
HAL Id: hal-02872816
https://hal.sorbonne-universite.fr/hal-02872816v1

Submitted on 17 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Landscape-Aware Fixed-Budget Performance Regression
and Algorithm Selection for Modular CMA-ES Variants

Anja Jankovic, Carola Doerr

To cite this version:
Anja Jankovic, Carola Doerr. Landscape-Aware Fixed-Budget Performance Regression and Algorithm
Selection for Modular CMA-ES Variants. ACM Genetic and Evolutionary Computation Conference
(GECCO’20), Jul 2020, Cancun, Mexico. �10.1145/3377930.3390183�. �hal-02872816�

https://hal.sorbonne-universite.fr/hal-02872816v1
https://hal.archives-ouvertes.fr

Landscape-Aware Fixed-Budget Performance Regression
and Algorithm Selection for Modular CMA-ES Variants

Anja Jankovic
Sorbonne Université, CNRS, LIP6

Paris, France

Carola Doerr
Sorbonne Université, CNRS, LIP6

Paris, France

ABSTRACT
Automated algorithm selection promises to support the user in the
decisive task of selecting a most suitable algorithm for a given prob-
lem. A common component of these machine-trained techniques
are regression models which predict the performance of a given al-
gorithm on a previously unseen problem instance. In the context of
numerical black-box optimization, such regression models typically
build on exploratory landscape analysis (ELA), which quantifies
several characteristics of the problem. These measures can be used
to train a supervised performance regression model.

First steps towards ELA-based performance regression have been
made in the context of a fixed-target setting. In many applica-
tions, however, the user needs to select an algorithm that performs
best within a given budget of function evaluations. Adopting this
fixed-budget setting, we demonstrate that it is possible to achieve
high-quality performance predictions with off-the-shelf supervised
learning approaches, by suitably combining two differently trained
regression models. We test this approach on a very challenging
problem: algorithm selection on a portfolio of very similar algo-
rithms, which we choose from the family of modular CMA-ES
algorithms.

CCS CONCEPTS
• Theory of computation → Evolutionary algorithms; Bio-
inspired optimization.

KEYWORDS
Landscape-Aware Algorithm Selection, Performance Regression

1 INTRODUCTION
In the vast realm of optimization problems, we often encounter real-
world challenges that are too complex to be analytically modeled,
but that we nevertheless need to find an optimal solution for. Under
these circumstances, one typically resorts to using black-box opti-
mization techniques, which guide the search towards an estimated
optimal solution, iteration by iteration, using only pairs of potential
candidate solutions x and their corresponding fitness values f (x)
in each step. Many different iterative optimization heuristics have
been designed in the last decades, and continue to be developed
every day, mostly because these heuristics show (very) different
performances on different problems. We know today, as the no free
lunch theorem [28] shows, that the quest for a single-best optimiza-
tion algorithm, the one that would optimally (or quasi-optimally)
solve any kind of problem in the most time- and resource-efficient
way possible, is futile. Consequently, every time one is faced with

GECCO ’20, July 8–12, 2020, Cancún, Mexico
2020. ACM ISBN 978-1-4503-7128-5/20/07. . . $15.00
https://doi.org/10.1145/3377930.3390183

a previously unseen optimization problem, the most appropriate
algorithm for that specific scenario must first be selected. This
so-called algorithm selection problem or ASP was formalized a few
decades ago [23], and the community has during that time focused
predominantly on algorithm selection in the field of discrete opti-
mization [29]. In the last decade, however, substantial progress has
been made also for numerical optimization problems [7].

A special case of the ASP is per instance algorithm selection, or
PIAS for short, where a most suitable algorithm for a given prob-
lem instance is to be chosen from a discrete (or at least countable)
algorithm portfolio. A key component in designing PIAS are mech-
anisms that are able to characterize or to identify the problem
instance at hand. In the continuous domain, this typically means
that we need to recognize how the fitness landscape of a prob-
lem looks like. It is important to mention that high-level, intuitive
problem landscape properties (e.g., degree of multimodality, sep-
arability, number of plateaus) all require prior expert knowledge
and cannot be automatically computed. With the goal of describing
the problem by means of numerical values, we turn to Exploratory
Landscape Analysis, which was introduced in [15] as an approach
to compute numerical landscape features for the purposes of prob-
lem characterization. The original ELA features consisted of six
classes; for instance, some of them quantify the distribution of the
objective function values (y-Distribution), while some others fit the
meta-regression models (linear and quadratic) to the sampled data
(Meta-Model), etc. ELA has since become an umbrella term for many
newly introduced feature sets [8, 12, 19].

Among different approaches to predict the algorithm perfor-
mance on a certain problem as accurately as possible, supervised
machine learning techniques, such as regression and classification,
have been both well studied and used for PIAS in a variety of
settings. Performance regression models predict the performances
on a certain problem instance for the whole algorithm portfolio,
and then proceed to select the algorithm with the best-predicted
performance, thus keeping track of the magnitude of differences
between different performances (something that would be lost if a
classification approach was used).

