which are
traditionally considered more di�cult for a black-box optimization
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Figure 3: Distribution of ERTs among all algorithms for all
24 BBOB-functions in dimension 5. Please recall from Fig. 1
that the number of data points varies between functions.
Also shown are the ERTs of the VBSstatic and VBSdyn.

algorithm to solve, the possible improvement is massive. In terms
of the median over all (function, dimension)-pairs, the VBSdyn is
1.49 faster than the VBSstatic.

4.2 Selected Algorithm Combinations
Since the VBSdyn shows a lot of potential improvement over the clas-
sical VBSstatic, it makes sense to study its behaviour in more detail.
To achieve this, we can zoom in on a single (function, dimension)-
pair and study the behaviour of the VBSdyn and split algorithm
con�gurations in general. In Figure 5, we show the ERT of the
best possible switch between any combination of algorithms in our
portfolio A, on function 21 in dimension 10. �is �gure shows
some clear pa�erns in the horizontal and vertical lines. A horizontal
line, such as the one for the MLSL-algorithm [21], indicates that an
algorithm adds to the performance of most algorithms by being the

https://coco.gforge.inria.fr/doku.php?id=algorithms-bbob
https://coco.gforge.inria.fr/doku.php?id=algorithms-bbob
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Figure 4: Heatmap of the ratio of ERTs between the Virtual
Best Static Solver and the Virtual Best Dynamic Solver, for
each (function, dimension)-pair.
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A1-algorithm. �is can be interpreted as having a good exploratory
search behaviour, but poor exploitation. �ere are also vertical
lines present, which indicate the algorithms which perform well
as A2-algorithms. �ese are less pronounced than the horizontal
lines, which might indicate that the choice of A2 algorithms has
less impact on the performance than the choice of A1.

We see that there are di�erent algorithms which perform well
as either the �rst or second part of the search. �is gives rise to the
question of how to quantify these di�erences, and more generally,
how to quantify the bene�t which can be gained by selecting an
algorithm as A1 or A2. �is can be done by executing the following
steps to compute a quantitative value for the bene�t gained by
selecting an algorithm for a part of the search:

De�nition 4.1 (Improvement-values). �e initial performance value
I1 and �nishing performance value I2 of algorithm A on function
f (d ) can be de�ned as:

I1(A) =
minA2∈A,τ ∈ΦT (A,A2,τ ,ϕ)

minA1,A2∈A,τ ∈ΦT (A1,A2,τ ,ϕ)

I2(A) =
minA1∈A,τ ∈ΦT (A1,A,τ ,ϕ)

minA1,A2∈A,τ ∈ΦT (A1,A2,τ ,ϕ)

Note that for the VBSdyn = (A1,A2,τ ), we always have I1(A1) =
1 = I2(A2), and values can not be below 1. Intuitively, the larger
the value of I1, the worse the algorithm can perform as the �rst
part of the search, and similarly for I2.

�e values of I1 and I2 for dimension 5 are shown in Figures 6
and 7 respectively. To ensure the readability of the �gures, only a
subset of algorithms is chosen. �is is done by selecting the algo-
rithm with the best value for each function, and then adding to it the
set of algorithms which have the best average value over all func-
tions3. From these �gures, we see clear di�erences, both between
functions and between algorithms. While some algorithms occur in
both Figures 6 and 7, many are included only once, indicating that
they are relatively good choices for one part of the search, but not
the remainder. �e clearest example of this is HMLSL [30], which
performs very well as A1, but has relatively high I2-values. �is is
caused by the fact that this algorithm typically converges quickly to
a value close to the optimum, but has issues in the �nal exploitation
phase, thus only being bene�cial to use at the start of the search.
We also notice that in general, the I2-values are much lower across
all algorithms, indicating that the choice of starting algorithm is
the most important for dynAS, while most good algorithms can
provide similar bene�ts to the �nal part of the search.

4.3 Small Portfolio: Case Study
Since the algorithm space we consider is quite large, it can be chal-
lenging to gain insights into the individual algorithms. To show that
dynamic algorithm selection is also applicable to smaller portfolio’s,
we limit ourselves to 5 algorithms. �ese are representative of some
widely used algorithm families: Nelder-Doerr [8], DE-Auto [40],
Bipop-aCMA-Step [22], HMLSL [30] and PSO-BFGS [41].With this
reduced algorithm portfolio, we can study the improvements over
their respective VBSstatic in more detail, and �nd interesting algo-
rithms combinations to explore further.

In Figure 8, we show the relative improvement in ERT over
VBSstatic of the best combination of two algorithms. In each subplot,
all 24 functions are represented. Note that the diagonal represents
the static algorithms, which can never lead to an improvement over
the VBSstatic. We notice some clear trends in this �gure. Speci�cally,

3Missing values and values larger than 3 are set to 3 to reduce the large impact of
outliers on the average.
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we notice that using HMSLS as A2 is rarely e�ective, while it pro-
vides large bene�ts when used in the initial part of the search. We
also note that Nelder-Doerr has the reverse behaviour, seemingly
performing much be�er in the �nal exploitation phase.

To illustrate the con�guration switches which can be considered
in this algorithm portfolio, we can zoom in on function 12 in di-
mension 3 and look at the �xed-target curve showing ERT. �is is
done in Figure 9, where we also indicate the best switching points
between algorithms. �is �gure highlights the di�erent behaviors
of the algorithms in the portfolio, and thus indicates where switch-
ing algorithms would be bene�cial. �e best possible switch in this
function would occur from PSO-BFGS to Nelder-Doerr, at target
10−6.4, leading to a relative speedup of 1.76 over VBSstatic.

