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ABSTRACT

When faced with a specific optimization problem, deciding which
algorithm to apply is always a difficult task. Not only is there a vast
variety of algorithms to select from, but these algorithms are often
controlled by many hyperparameters, which need to be suitably
tuned in order to achieve peak performance. Usually, the problem of
selecting and configuring the optimization algorithm is addressed
sequentially, by first selecting a suitable algorithm and then tuning
it for the application at hand. Integrated approaches, commonly
known as Combined Algorithm Selection and Hyperparameter
(CASH) solvers, have shown promise in several applications.

In this work we compare sequential and integrated approaches
for selecting and tuning the best out of the 4,608 variants of the
modular Covariance Matrix Adaptation Evolution Strategy (CMA-
ES). We show that the ranking of these variants depends to a large
extent on the quality of the hyperparameters. Sequential approaches
are therefore likely to recommend sub-optimal choices. Integrated
approaches, in contrast, manage to provide competitive results
at much smaller computational cost. We also highlight important
differences in the search behavior of two CASH approaches, which
build on racing (irace) and on model-based optimization (MIP-EGO),
respectively.

CCS CONCEPTS

« Theory of computation — Evolutionary algorithms; Bio-
inspired optimization; Algorithm design techniques.

KEYWORDS

Algorithm Selection, Algorithm Control, Iterative Optimization
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1 INTRODUCTION

In computer science, optimization has become an important field
of study over the past decades. Because of its rising popularity and
its high practical relevance, many different techniques have been
introduced to solve particular types of optimization problems. As
these methods are developed further, small modifications might
lead the algorithm to behave better on specific problem types. How-
ever, it has long been known that no single algorithm variant can
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outperform all others on all functions, an observation that is for-
malized in the so-called no-free-lunch theorems [49]. This fact leads
anew set of challenges for practitioners and researchers alike: How
to choose which algorithm to use for which problem?

Even when limiting the scope to a small class of algorithms,
the choice of which variant to choose can be daunting, leading
practitioners to resort to a few standard versions of the algorithms,
which might not be particularly well suited to their problem.

The problem of selecting an algorithm (variant) from a large set
is commonly referred to as the algorithm selection problem [37].
However, the algorithm variant is not the only factor which has an
impact on performance. The setting of the variable hyperparameters
can also play a very important role [27, 29]. Choosing the right
hyperparameter setting for a specific algorithm is known as the
algorithm configuration problem, or - in the context of evolutionary
computation — as the parameter setting problem [12].

In this work, we investigate the impact of both hyperparameter
tuning and algorithm selection in the context of the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES). The CMA-ES
family [19] is an important collection of heuristic optimization
techniques for numeric optimization. In a nutshell, the CMA-ES is
an iterative search procedure, which updates after each iteration
the covariance matrix of the multivariate normal distribution that is
used to generate the samples during the search, effectively learning
second-order information about the objective function. Important
contributions to the class of CMA-ES have been made over the years,
which all reveal different strengths and weaknesses in different
optimization contexts [5, 16, 18].

While most of the suggested modifications have been proposed
in isolation, [41] suggested a framework which modularizes eleven
popular CMA-ES modifications such that they can be combined
to create a total number of 4,608 different CMA-ES variants. It
was shown in [42] that some of the so-created CMA-ES variants
improve significantly over commonly used CMA-ES algorithms.
The framework provides a convenient way to study the impact of
the different modules on different optimization problems [41]. In
all previous works on the modular CMA-ES, the hyperparameters
were set to some default values. To the best of our knowledge, it
has not been investigated how sensitive the performance of the
different variants is with respect to these hyperparameter settings.

The problems of selecting and configuring an appropriate algo-
rithm for a given problem are, of course, highly interlinked. There-
fore, it seems natural to tackle both problems at the same time. In
practice, however, algorithm selection is typically based solely on
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users’ previous experience and preferences, whereas the tuning step
is often entirely neglected: users mainly resort to default configura-
tions that have previously been suggested in the literature or that
happen to be the defaults in the implementation of the algorithm
framework they use.

Data-driven techniques for algorithm selection exist (see [23]
for a recent survey), but require previous training and are therefore
not yet widely applied. Automated algorithm configuration [11, 25],
in contrast, is (finally) gaining popularity — both in academic and
in industrial applications. Several software frameworks such as, for
example, SPOT [6], irace [30], SMAC [20], hyperband [28], MIP-
EGO [47], or the more recent BOHB [13] are readily available to
support the user in identifying suitable parameter settings.