Our Results. In recent years, most research efforts in automated
algorithm selection were made within the fixed-target context,
where the algorithm performance is measured by the expected
running time (that is, the number of function evaluations in the
optimization context) needed to reach some pre-fixed solution of
high quality, i.e., whose distance to the optimum is very small (e.g.,
in the order of 10−8). Typically, a large budget of function eval-
uations (in the order of 104d , where d stands for dimension) is
nevertheless allocated in the fixed-target setting to ensure that the
run terminates. In real-world application and for practical purposes,
however, it could be of vital importance to choose the algorithm

1

https://doi.org/10.1145/3377930.3390183

GECCO ’20, July 8–12, 2020, Cancún, Mexico Anja Jankovic and Carola Doerr

that performs best within a given budget of function evaluations.
We adopt this fixed-budget approach for our work, with a limited
budget of only 500 function evaluations. The quality of algorithm
performance within the fixed-budget approach is measured by the
target precision, which is the distance between the optimal solution
and the best found one.

Our goal is to design a prediction model that learns the mapping
between problem features on one hand and algorithm performance
on the other hand, which will, once trained, be able to decide which
algorithm to pick given a problem instance. To the best of our
knowledge, our work is the first to propose a novel performance
regression model for single-objective, continuous problems in the
fixed-budget setting, with a limited budget of function evaluations,
which aims to solve the algorithm selection problem by combining
the use of problem features that can be automatically computed
and off-the-shelf supervised machine learning techniques.

In this work, we show that we are able to achieve high-quality
performance prediction by combining two differently trained re-
gression models, one that predicts the target precision (“unscaled
model”) and one that predicts the logarithm of the target precision
(“logarithmic model”).

Related Work. Automated algorithm selection and configu-
ration can be roughly categorized into two classes, depending on
whether they build upon supervised or unsupervised machine learn-
ing techniques. In terms of unsupervised learning, reinforcement
learning in particular is used most frequently (see [2, 7] and ref-
erences mentioned therein). Among the supervised approaches,
techniques that build on exploratory landscape analysis (ELA [15])
predominate the field. ELA-based regression models have been
applied both to configure parametrized algorithm families (per in-
stance algorithm configuration) [1] and to select algorithms from a
given portfolio [10, 16].

Comprehensive surveys of automated algorithm selection state-
of-the-art approaches and results are available in [7, 18].

2 EXPERIMENTAL SETUP
The BBOB Testbed. Very well-known and widely used in the com-

munity, the Black-Box Optimization Benchmark (BBOB) testbed is
one of the benchmark problem suites on the COCO platform [5],
which is the dedicated environment for comparison of algorithm
performance in continuous black-box optimization. The BBOB
testbed consists of 24 noiseless, single-objective functions (FID
1-24). For each function, different instances can be generated by
rotating or translating the function in the objective space. All func-
tions are defined and can be evaluated on R, while the actual search
space is given as [−5, 5]D , where D is the problem dimensionality.
We restrict our attention to the 5-dimensional variant of the first
four instances (IID 1-4) of each function, which gives us a set of
96 different optimization problems in total. An overview of the
functions is available in [4].

The Modular CMA-ES. The Covariance Matrix Adaptation Evo-
lution Strategy (CMA-ES [6]) is a popular and powerful Evolution
Strategy heuristic, for which several modifications have been de-
veloped over the years in order to improve its performance for the
large variety of different problems. With motivation to present a
unique framework able to generate different CMA-ES variants, a

modular CMA-ES framework was introduced in [26] and later ana-
lyzed in [27]. It consists of 11 modules that a user can turn on or off
as needed (some of the modules being, e.g., active update, elitism,
constant population size/IPOP/BIPOP, etc). Nine of the modules are
binary (can be turned on or off) and the remaining two, including
the population size control, allow for three different choices. This
leaves us with a total of 4608 modular CMA-ES variants. In the
following, we interchangeably refer to these variants as variants,
configurations, or simply algorithms. The modular CMA-ES Python
package is publicly available at [25].

All 4608 modular CMA-ES variants were executed on the 96
problems mentioned above (i.e., 4 instances per each of the 24
BBOB functions), with a budget of 500 function evaluations, for
5 independent replicated runs each. After every run, we store the
best target precision reached, computed as f (xbest) − f (xOPT) (this
value is positive, since we assume minimization as objective), as
well as the function ID, instance ID, and algorithm ID. We compute
the median best target precision over different runs for all functions
and instances and for each algorithm.

From this median performance dataset, we select the best algo-
rithms per function to create an algorithm portfolio that would
act as the target data for our regression models. To identify which
algorithm is the best for a certain function, we compute the median
performances of algorithms over instances as well, which gives us
4608 different target precision values per function. We then pick the
algorithm with the minimum target precision among those 4608
for each function, and end up with a portfolio of 24 best algorithms
in total.

It is important to recall that, unlike the fixed-target approach
which typically makes use of the ERT (expected running time) as a
performance metric, we operate within the fixed-budget approach,
and consequently throughout this paper we use the target preci-
sion after 500 function evaluations as a measure of an algorithm’s
performance. Furthermore, the information carried by the target
precision intuitively stands for the order of magnitude of the actual
distance to the optimum. For instance, if a recorded precision value
on a certain problem instance is 10−2 for one algorithm and 10−8
for the other, and they differ by 6 orders of magnitude, then we can
interpret that informally as the latter one being “6 levels closer to
the optimum” than the first one. This perspective helps immensely
in designing the experiment, as we are interested not only in the
actual precision values, but also in the “distance levels” to the opti-
mum, which are very conveniently computed as the log-value of
the precision.

We plot in Figure 1 the median target precision values (over 5
independent runs) of 24 different modular CMA-ES variants for
each of the first four instances of the 24 BBOB functions. Within
this paper, this will be our algorithm portfolio of choice. We will
use these values as the target data for our performance regression
models. However, we observe that the 24 algorithms are in fact
very similar in performance, which makes the algorithm selection
problem in this setting rather challenging. As shown in Figure 2,
each algorithm “wins” at least one of the 96 considered instances.