To decide which algorithms to use in an algorithm portfolio such
as the one used here, two main ways of selecting the algorithms are
possible. �e �rst is to use some knowledge about the algorithms to
determine which are important. �is is useful for initial exploration,
but might lead to useful algorithms being ignored. Instead, one
can use performance information, such as the I1 and I2-values, to
provide some initial representation of the usefulness of algorithms
to the portfolio. �is approach is much more generic, however the
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choice of measures can be challenging. For example, the I1 and
I2 measures are hard to extend to more general k-switch dynAS
methods. Instead, an extension of marginal contributions [42] and
related concepts such as measures building on Shapley values (like
those suggested in [11]) would capture algorithm contribution to a
portfolio in a much more robust sense, and thus be useful additions
to the dynAS se�ing.

5 DISCUSSION AND FUTUREWORK
Summary. �e previous results have shown that there is still a

large amount of improvement possible over the VBSstatic by using
dynamic algorithm selection. We have shown several methods
to gain insights into the di�erences between di�erent algorithms
and functions. However, the results shown in the previous sec-
tions rely on an underlying assumption of feasibility of algorithm
switching. For many algorithms, this switching mechanism can be
implemented in a relatively straightforward manner, i.e. between
di�erent population-based algorithms, such as di�erent CMA-ES
variants, for which the algorithm switching methods have already
been implemented [37].

Warm-start. For other algorithms combinations, a dynamic switch
during the optimization procedure might be more challenging. For
example, a switch from a single-solution algorithm to a population-
based one gives rise to an information de�cit, which needs to be
dealt with to properly initialize the new population. Because of
this, the gains indicated by simply combining the ERT values might
be tough to achieve in practice.
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More generally, internal parameters are di�erent between al-
gorithms. So the �rst challenge to overcome is that one needs to
decide how to “warm-start” the algorithms, to assure an optimal
internal state for the required phase of the optimization process.
To be able to achieve the performance of the VBSdyn, such warm-
start techniques will need to be implemented without the need of
additional function evaluations, which could be a big challenge.
We would considering to use reinforcement learning approaches
to be a promising �rst step for this task, but since those are quite
expensive in terms of computational cost, we hope to see other
approaches evolve in the near future.

Stochasticity. Assuming such warm-start mechanisms are imple-
mented, as was previously done for example within CMA-ES, it has
been shown that the theoretical improvements can still be tough
to achieve in practice [37]. �is is largely caused by the fact that
hi�ing times are stochastic with relatively large variances, which
can cause ERT to be unstable. When selecting the (A1,A2,τ )-triple,
di�erences in ERT might be obscured by the variance of the hi�ing
times, leading to a worse performance than expected. �ese e�ects
might become even more important when dealing with larger algo-
rithm spaces, or when incorporating hyperparameters in the search
(see paragraph Hyperparameter tuning). Analyzing the robustness
of common solvers therefore seems to be an essential building block
for the development of reliable dynAC approaches.

Switch point. Another challenge which needs to be overcome
to achieve e�ective dynamic algorithm selection is the question
how to identify suitable switching points. In this work we used
target precision, which is usually not applicable in practice, since
the algorithm has no knowledge about the precise value of the
optimum. Because of this, we would need to �nd some other way
to use the knowledge of the algorithm to determine when to switch,
i.e., the state of internal parameters, landscape features computed

from additionally or previously evaluated points, the evolution of
�tness values, population diversity, etc.

True dynamic switching. While improving the way a switching
point is detected is a big challenge to overcome, it also provides
new opportunities to improve performance. �e estimates shown
in this paper consider only a single algorithm switch, whereas a
truly dynamic approach could bene�t from switching more o�en,
to fully exploit the di�erences in search behaviour of the di�erent
algorithms.

Hyperparameter tuning. A second factor of improvement can
come from adding hyperparameter tuning into the dynamic pro-
cess; i.e., when moving from the algorithm selection se�ing to a
dynamic variant of Combined Algorithm Selection and Hyperpa-
rameter optimization (CASH [34, 39]). A dynamic CASH approach
would allow the algorithms to specialize even more, so they can
focus even more on performing as good as possible on their speci�c
part of the optimization process.

Extensions. As any benchmark study, our results are – for the
time being – limited to the 24 noiseless BBOB functions. Extending
them to other classes of numerical black-box optimization prob-
lems forms another important avenue for future research. In this
context, we consider supervised learning approaches building on
exploratory landscape analysis [25] as particularly promising. It has
previously been shown to yield promising results for the task of con-
�guring the hyper-parameters of CMA-ES [3]. Note, though, that
all existing studies concentrate on static algorithm con�guration
and/or selection. We would therefore need to extend exploratory
landscape analysis to the dynamic se�ing. First steps into this di-
rection have been made in [16], where it is shown that the �tness
landscapes, as seen by the algorithm, can change quite drastically
during the run.

Short-term. All the objectives listed above are quite ambitious.
We therefore also formulate a few short-term goals for our research.
Building on the techniques used to select interesting algorithms
in Section 4.3, we aim to create smaller algorithm portfolio’s of
algorithms for intial implementations of dynAS. �is could be done
based on techniques studied in this paper, or using measures like
the Shapley value [11], allowing for much smaller portfolios which
nonetheless capture the di�erent performances of the algorithms.
With such a portfolio we can then more e�ciently carry out re-
search on the problems mentioned above, i.e., how to warm-start
the algorithms and how to decide when to switch from one algo-
rithm to another.
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