Note, though, that even when data-driven parameter tuning is
used, we still address algorithm selection and configuration sequen-
tially, and not as a Combined Algorithm Selection and Hyperparame-
ter optimization (CASH) problem, as the integrated problem was
termed in [38]. First automated approaches for the CASH problems
were studied in the Machine Learning community, focused on solv-
ing classification problems [14, 26]. The CASH-problem has also
been studied in the context of creating SAT-solvers [50] or solving
Mixed-Integer Programming problems [51].

In this work, we apply CASH to the problem of selecting and
configuring variants of the CMA-ES.

The modularity of the used CMA-ES-framework also allows
us to integrate algorithm selection and configuration into a single
mixed-integer search space, where we can optimize both the algo-
rithm variant and the corresponding hyperparameters at the same
time. We show that such an integrated approach is competitive
with sequential approaches based on complete enumeration of the
algorithm space, while requiring significantly less computational
effort. We also investigate the differences between two algorithm
configuration tools, irace [30] and MIP-EGO [47] (see Section 2.4
for short descriptions). While the overall performance of these two
approaches is comparable, the balance between algorithm selection
and algorithm configuration shows significant differences, with
irace focusing much more on the configuration task, and evalu-
ating only a few different CMA-ES variants. MIP-EGO, in turn,
shows a broader exploration behavior, at the cost of less accurate
performance estimates.

2 EXPERIMENTAL SETUP

We summarize the algorithmic framework, the benchmark suite, the
performance measures, and the two configuration tools, irace and
MIP-EGO, which we employ for the tuning of the hyperparameters.

2.1 The Modular CMA-ES

Table 1 summarizes the eleven modules of the modular CMA-ES
from [41]. Out of these, nine modules are binary and two are ternary,
allowing for a total number of 4,608 different possible CMA-ES
variants. The modular CMA-ES is available at [39].

So far, all studies on the modular CMA-ES framework have used
default hyperparameter values [40, 41, 44]. However, it has been
shown that substantial performance gains are possible by tuning
these hyperparameters [1, 7], raising the question how much can
be gained from combining the tuning of several hyperparameters

D. Vermetten, H. Wang, C. Doerr, and T. Back

#  Module name 0 1 2
1 Active Update [22] off on -
2 Elitism (g, A)  (p+A) -
3 Mirrored Sampling [8] off on -
4 Orthogonal Sampling [46] off on -
5  Sequential Selection [8] off on -
6  Threshold Convergence [34]  off on -
7 TPA [15] off on -
8  Pairwise Selection [2] off on -
9 Recombination Weights [4] ri(p) i -
10 Quasi-Gaussian Sampling off Sobol  Halton

11 Increasing Population [3, 16]  off IPOP  BIPOP

Table 1: Overview of the CMA-ES modules available in the
used framework. The entries in row 9 specify the formula
log(i)
with the selection of the CMA-ES variant. In accordance with [7],
we focus on only a small subset of these hyperparameters, namely
c1, ¢¢c and ¢y, which control the update of the covariance matrix. It is
well known, though, that other hyperparameters, in particular the
population size [3], have a significant impact on the performance
as well, and might be much more critical to configure as the ones
chosen in [7]. However, we will see that the performance of the
CMA-ES variants is nevertheless strongly influenced by these three
hyperparameters. In fact, we show in Section 4 that the ranking
of the algorithm variants with default and tuned hyperparameters
can differ significantly, indicating that a sequential execution of
algorithm selection and algorithm configuration will not provide
optimal results.

for calculating each weight w;, with r; := log(,u+%)—

2.2 Test-bed: the BBOB Framework

For analyzing the impact of the hyperparameter tuning, we use the
Black-Box Optimization Benchmark (BBOB) suite [17], which is a
standard environment to test black-box optimization techniques.
This testbed contains 24 functions f : R9 — R, of which we use
the five-dimensional versions. Each function can be transformed
in objective and variable space, resulting in separate instances
with similar fitness landscapes. A large part of our analysis is built
on data from [44], which uses 5 independent runs on the first 5
instances of each function, for each algorithm variant. This data is
available at [43].