Feature Computation. As the predictor variables for our model,
we use vectors of landscape feature values per each problem in-
stance . For the feature value computation, we use the R package

2

Performance Regression for the Modular CMA-ES GECCO ’20, July 8–12, 2020, Cancún, Mexico

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 2 3 4 5 1 2 3 4 5

1e-08

1e-04

1e+00

1e+04

BBOB Functions

va
lu

e

variable

perf_C1

perf_C2

perf_C3

perf_C4

perf_C5

perf_C6

perf_C7

perf_C8

perf_C9

perf_C10

perf_C11

perf_C12

perf_C13

perf_C14

perf_C15

perf_C16

perf_C17

perf_C18

perf_C19

perf_C20

perf_C21

perf_C22

perf_C23

perf_C24

Figure 1: Median target precision of the 24 selected modular CMA-ES variants on the first four instances of all 24 BBOB
functions. These 24 algorithms represent the algorithm portfolio from which we want to select the best-performing one for
an unseen optimization problem.

Figure 2: Number of problem instances (out of 96 total;
second row) for which each of the algorithms (first row)
achieved the best target precision.

flacco [9], a publicly available toolbox that allows for the feature
value approximations for all kinds of numerical optimization prob-
lems. To compute the features, we evaluate 2000 uniformly sampled
search points per function and instance in 5D, and feed the points
and their respective fitness values to flacco. Since the feature ap-
proximations can show low robustness for certain features [22, 24],
we replicate this step 50 independent times and take the median
feature values per problem instance as a final feature vector. For
the purpose of this work, we select only those feature sets that do
not require further sampling in the search space: classical ELA ones
(y-Distribution, Levelset and Meta-model) [15], Dispersion [12],
Information Content [19] and Nearest-Better Clustering [8] feature
sets. That leaves us with 56 features in total per problem instance.

It is worth noticing that the sample size of 2000 points might
be much higher than one would be willing to invest in concrete
applications, and we will therefore analyze the sensitivity of the
results with respect to the sample size in Section 4.3. Note here
that – in particular with such a small budget as investigated in
our work – the development of features that use the samples of a
search trajectory rather than additional samples and hence avoid

the specific sampling step for feature value computation [17] is
very strongly needed.

We will also investigate the effect of the feature portfolio (cf. Sec-
tion 4.1), and show that a smaller set of features does not necessarily
lead to worse results.

Figure 3 shows an example of how the feature values are dis-
tributed for the different instances. The feature in question is one
of the classical ELA Meta-model features, a value of adjusted R2

correlation coefficient for the linear model fitted to the data. We
see that the values are overall quite constant for most functions.
However, there are functions (e.g., F8, F12) for which this is not the
case. All 5 instances of F5 are correctly identified as linear slope
functions; they have a feature at value 1. Importantly, we observe
that some features are more expressive than others, and are prone
to discriminate between different problems better than others, as
suggested by [22].

Random Forest Model. For our regression models, we use an off-
the-shelf random forest regressor with 1000 estimators using the
scikit-learn Python package [21]. A random forest is an ensemble-
based meta-estimator that fits decision trees on various sub-samples
of the data set and uses averaging to improve the predictive accuracy
and to control over-fitting. No parameter tuning was involved in
our setup, which gives us hope that a further improvement of the
accuracy is highly likely by fine-tuning the machine learning model,
but also that a clever design of underlying model mechanism can
render the processing itself quite cheap.

3

GECCO ’20, July 8–12, 2020, Cancún, Mexico Anja Jankovic and Carola Doerr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 2 3 4 5 1 2 3 4 5

0.00

0.25

0.50

0.75

1.00

Instance ID

el
a_

m
et

a.
lin

_s
im

pl
e.

ad
j_

r2

Figure 3: Distribution of approximated values for the ela_meta_lin_simple_adj_r2 feature for the first five instances of the
24 BBOB functions, normalized in the 0-1 range. Values are computed from 2000 samples each, and each box plot shows the
distribution of 50 independent runs.

3 FIXED-BUDGET PERFORMANCE
REGRESSION

Using the elements described in Section 2 as key pieces in our
approach, we organize the experiment in the following way. For
each algorithm in the portfolio, we train two separate random forest
models to predict its performance on all problem instances, given a
vector of features per problem instance. One model is trained on
the actual precision values as target data (we call it the unscaled
model onward), while the other uses log-target precision data to
represent the “distance levels” explained in Section 2 (we refer to
this model as the logarithmic model or simply the log model).

In order to obtain more realistic and reliable estimates of the
models’ accuracy, we assess them using a K-fold leave-one-instance-
out cross-validation (we use K = 4), i.e., per algorithm, we split
the data so that we use three instances per BBOB function for the
training (72 problems in total) andwe test on the remaining instance
(24 problems in total). We do this with each of the four instances
to ensure that each instance was used once in the test phase. We
consistently store the values of the prediction on the test instance
for each algorithm in the portfolio for both the unscaled and the log-
model. The full experiment is replicated three independent times
and the median values are taken for the analysis.

We plot in Figure 4 true vs. predicted values of a single variant
of the modular CMA-ES for 50 independent runs for each of the
first four instances of the 24 BBOB functions. The distribution of
two different predictions, unscaled and log-prediction, are shown.
We observe a high stability of the predictions irrespective of the
number of replications (i.e., whether we do 3 runs, as throughout

our experiments, or 50 runs, as shown here), and thus conclude
that this allows for a significant decrease in the computational cost
of creating such a model.