2.3 Performance Measures

We next define the performance measures by which we compare
the different algorithms. First note that CMA-ES is a stochastic
optimization algorithm. The number of function evaluations needed
to find a solution of a certain quality is therefore a random variable,
which we refer to as the first hitting time. More precisely, we denote
by ti(v, f, ¢) the number of function evaluations that the variant v
used in the i-th run until it evaluates a solution x satisfying f(x) < ¢
for the first time. If target ¢ is not hit, we define t;(v, f, ¢) = 0. To
be consistent with previous work, such as [44], we decide to use
two estimators of the mean of the hitting time distribution. Both
these measures are very commonly applied. A discussion on this
can be found in [17].
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Definition 2.1. For a set of functions ¥ = {f(l), ... ,f<K)}, the
average hitting time (AHT) is defined as:

n

K
- 1 .
T(v,F,P) = — min{t; (v, (J), , P
©.7.¢) KZ;]ZI {ti(v. fV. 9). P)
When a run does not succeed in hitting target ¢, we have t;(v, f, ¢) =
0. In this case, a penalty P > B (where B is the maximum budget)
is applied. Usually, this penalty is set to co, in which case this value
is called AHT. Otherwise, it is commonly referred to as penalized
AHT.
In contrast, the expected running time (ERT) equals:

n Zszl min{t; (v, fU), ¢), B}

LK 1, fO), §) < w0}

Previous work has shown ERT, as opposed to AHT, to be a con-
sistent, unbiased estimator of the mean of the distribution hitting
times [3]. However, it is good to note that ERT and AHT are equiv-
alent when all runs of variant v manage to hit target ¢.

In the context of the modular CMA-ES, the CASH problem is
adopted as follows. Given a set of CMA-ES variants V, a common
hyperparameter space H, a set of function instances ¥, and a target
value ¢, the CASH problem aims to find the combined algorithm
and hyperparameter setting that solves the problem below:

v*,h* = argmin ERT (vp,, F, ).
veV,heH

ERT(v, F, §) =

Note here that we aim at finding the best (variant,hyperparameter)-
pair for each of the 24 BBOB functions individually and we consider
as ¥ the set of the first five instances of each function. We do not
aggregate over different functions, since the benchmarks can easily
be distinguished by exploratory landscape approaches [7].

2.4 Hyperparameter Tuning

In this work, we compare two different off-the-shelf tools for mixed-
integer hyperparameter tuning: irace and MIP-EGO.

Irace [30, 31] is an algorithm designed for hyperparameter op-
timization, which implements an iterated racing procedure. irace
is implemented in R and is freely available at [32]. For our exper-
iments, we use the elitist version of irace with adaptive capping,
which we briefly describe in the following.

irace works by first sampling a set of candidate parameter set-
tings, which can be any combination of discrete, continuous, cat-
egorical, or ordinal variables. These parameters are empirically
evaluated on some problem instances, which are randomly selected
from the set of available instances. After running on x instances, a
statistical test is performed to determine which parameter settings
to discard. The remaining parameter settings are then run on more
instances and continuously tested every ¢ iterations until either
only a minimal number of candidates remain or until the budget of
the current iteration is exhausted. The surviving candidates with
the best average hitting times are selected as the elites.

After the racing procedure, new candidate parameter settings are
generated by selecting a parent from the set of elites and “mutating”
it, as described in detail in [30]. After generating the new candidates,
arace is started with these new solutions, combined with the elites.
Since we use an elitist version of irace, these elites are not discarded
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until the competing candidates have been evaluated on the same
instances which the elites have already seen. This is done to prevent
the discarding of candidates which perform well on the previous
race based on only a few instances in the current race.

Apart from using elitism and statistical tests to determine when
to discard candidate solutions, we also use another recently devel-
oped extension of irace, the so-called adaptive capping [9] procedure.
Adaptive capping helps to reduce the number of evaluations spent
on candidates which will not manage to beat the current best. Adap-
tive capping enables irace to stop evaluating a candidate once it
reaches a mean hitting time which is worse than the median of the
elites, indicating that this candidate is unlikely to be better than
the current best parameter settings.

Mixed-Integer Parallel Efficient Global Optimization
(MIP-EGO) [47, 48] is a variant of Efficient Global Optimization
(EGO, a sequential model-based optimization technique), which can
deal with mixed-integer search-spaces. Because EGO is designed
to deal with expensive function evaluations, and this variant has
the ability to deal with continuous, discrete, and categorical param-
eters, it is also well suited to the hyperparameter tuning task. It
uses a much different approach as irace, as we will describe in the
following.

EGO works by initially sampling a set of solution candidates
from some specified probability distribution, specifically a Latin
hypercube sampling in MIP-EGO. Based on the evaluation of these
initial points, a meta-model is constructed. Originally, this was
done using Gaussian process regression, but MIP-EGO uses ran-
dom forests to be able to deal with mixed-integer search spaces.
Based on this model, a new point (or a set of points) is proposed
according to some metric, called the acquisition function. This can
be as simple as selecting the point with the largest probability of
improvement (PI) or the largest expected improvement (EI). More
recently, acquisition functions based on moment-generating func-
tion of the improvement have also been introduced [48]. For this
paper, we use the basic EI acquisition function, which is maximized
using a simple evolution strategy. After selecting the point(s) to
evaluate, the meta-model is updated according to the quality of
the solutions. The process is repeated until a termination criterion
(budget constraint in our case) is met.

3 SENSITIVITY OF CMA-ES VARIANTS TO ITS
HYPERPARAMETERS

As mentioned previously, it is well known that the performance
of CMA-ES can be highly dependent on hyperparameter settings.
In this work however, we don’t just focus on a single CMA-ES
algorithm, but a large set of different variants. For such variants
of CMA-ES, no study has yet looked at the interplay between hy-
perparameters and module settings. If these interactions would
be relatively minor, it would mean that selecting the algorithm
variant and tuning it can be seen as two separate steps which can
be executed sequentially. However, if the different algorithm vari-
ants require different hyperparameters in order to achieve optimal
performance, this might result in some variants having default
hyperparameters which are already close to optimal for certain
problems, while others have very poor hyperparameter settings.
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Figure 1: ERT for two groups of CMA-ES variants: The top 50
according to ERT and a group of 50 randomly selected vari-
ants. The ERT before tuning is shown in light color (based
on 25 runs), while the ERT after tuning and verification is
shown in a darker shade.

Optimized (25)

Optimized (250) 4

Default (250) 4

Default (25) 5

Rank

Figure 2: Evolution of ERT-based ranking (lower rank is bet-
ter) of 100 algorithm variants for 5 and 50 runs on each of
the first five instances of F12, respectively. Default refers to
the ERT using the default hyperparameters while optimized
is the best ERT using the tuned hyperparameters as found
by MIP-EGO. Darker lines correspond to larger changes in
ranking. Colors correspond to the grouping of variants as
in Figure 1.

Hyperparameter tuning might then lead to some variants that per-
form relatively poorly with default hyperparameters, to outperform
all others when the hyperparameters have been sufficiently opti-
mized. In such a scenario, the problem of selecting the algorithm
variant and tuning it becomes much more intertwined, and requires
much more effort to solve it effectively.

To illustrate the impact of hyperparameter tuning on the different
algorithm variants, we present a short use-case in which we zoom
into the performance of the modular CMA-ES variants on a single
problem, the function F12 from the BBOB framework. After running
all variants on the first five instances of this function for 5 runs
each, we sort the variants by ERT values, and select the 50 top-
performing ones for further investigation. We also create a set of
50 randomly chosen variants. Then, for each of these variants, the
hyperparameters are tuned using MIP-EGO. The resulting ERTs
are shown in Figure 1. From this figure, it is clear that the relative
improvements are indeed much larger for the group of random
variants. There are even some variants which start with very poor
ERT and which, after the tuning process, become competitive with
the variants from the first group.
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We also rank these CMA-ES variants based on their ERTs, both
with the default and tuned hyperparameters, and both for the 25
runs seen before and during the tuning and for the 250 verification
runs. The resulting differences in ranking are shown in Figure 2.
We observe two main effects here. One is the instability of the
25-run ERT values (the ranking changes when we move to the
250-run data), and the other effect are the large differences between
the rankings of the algorithms with default versus with tuned hy-
perparameters. This clearly indicates that different variants have
different amount of potential to gain from hyperparameter tuning.
The choice of algorithm variant and hyperparameters is therefore
indeed highly interlinked, potentially making it challenging for
sequential CASH methods to find optimal combinations. As we dis-
cuss in Section 4.2.2, large dispersions between the improvements
of different algorithm variants indicate that these findings apply
more broadly to all 24 BBOB-functions.