Importantly, Figure 4 shows howwell the predicted values follow
the actual data. As a general trend, the predictions of the unscaled
model fit better to larger precision values, while the log-model
better predicts small target precisions.

As a measure of model accuracy, the Root Mean Square Errors
(RMSE) and log-RMSE are computed per prediction. They allow
us to compare (and quantify) how well different models predict
the performance. The RMSE metric is the standard deviation of
prediction errors; it measures how spread out those errors are,
and is frequently used. In regression, the prediction errors are
the distance of the prediction to the true target value. Within the
regression context, while the RMSE corresponds to the unscaled
model, the log-RMSE corresponds to the log-model. Once computed,
we aggregate the relevant RMSE and log-RMSE per algorithm to
estimate the quality of the model at hand.

We report in the first two columns of Table 1 how good the
random forest models (unscaled and log) were at predicting each
algorithm’s performance. We observe that the same algorithm (e.g.,
C16) can have high RMSE (and thus be very bad in predicting the
actual data) all while having one of the lowest log-RMSE (quite the
opposite for the log-data).

3.1 Impact of Feature Selection
We have reported above results for the regression models that
make use of 56 flacco features. However, it is well known that

4

Performance Regression for the Modular CMA-ES GECCO ’20, July 8–12, 2020, Cancún, Mexico

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 2 3 4 1 2 3 4

1e-03

1e-01

1e+01

1e+03

Instance ID

Legend

log_model

true_precision

unscaled_model

Figure 4: Distribution of predicted values of the unscaled (in red) and logarithmic regression models (in green) across 50
independent runs, with the actual target precision values (in purple) as dots.

feature selection can significantly improve the accuracy of random
forest regressions. We therefore present a brief sensitivity analysis,
which confirms that significantly better results can be expected by
an appropriate choice of the feature portfolio. Note that a reduced
feature portfolio also has the advantage of faster computation
times, both in the feature extraction and in the regression steps. We
have performed an adhoc feature selection, which solely builds on
a visual analysis of the approximated feature values. This was done
by studying the plots as in Figure 3 for all computed flacco features,
which we use to identify features that show a high expressive-
ness [22], in the sense that they seem very suitable to discriminate
between the different BBOB functions. From this set, we then
choose nine features: disp.diff_mean_02, ela_distr.skewness,
ela_meta.lin_simple.adj_r2, ela_meta.lin_simple.coef.max,
ela_meta.lin_simple.intercept, ela_meta.quad_simple.adj_r2,
ic.eps.ratio, ic.eps.s and nbc.nb_fitness.cor.

The middle two columns of Table 1 illustrate how the model
accuracy indeed increases with the reduced feature set. 16 out of
the 24 RMSE values and 22 of the 24 log-RMSE values are smaller
than for the model using all features (which we recall are provided
in the 2 leftmost columns of the same table). The values of the more
accurate model between the two are highlighted in bold in this case.
These results support the idea that an appropriate feature selection
is likely to result in significant improvements of our regressions,
and hence of the algorithm selectors which we shall discuss in the
next section.

4 FIXED-BUDGET ALGORITHM SELECTION
After examining the regression models’ accuracy, we next eval-
uate the performance of two simple algorithm selectors, which
are based on the predictions of the unscaled and the logarithmic
models, respectively. The former selects the algorithm for which
the unscaled regression model predicted the best performance, and,
similarly, the latter bases its decision on the best prediction of the
log-regression model. To quantify how well the selectors perform
per problem instance, we compare the precision of the algorithm
chosen by the selector for the instance at hand to the precision
of the actual best algorithm for that instance. We are then able to
indicate the overall quality of this selector by computing the RMSE
and log-RMSE values (aggregated across all problems) using the
differences in performance.

Following common practices in algorithm selection [3], we com-
pare the performances of these two selectors with two different
baselines. The virtual best solver (VBS, also called the oracle) gives a
lower bound for the selectors. It always chooses the best-performing
algorithm per each problem instance without any additional infor-
mation or cost, hence it reflects the best performance that could be
theoretically achieved.

On the other hand, the single best solver (SBS) represents the
overall (aggregated) performance of the best-performing algorithm
from the portfolio. Since we have twomodels, we have two different
SBS, one for the log-model (SBSlog) and one for the unscaled one
(SBSunscaled). Studying the RMSEs of the 24 different algorithms
(Figure 5), we find that configuration C10 has the best performance
(measured against the VBS), with an RMSE value of 13.65. Configu-
ration C21, in contrast, is seen to have the best log-RMSE value, and