4 CASH-BASELINE: SEQUENTIAL METHODS

Even though sequential execution of algorithm selection and con-
figuration might not be optimal, it is still a useful baseline to set.
Since the ERT for all CMA-ES variants on all benchmark functions
is available, a complete enumeration technique would be the sim-
plest form of algorithm selection. The simplest way to do algorithm
configuration would then be to tune the best algorithm according
to the enumeration. However, this ignores the potential of other
algorithms overtaking it when their hyperparameters are tuned.
In an attempt to mitigate this, we can choose to tune a set of al-
gorithms instead of a single one. More specifically, we define two
sequential methods as follows:

¢ Naive sequential: Perform hyperparameter tuning (using
MIP-EGO) on the one CMA-ES variant with the lowest ERT
e Standard sequential: Perform hyperparameter tuning (us-
ing MIP-EGO) on a set of 30 variants. We have chosen to
consider the following set of variants to have a wide repre-
sentation of module settings, and to be able to fairly compare
the impact of hyperparameter tuning across functions:
— The 10 variants with lowest ERT.
— The 10 variants ranked 200-210 according to ERT.
- The 10 ‘common’ variants, i.e., CMA-ES variants previ-
ously studied in the literature (see Table V in [41]).

For both of these methods, the execution of MIP-EGO has a
budget of 200 ERT-evaluations, each of which is based on 25 runs
of the underlying CMA-ES variant (i.e., 5 runs per each of the five
instances). Since the observed hitting times show high variance,
we validate the ERT values by performing 250 additional runs (50
runs per each instance). All results shown will be ERT from these
verification runs, unless stated otherwise. The variant selection and
hyperparameter tuning is done separately for each function.

4.1 First Results

While the two sequential methods introduced are quite similar, it is
obvious that the naive one will always perform at most equally well
as the standard version, since the algorithm variant tuned in the
naive approach is always included in the set of variants tuned by the
standard method (the same tuned data is used for both methods to
exclude impact of randomness). In general, the standard sequential
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Figure 3: ECDF curve over all benchmark functions of both
the standard sequential method as well as the default CMA-
ES. Figure generated using IOHprofiler [10].

method achieves ERTs which are on average around 20% lower
than the naive approach.

To better judge the quality of these sequential methods, we
compare their performance to the default variant of the CMA-ES,
which is the variant in which all modules are set to 0. This can be
done based on ERT, for each function, but that does not always show
the complete picture of the performance. Instead, the differences
between the performances of the sequential method and the default
CMA-ES are shown in a Empirical Cumulative Distribution Function
(ECDF), which aggregates all runs on all functions and shows the
fraction of runs and targets which were hit within a certain amount
of function evaluations. This is shown in Figure 3 (targets used
available at [45]). From this, we see that the sequential approach
completely dominates the default variant. When considering only
the ERT, this improvement is on average 73%.

As well as comparing performance against the default CMA-
ES, it can also be compared against the best modular variant with
default hyperparameters, i.e. the result of pure algorithm selection.
For this, the standard sequential approach manages to achieve a
24.7% improvement in terms of average ERT, as opposed to 6.3%
for the naive version. Of note for the naive version is that not all
comparisons against the pure algorithms selection are positive, i.e.
for some (5) functions it achieves a larger ERT. This might seem
counter-intuitive, as one would expect hyperparameter tuning to
only improve the performance of an algorithm. However, this is
where the inherent variance of evolution strategies has a large
impact. In short, because ERTs seen by MIP-EGO are based on only
25 runs, it may happen that a sub-optimal hyperparameter setting
will be selected. This is explained in more detail in the following
sections.

4.2 Pitfalls

The sequential methods described here have the advantage of being
based on algorithm selection by complete enumeration. In theory,
this would be the perfect way of selecting an algorithm variant.
However, since CMA-ES are inherently stochastic, variance has a
large effect on the ERT, and thus on the algorithm selection. This
might not be an issue if one assumes that hyperparameter tuning
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has an equal impact on all CMA-ES variants. Unfortunately, as
shown in Section 3, this is not the case in practice.

4.2.1 Curse of High Variance. The inherent variance present in
the ERT-measurements does not only cause potential issues for the
algorithm selection, it also plays a large role in the hyperparameter
configuration. As previously mentioned, the ERT after running MIP-
EGO can be larger than the ERT with the default hyperparameters,
even though the default hyperparameters are always included in
the initial solution set explored by MIP-EGO. Since this might seem
counter-intuitive, a small-scale experiment can be designed to show
this phenomenon in more detail.

0001 @ Experimental
Achieved
00
0.25 ..-"'.
)
-0.50 o
a °
§ 075
g L]
3 -1.00
@
2
& 125
'3
-1.50
175
2001 ®
) 10 20 30 40 50

Number of samples per instance

Figure 4: Average improvement of ERT achieved from 250
runs vs the value obtained after running MIP-EGO (25 runs)
in orange, vs experimental improvement. Experimental im-
provement obtained over 100 repetitions of selecting k sam-
ples per instance for each variant and calculating their re-
spective ERT.