5

GECCO ’20, July 8–12, 2020, Cancún, Mexico Anja Jankovic and Carola Doerr

Default Selected features 50d samples

Config. RMSE log-RMSE RMSE log-RMSE RMSE log-RMSE

C1 130.1 0.808 135.4 0.663 123.6 1.066
C2 84.1 0.776 79 0.682 77.7 0.891
C3 206.5 0.842 199.7 0.663 189.6 1.308
C4 201.9 0.757 198.3 0.682 200.7 0.829
C5 1011.2 0.690 916.8 0.564 1106.6 0.742
C6 649.9 0.986 660.6 1.018 618.1 1.030
C7 462.8 0.804 455 0.743 412.8 0.989
C8 61.2 0.830 58.8 0.698 57.4 0.925
C9 71.1 0.770 74.3 0.623 77.3 1.133
C10 12.1 0.771 11.4 0.649 12.2 1.080
C11 71.9 0.794 55.2 0.653 78.3 1.060
C12 76.7 0.708 64.9 0.601 78.1 0.789
C13 1120.4 0.700 1124.7 0.696 1113.1 0.789
C14 51.1 0.792 51.4 0.678 44.4 0.973
C15 60.5 0.629 54.7 0.519 56.5 0.748
C16 2306.3 0.621 2280.6 0.604 2239.0 0.791
C17 114.3 0.781 98 0.631 111.2 1.134
C18 130.4 0.640 149.6 0.596 131.6 0.903
C19 85.1 0.710 82.4 0.571 73.5 1.025
C20 144.3 0.760 152.9 0.618 138.7 1.032
C21 23.2 0.719 23 0.662 20.7 1.007
C22 17.0 0.805 16.4 0.714 16.5 0.919
C23 53.6 0.613 45.8 0.538 55.0 0.691
C24 571.9 0.803 604.7 0.86 531.1 0.872

Table 1: Root Mean Square Error (RMSE) for the unscaled
and log-model as a measure for model prediction accuracy
for each algorithm in the portfolio in 3 different scenarios.
They compare how well different models fit the actual tar-
get data. The default experiment (the first 2 columns) con-
sists of the performance regression using the full feature
set, where features were computed using 2000 samples. The
second 2 columns correspond to the experiment where the
regression was based on 9 selected features only, while the
third 2 columns describe the case where, again, the full fea-
ture set was used, but this time the features were computed
using 50d (250) samples. The values shown in bold repre-
sent lower errors when comparing the first 2 scenarios (all
features and selected features), while the underlined values
highlight lower errors when the 1st and the 3rd scenario are
compared (2000 samples and 250 samples).

is therefore the SBSlog of the full portfolio. Its log-RMSE value is
0.733. In the following, for ease of notation, we will not distinguish
between the two SBS, and, in abuse of notation, will combine them
into one. That is, we simply speak of the SBS, and refer to C10 when
discussing RMSE values, while we refer to C21 when discussing
log-RMSE values. As we can see in Figure 5, our algorithm selectors
are able to outperform the SBS in terms of log-RMSE performance.
We did not find a way, however, to beat the RMSE-values of C10,
nor the ones of C8, C14, C21, C22, nor C23.

Performances of single algorithms from the portfolio, as well as
those of the two selectors (unscaled and log-selector) are shown
in Figure 5. For the majority of the portfolio, a lower RMSE value
entails a lower log-RMSE value and vice versa. We see that our
two selectors already outperform the majority of algorithms from

the portfolio on both RMSE- and log-RMSE scales, but we want to
make use of the observation reported in Section 3 that the unscaled
model better predicted higher target precision, while the log-model
has better accuracy for small target precision. We therefore aim
at combining the two regression models, to benefit from the two
complementing strengths. Here again we can define a virtual best
solver, which is the one that chooses for each instance the better of
the two suggested algorithms from the unscaled and the logarith-
mic model, respectively. Clearly, in terms of single best solver, the
log-model minimized log-RMSE, whereas the unscaled model mini-
mizes RMSE. We compare these three algorithm selectors (unscaled
AS, logarithmic AS, and VBS AS) with a selector which combined
the two basic selectors in the following way: if the target precision
of an algorithm, as predicted by the log-model, is smaller than a
certain threshold, we use the log-selector, whereas we use the rec-
ommendation of the unscaled AS otherwise. A new optimization
sub-problem that arises here is to find the threshold value which
minimizes RMSE and log-RMSE of the combined selector, respec-
tively. A sensitivity analysis with respect to this threshold will be
presented in Section 4.1.

Once the optimal threshold value found, we measure the perfor-
mance of our selector and add it, along with the VBS AS, to Figure 5.
We clearly see that our algorithm selector performs better than the
unscaled AS and the logarithmic AS. It is also better than most of
the algorithms. Also, Figure 5 demonstrates that our selector effec-
tively reduces the gap towards the VBS AS. Detailed numbers for
the RMSE and log-RMSE values of the different algorithm selectors
are provided in Table 3 (rows for 24 algorithms).

4.1 Impact of the Threshold Value and the
Feature Portfolio

Wenow study the influence of the threshold valuewhich determines
whether we use the unscaled of the log-model algorithm selector. In
the previous section, we had chosen this value so that it optimized
the log-RMSE measure and the RMSE-measure (these are the red
triangle and the red diamond in Figure 5, respectively). Table 2
analyzes the influence of this threshold value, and shows both RMSE
and log-RMSE values for different thresholds. We note that one
could formulate an alternative decision rule, in which the selection
of the model is not based on the target precision recommended
by the logarithmic model, but by the unscaled model. We did not
observe significant differences in the performance of these two
approaches and omit a detailed discussion for reasons of space.

We show in this table also the results for the algorithm selectors
that build on the regression models using only the nine selected
features. In fact, it turns out that for these selected-feature regres-
sion models, the combination of the two different regressions is not
beneficial – we were not able to identify means to improve upon the
algorithm selector that uses the log-model-predicted fixed-budget
performances.

4.2 Impact of the Algorithm Portfolio
Our final analysis concerns the portfolio for which we do the re-
gression. Note that in all the above we have given ourselves a very
difficult task: algorithm selection for a portfolio of 24 solvers that all

6

Performance Regression for the Modular CMA-ES GECCO ’20, July 8–12, 2020, Cancún, Mexico

Figure 5: RMSEand log-RMSEvalues asmeasures for the quality of the configurations (label Cx) and for the algorithmselectors:
the one using only the predictions from the log model (green dot, hiding behind red diamond), the one using predictions from
the unscaled model (orange dot), the virtual best combination of these two models (purple triangle), and our two combined
selectors, which optimize for RMSE and log-RMSE (red diamond and red triangle, respectively).

RMSE log-RMSE

Threshold All features Selected features All features Selected features

0.01 63.20 25.87 0.687 0.728
0.1 63.20 25.87 0.676 0.723
0.5 63.19 25.81 0.600 0.637
0.814 63.19 25.81 0.595 0.627
1 63.19 25.77 0.624 0.620
2 63.17 25.81 0.643 0.607

2.294 63.17 25.80 0.643 0.590
3 63.75 25.82 0.656 0.583

8.525 63.71 15.50 0.654 0.565
10 63.71 15.55 0.654 0.565
20 63.69 15.55 0.650 0.565
50 63.69 15.55 0.650 0.565

Table 2: Sensitivity of the RMSE and the log-RMSE with re-
spect to the threshold value at which we switch from choos-
ing the log-model-suggested CMA-ES configuration to the
one suggested by the unscaled model, for both the models
using the full feature set for regression and the one using
the selected features only. Optimal values are shown in bold
and are underlined.

show quite similar performance (Figure 1). We now study alterna-
tive problems, in which we consider only subsets of the 24 CMA-ES
configurations considered above. More precisely, we consider in
Table 3 the portfolio of configurations C13-C24, i.e., the second half
of the original portfolio.

We observe that, while the log-RMSE values remain fairly con-
sistent for all the selectors independently of the portfolio size, the
RMSE is significantly reduced by reducing the portfolio size for
all but one selector, the SBS. It is worth looking further into this
aspect of the problem in order to better understand if the observed
effects are simply a product of less choice, or, more likely, there
are other factors at play, e.g., whether the algorithms chosen for

the portfolio are diverse enough in their performance on different
problem instances.

algos unscaled log the AS VBS SBS

RMSE 12 17.25 18.03 16.94 12.78 20.37
24 63.19 63.69 63.19 63.09 13.65

log-RMSE 12 0.967 0.621 0.608 0.561 0.629
24 0.968 0.650 0.595 0.517 0.733

Table 3: Comparison of the RMSE and log-RMSE values for
the different algorithm selectors for the full portfolio of 24
and for the reduced set of 12 configurations.

4.3 Impact of the Feature Sample Size
We recall that our feature approximations are based on 2000 sam-
ples. As commented above, this number is much larger than what
one could afford in practice. Belkhir et al. [1] showed that sample
sizes as small as 30d-50d can suffice to obtain reasonable results.
While their application is in algorithm configuration, we are inter-
ested in knowing whether we obtain similarly robust performance
for algorithm selection. As mentioned before, in the long run, one
might hope for zero- or low-cost feature extraction mechanisms
that simply use the search trajectory samples of a CMA-ES variant
(or some other solver) to predict algorithm performances and/or
perform a selection task. First steps in this direction have already
been made [13, 14, 17].

Therefore, in this last section we study the influence of the fea-
ture sample size on the performance of our algorithm selector. We
compare the results reported in Section 4 with the results obtained
from the repeated regression experiment, only this time using fea-
tures computed with 50d (250) samples.

7

GECCO ’20, July 8–12, 2020, Cancún, Mexico Anja Jankovic and Carola Doerr

feature samples unscaled log the AS VBS SBS

RMSE 250 23.51 38.74 23.45 23.05 13.65
2000 63.19 63.69 63.19 63.09 13.65

log-RMSE 250 0.881 0.700 0.660 0.511 0.733
2000 0.968 0.650 0.595 0.517 0.733

Table 4: Comparison of the RMSE and log-RMSE values for
the different algorithm selectors for the regression based on
250-sample features and 2000-sample features.

The two rightmost columns of Table 1 show the regression model
accuracy for this case, and allow for a comparison with the default
scenario. We once again conveniently highlight the values of the
more accurate model, only this time underlined. We clearly notice
that, in terms of the RMSE values of the log-model, using a larger
sample size is preferable consistently for all the algorithms in the
portfolio. On the other hand, the model using a reduced sample
size performed better on 18 out of 24 algorithms in terms of RMSE.

In Table 4 we report the differences of the algorithm selectors in
case the regression was based on features computed using 50d (250)
samples vs. those computed using the original 2000 samples. The
results are comparable in terms of both RMSE and log-RMSE values;
the distances between the performance of our combined selector
and the VBS are similar in both 250- and 2000-sample experiments.
Also, in neither of the two experiments have we been able to beat
the SBS. However, we notice a general decrease in the RMSE when
using 250 samples to compute the features, which is an interesting
observation leading to a conjecture that it might be preferable to use
a smaller number of samples to compute the features for regression
purposes, while still maintaining the robustness of the results.

5 CONCLUSIONS
We have studied in this work how to increase the accuracy of ELA-
based regression models and algorithm selection by combining
a plain “unscaled” regression with a regression operating on the
log-scaled data. While the former achieves higher accuracy for
large target precision values, the latter performs better for fine-
grained precisions. By combining the twomodels, we could improve
the accuracy of the regression and of the algorithm selector. Our
combined AS reduces the gap towards the VBS, although it does not
consistently beat the SBS across all cases. These results, however,
still open up a path to further exploit the power of ELA-based
regression and algorithm selection in different settings.