This experiment is set up by first taking the set of 50 hitting times
for each instance as encountered in the verification runs. Then,
sample x runs per instance from these hitting times and calculate
the resulting ERT. Repeat this 10 times, and take the minimal ERT.
Then we can compare the original ERT to this new value. This is
similar to the internal data seen by MIP-EGO, if we assume that 5%
of the variants it evaluated have a similar hitting time distribution.
When preforming this experiment on a set of 100 algorithm variants
on F21, we obtain the results as seen in Figure 4, which shows that
the actual differences between ERTs given by MIP-EGO and those
achieved in the verification runs matches the difference we would
expect based on this experiment.

4.2.2  Differences in Improvements. The differences in improvement
between CMA-ES variants as seen for F12 in Section 3 are also
highly dependent on the underlying test function. When executing
the sequential approach mentioned previously, 30 variants are tuned
for each function, and the ERTs are verified using 250 runs. The
resulting data can then give some insight into the difference in terms
of relative improvement possible per function, as is visualized in
Figure 5. This shows that, on average, a relatively large performance
improvement is possible for the selected variants. However, the
distributions have large variance, and differ greatly per function.
This highlight the previous findings of different variants receiving
much greater benefits from tuned hyperparameters than others,
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Figure 5: Distribution of relative improvement in ERT be-
tween the default and tuned hyperparameters across 30
modular CMA-ES variants for each of the 24 BBOB func-
tions.. These variants were chosen in 3 groups: the 10 best
according to ERT, those ranked 200-210 according to ERT
and 10 commonly used variants [41]. Note that the variants
are not necessarily identical for the different functions. The
tuned hyperparameters were computed with MIP-EGO. All
results are based on 250 independent runs for each (variant,
hyperparameters)-pair.

thus confirming that results from Figure 2 can be generalized to
the other BBOB-functions.

4.2.3  Scalability. The final, and most important, issue with the
sequential methods lies in their scalability. Because these methods
rely on complete enumeration of all variants based on their ERT,
the required number of function evaluations grows as the algorithm
space increases. If just a single new binary module is added, the
size of this space doubles. This exponential growth is unsustainable
for the sequential methods, especially if the testbed will also be
expanded to include higher-dimensional functions (requiring more
budget for the individual runs of the CMA-ES).

5 INTEGRATED METHODS

To tackle the issue of scalability, we propose a different way of
combining algorithm selection and hyperparameter tuning. This is
achieved by viewing the variant as part of the hyperparameter space,
which is easily achieved by considering the module activations as
hyperparameters. This leads to a mixed-integer search space, which
both MIP-EGO and irace can easily adapt to. Thus, we will use two
integrated approaches: MIP-EGO and irace. Both will get a total
budget of 25,000 runs, which irace allocates dynamically while MIP-
EGO allocates 25 runs to calculate ERTs for its solution candidates.

5.1 Case Study: F12

The viability of this integrated approach can be established by
looking at a single function and comparing the results from the
integrated approach to the previously established baselines. This is
done for F12, since for this function, data for the top 50 variants is
available, as shown in Figure 1. We run irace 4 times on instance 1 of
this function, and compare the result to those achieved by the best
tuned variants. This is done in Figure 6. From this figure, it can be
seen that two of the runs from irace are very competitive with the
best tuned variants, while the other two still manage to outperform
most variants with default hyperparameters. This shows that this
integrated approach is quite promising, and worth to study in more
detail.
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Figure 6: Comparison of ERTs achieved by the integrated
approach using irace (straight horizontal red lines) and the
ERTS of a set of 56 variants, both with default and tuned
hyperparameters (using MIP-EGO). All ERTs are the result
of 50 runs on instance 1 of F12.

5.2 Results

The results from running the integrated and sequential approaches
on all 24 benchmark functions are shown in Figure 7. This figure
shows that, in general, the ERTs achieved by irace and MIP-EGO
are comparable. Irace has a slight advantage, beating MIP-EGO
on 14 out of 24 functions. However, both methods still manage to
outperform the naive sequential approach while using significantly
fewer runs, and are only slightly worse than the more robust version
of the sequential approach. As expected, all methods manage to
outperform pure algorithm selection quite significantly.

5.3 Comparison of MIP-EGO and Irace

From the results presented in Figure 7 it can be seen that the per-
formance of the two integrated methods, MIP-EGO and irace, is
quite similar. However, when introducing these methods, it was
clear that their working principles differ significantly. To gain more
understanding about how these results are achieved, three sep-
arate principles were studied: prediction error, balance between
exploration and exploitation, and stability.

5.3.1 Prediction Error. The bars in Figure 7 seem to indicate that
the prediction error for irace is smaller than the one for MIP-EGO.
This is indeed the case: the average prediction error is 10.6% for
irace, compared to 17.4% for MIP-EGO, suggesting that the AHT
values reported by irace are more robust than the ERTs given by
MIP-EGO. However, we also note that there exist some outliers, for
which the prediction error of irace is relatively large (up to 35%
for function 4). This happens because irace reports penalized AHT
instead of ERT during the prediction-phase (see Definition 2.1).
However, these prediction errors for irace can be positive (i.e. over-
estimating the real ERT), whereas MIP-EGO always underestimates
the actual ERT.

5.3.2  Exploration-Exploitation Balance. While the prediction error
is an important distinguishing factor between the two integrated
methods, a much more important question to ask is how their
search behaviour differs. This is best characterized by looking at the
balance between exploration and exploitation, which we analyze
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Figure 7: Relative ERTs against the best algorithm variant with default hyperparameters (targets chosen as in [44]) from
running MIP-EGO and irace on the integrated selection and configuration space, as well as from the two sequential approaches.
The ‘predicted’ relative ERT (based on 25 runs, with the exception of irace) is shown as a small black bar, whereas all other
shown ERTs are based on 250 verification runs. y-axis cut at 1.5 (full data set available at [45]).

by looking at the complete set of evaluated candidate (variant,
hyperparameter)-pairs, and noting how many unique variants were
explored after the initialization phase. For MIP-EGO, this number
is on average 565, while for irace it is only 112. This leads us to
conclude that MIP-EGO is very exploitative in the algorithm space,
while irace is more focused on exploitation of the hyperparameters.

On average, across all 24 functions, 78.6% of all candidates eval-
uated by irace differ only in terms of the continuous hyperparame-
ters, whereas only 2.6% of the evaluated (variant, hyperparameter)
pairs contain unique variants. Even when including the initial ran-
dom population, this value only increases to 9.7%, while MIP-EGO
achieves an average fraction of 77.8% unique variants evaluated.

This difference in exploration-exploitation balance is expected
to lead to a difference in variants found by irace and MIP-EGO,
specifically in how these variants would rank with default hyper-
parameters. This is visualized in Figure 8. From this figure, the
differences between irace and MIP-EGO are quite clear. While MIP-
EGO usually has better ranked variants, the median ranking is
only 108, as opposed to 428 for irace. This confirms the findings
of Section 3, where we saw there can be quite large differences in
ranking before and after hyperparameter tuning. However, we still
find that a larger focus on exploration yields a selection of variants
which are ranked better on average.

5.3.3 Stability. Finally, we study the variance in performance of
the algorithm variants found by the two configurators. Since MIP-
EGO is more exploitative, it might be more prone to variance than
irace and thus less stable over multiple runs. To investigate this
assumption, we select two benchmark functions and run both inte-
grated methods 15 times. The resulting (variant, hyperparameters)-
pairs are then rerun 250 times, the runtime distributions of which
are show in Figure 9. For F20, there is a relatively small difference
between irace and MIP-EGO, slightly favoring irace. This indicates
that the exploitation done by irace is indeed beneficial, leading to
slightly lower hitting times. For F1, this effect is much larger, since
for F1 most variants behave quite similarly, so the more benefit can
be gained by tuning the continuous hyperparameters relative to
exploring the algorithm space.
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Figure 8: Original ranking (default hyperparameters) of the
algorithm variant found by the integrated approaches
(MIP-EGO and irace).
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Figure 9: Distributions of relative hitting times (achieved hit-
ting times divided by the maximal hitting time observed for
the function) of 15 (variant, hyperparameters)-pairs, result-
ing from 15 independent runs of the integrated approaches,
each of which is run 250 times on the corresponding bench-
mark function.
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Naive Seq. MIP- irace
Seq. EGO
Best on # functions 0 9 9 6
Avg. Impr. over best | 6.3% 24.7% 20.2% 20.7%

modular CMA-ES

Avg. Impr. over default | 67.4% 73.0% 72.9% 72.5%
CMA-ES

Avg. Prediction Error | 23.2% 18.8% 17.4% 10.6%

Budget (# function | ~ 120 150 25 25
evaluations) / 1,000

% Unique CMA-ES | 95.8% 76.8% 77.8% 9.7%
variants explored

Table 2: Comparison of the four methods for determin-
ing (variant, hyperparameter)-pairs used in this paper.
Seq.=sequential. Improvement over best modular CMA-ES
refers to the relative improvement in ERT over the single
best variant with default hyperparameters.