In the remainder of this paper, we list a few promising avenues
for future work.

Cross-Validation of the Trained Algorithm Selector on Other Black-
Box Optimization Problems. Our ultimate goal is to train an algo-
rithm selector that performs well on previously unseen problems.
We are therefore keen on testing our regression models for the
different CMA-ES variants and on testing the trained algorithm
selector on other benchmark functions. The current literature is
not unanimous w.r.t. to the quality that one can expect from the
training on the BBOB functions. While [1] reported encouraging
performance, LaCroix and McCall [11] could not achieve satisfac-
tory results.

Feature Selection. The results presented in Section 3.1 indicate
that a proper selection of the features can improve the quality of the
random forest regression quite significantly. Our feature selection
was based on an purely visual interpretation of the distribution of
the feature value approximations (i.e., plots as in Fig. 3), which is
similar to the analyses made in [20, 22]. A proper feature selection
may help to improve the accuracy of our models further. Since
feature selection is quite expensive in terms of computational cost,
a first step could be a comparison of the accuracy of the two here-
presented models with those using the feature sets selected in [10].

Fixed-Target Settings. While we have deliberately chosen a fixed-
budget setting (which is the setting of our envisaged applications),
we are nevertheless confident that the combination of a logarithmic
with an unscaled regression model could also prove advantageous
in fixed-target settings, in which the goal is to minimize the average
time needed to identify a solution of function value at least as good
as some user-defined threshold.

Different Algorithm Portfolios.We have chosen a very challenging
task in performing algorithm selection on a collection of algorithms
that all stem from the same family. A cross-validation of our findings
on more diverse portfolios is a straightforward next step for our
work.

ACKNOWLEDGMENTS
We thank Diederick Vermetten for sharing the performance data
of the modular CMA-ES and Quentin Renau for suggesting the
limited-size feature portfolio. We also thank Pascal Kerschke for
help with the flacco package.

Our work was financially supported by the Paris Ile-de-France
Region and by a public grant as part of the Investissement d’avenir
project, reference ANR-11-LABX-0056-LMH, LabEx LMH.

We also acknowledge support from COST action CA15140 on
Improving Applicability of Nature-Inspired Optimisation by Joining
Theory and Practice (ImAppNIO).

REFERENCES
[1] Nacim Belkhir, Johann Dréo, Pierre Savéant, and Marc Schoenauer. 2017. Per

instance algorithm configuration of CMA-ES with limited budget. In GECCO.
ACM, 681–688. https://doi.org/10.1145/3071178.3071343

[2] André Biedenkapp, H. Furkan Bozkurt, Frank Hutter, and Marius Lindauer. 2019.
Towards White-box Benchmarks for Algorithm Control. CoRR abs/1906.07644
(2019). arXiv:1906.07644 http://arxiv.org/abs/1906.07644

[3] Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Lindauer, Yuri Malitsky,
Alexandre Fréchette, Holger Hoos, Frank Hutter, Kevin Leyton-Brown, Kevin
Tierney, and Joaquin Vanschoren. 2016. ASlib: A benchmark library for algorithm
selection. Artificial Intelligence 237 (Aug. 2016), 41–58. https://doi.org/10.1016/j.
artint.2016.04.003

[4] S. Finck, N. Hansen, R. Ros, and A. Auger. 2010. Real-Parameter Black-Box
Optimization Benchmarking 2010: Presentation of the Noiseless Functions. http:
//coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf.

[5] N. Hansen, A. Auger, O. Mersmann, T. Tusar, and D. Brockhoff. 2016. COCO: A
Platform for Comparing Continuous Optimizers in a Black-Box Setting. CoRR
abs/1603.08785 (2016). arXiv:1603.08785 http://arxiv.org/abs/1603.08785

[6] Nikolaus Hansen and Andreas Ostermeier. 2001. Completely Derandomized
Self-Adaptation in Evolution Strategies. Evolutionary Computation 9, 2 (2001),
159–195. https://doi.org/10.1162/106365601750190398

[7] Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike Trautmann. 2019.
Automated Algorithm Selection: Survey and Perspectives. Evolutionary Compu-
tation 27, 1 (2019), 3–45. https://doi.org/10.1162/evco_a_00242

[8] Pascal Kerschke, Mike Preuss, Simon Wessing, and Heike Trautmann. 2015.
Detecting Funnel Structures by Means of Exploratory Landscape Analysis. In
Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computa-
tion (GECCO ’15). Association for Computing Machinery, New York, NY, USA,
265–272. https://doi.org/10.1145/2739480.2754642

8

https://doi.org/10.1145/3071178.3071343
http://arxiv.org/abs/1906.07644
http://arxiv.org/abs/1906.07644
https://doi.org/10.1016/j.artint.2016.04.003
https://doi.org/10.1016/j.artint.2016.04.003
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf
http://arxiv.org/abs/1603.08785
http://arxiv.org/abs/1603.08785
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1145/2739480.2754642

Performance Regression for the Modular CMA-ES GECCO ’20, July 8–12, 2020, Cancún, Mexico

[9] Pascal Kerschke and Heike Trautmann. 2016. The R-Package FLACCO for ex-
ploratory landscape analysis with applications to multi-objective optimization
problems. In CEC. IEEE, 5262–5269. https://doi.org/10.1109/CEC.2016.7748359