5.3.4 Summary. A summary of the differences between the four
methods studied in this paper can be seen in Table 2. From this,
we can see that the differences in terms of performance between
the integrated and sequential methods are minimal, while the inte-
grated ones require a significantly lower budget. This budget value
is in no way optimized, so an even lower budget than the one used
in our study might achieve similar results. This might especially
be true for irace, since it uses most of its budget to evaluate very
small changes in hyperparameter values.

6 CONCLUSIONS AND FUTURE WORK

We have shown that the performance of CMA-ES variants is highly
dependent on hyperparameter settings. Furthermore, we have shown
that the impact of tuning these hyperparameter setting for differ-
ent algorithm variants can differ significantly, highlighting the
need for methods which combine algorithm selection and algorithm
configuration of modular CMA-ES variants into a single integrated
approach. We have shown that a sequential execution of brute-force
algorithm selection and hyperparameter is sub-optimal because the
large variance present in the observed ERTs. In addition, the sequen-
tial approaches require a large number of function evaluations, and
quickly becomes prohibitive when new modules are added to the
modEA framework. This clearly illustrates a need for efficient and
robust combined algorithm selection and configuration methods.
We have shown that both irace and MIP-EGO manage to solve
the CASH problem for the modular CMA-ES. They outperform the
results from the naive sequential approach and show comparable
performance to the more robust sequential method, and this at much
smaller cost (up to a factor of 6 in terms of function evaluations).
We have also observed that, for the integrated approach, MIP-
EGO has a heavy focus on exploring the algorithm space, while
irace spends most of its budget on tuning the continuous hyperpa-
rameters of a single variant. These differences were shown to lead
to a slight benefit for irace on the sphere-function, but in general
the difference in performance was minimal across the benchmark
functions. This indicates that there is still room for improvement by

D. Vermetten, H. Wang, C. Doerr, and T. Back

combining the best parts from both methods into a single approach.
This could take advantage of the dynamic allocation of runs to
instances and adaptive capping which irace uses, as well as the
efficient generation of new candidate solutions using the working
principles of efficient global optimization, as done in MIP-EGO.

Another way to improve the viability of the integrated approaches
studied in this paper would be to tune their maximum budget, as
this was set arbitrarily in our experiments, and might be reduced
significantly without leading to a large loss in performance.

We have focused in this work on the 3 hyperparameters selected
in [7]. A straightforward extension of our work would be to con-
sider the configuration of additional hyperparameters — global ones
that are present in all variants (e.g., the population size), but also
conditional ones that appear only in some variants but not in others
(i.e. the threshold value when the ‘threshold convergence’ module
is turned on). While irace can deal with such conditional parameter
spaces, MIP-EGO would have to be revised for this purpose.

Our long-term goal is to develop methods which adjust variant
selection and configuration online, i.e., while optimizing the prob-
lem. This could be achieved by building on exploratory landscape
analysis [33] and using a landscape-aware selection mechanism.
Relevant features could be local landscape features such as provided
by flacco [24] (this is the approach taken in [7]), but also the state
of the CMA-ES-parameters themselves, and approach suggested
in [35]. We have analyzed the potential impact of such an online
selection in [44]. Some initial work in determining how landscape
features change during the search has been proposed in [21], but
it was shown in [36] that some of the local features provided by
flacco are not very robust, so that a suitable selection of features is
needed for the use in a landscape-aware algorithm design.

Finally, we are interested in generalizing the integrated algo-
rithm selection and configuration approach studied in this work
to more general search spaces, and in particular to possibly much
more unstructured algorithm selection problems. For example, one
could consider to extend the CASH approach to the whole set of
algorithms available in the BBOB repository (some of these are
summarized in [18] but many more algorithms have been added
in the last ten years since the writing of [18]). Note that it is an
open question, though, how well the here-studied configuration
tools irace and MIP-EGO would perform on such an unstructured,
categorical algorithm selection space. Note also that here again
we need to take care of conditional parameter spaces, since the
algorithms in the BBOB data set have many different parameters
that need to be set.
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