[10] P. Kerschke and H. Trautmann. 2019. Automated Algorithm Selection on
Continuous Black-Box Problems by Combining Exploratory Landscape Anal-
ysis and Machine Learning. Evolutionary Computation 27, 1 (2019), 99–127.
https://doi.org/10.1162/evco_a_00236

[11] Benjamin Lacroix and John A. W. McCall. 2019. Limitations of benchmark sets
and landscape features for algorithm selection and performance prediction. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion,
GECCO 2019, Prague, Czech Republic, July 13-17, 2019. ACM, 261–262. https:
//doi.org/10.1145/3319619.3322051

[12] Monte Lunacek and Darrell Whitley. 2006. The Dispersion Metric and the CMA
Evolution Strategy. In Proceedings of the 8th Annual Conference on Genetic and
Evolutionary Computation (GECCO ’06). Association for Computing Machinery,
New York, NY, USA, 477–484. https://doi.org/10.1145/1143997.1144085

[13] Katherine Mary Malan. 2018. Landscape-Aware Constraint Handling Applied
to Differential Evolution. In Proc. of Theory and Practice of Natural Computing
(TPNC’18) (Lecture Notes in Computer Science), Vol. 11324. Springer, 176–187.
https://doi.org/10.1007/978-3-030-04070-3_14

[14] Katherine Mary Malan and Irene Moser. 2019. Constraint Handling Guided by
Landscape Analysis in Combinatorial and Continuous Search Spaces. Evolution-
ary Computation 27, 2 (2019), 267–289. https://doi.org/10.1162/evco_a_00222

[15] Olaf Mersmann, Bernd Bischl, Heike Trautmann, Mike Preuss, Claus Weihs,
and Günter Rudolph. 2011. Exploratory landscape analysis. In GECCO. ACM,
829–836.

[16] Mario A.Muñoz, Michael Kirley, and Saman K. Halgamuge. 2012. AMeta-learning
Prediction Model of Algorithm Performance for Continuous Optimization Prob-
lems. In Proc. of Parallel Problem Solving from Nature (PPSN’12) (Lecture Notes
in Computer Science), Vol. 7491. Springer, 226–235. https://doi.org/10.1007/
978-3-642-32937-1_23

[17] Mario A. Muñoz and Kate Amanda Smith-Miles. 2017. Performance Analysis of
Continuous Black-Box Optimization Algorithms via Footprints in Instance Space.
Evolutionary Computation 25, 4 (2017). https://doi.org/10.1162/evco_a_00194

[18] Mario A Muñoz, Yuan Sun, Michael Kirley, and Saman K Halgamuge. 2015.
Algorithm selection for black-box continuous optimization problems: a survey

on methods and challenges. Information Sciences 317 (2015), 224–245.
[19] M. A. Muñoz, M. Kirley, and S. K. Halgamuge. 2015. Exploratory Landscape

Analysis of Continuous Space Optimization Problems Using Information Content.
IEEE Transactions on Evolutionary Computation 19, 1 (Feb 2015), 74–87. https:
//doi.org/10.1109/TEVC.2014.2302006

[20] Mario Andrés Muñoz Acosta, Michael Kirley, and Kate Smith-Miles. 2018. Relia-
bility of Exploratory Landscape Analysis. https://doi.org/10.13140/RG.2.2.23838.
64327

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[22] Quentin Renau, Johann Dreo, Carola Doerr, and Benjamin Doerr. 2019. Expres-
siveness and Robustness of Landscape Features. In GECCO Companion. ACM,
2048–2051. https://doi.org/10.1145/3319619.3326913

[23] John R. Rice. 1976. The Algorithm Selection Problem. Advances in Computers 15
(1976), 65 – 118. https://doi.org/10.1016/S0065-2458(08)60520-3

[24] Sobia Saleem, Marcus Gallagher, and Ian Wood. 2019. Direct Feature Evaluation
in Black-Box Optimization Using Problem Transformations. Evol. Comput. 27, 1
(2019), 75–98.

[25] Sander van Rijn. 2018. Modular CMA-ES framework from [26], v0.3.0. https:
//github.com/sjvrijn/ModEA. Available also as pypi package at https://pypi.org/
project/ModEA/0.3.0/.

[26] Sander van Rijn, Hao Wang, Matthijs van Leeuwen, and Thomas Bäck. 2016.
Evolving the structure of Evolution Strategies. In SSCI. 1–8. https://doi.org/10.
1109/SSCI.2016.7850138

[27] Sander van Rijn, Hao Wang, Bas van Stein, and Thomas Bäck. 2017. Algorithm
Configuration Data Mining for CMA Evolution Strategies. In GECCO. ACM,
737–744. https://doi.org/10.1145/3071178.3071205

[28] David H. Wolpert and William G. Macready. 1997. No free lunch theorems for
optimization. IEEE Trans. Evolutionary Computation 1, 1 (1997), 67–82. https:
//doi.org/10.1109/4235.585893

[29] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. SATzilla:
Portfolio-based Algorithm Selection for SAT. CoRR abs/1111.2249 (2011).
arXiv:1111.2249 http://arxiv.org/abs/1111.2249

9

https://doi.org/10.1109/CEC.2016.7748359
https://doi.org/10.1162/evco_a_00236
https://doi.org/10.1145/3319619.3322051
https://doi.org/10.1145/3319619.3322051
https://doi.org/10.1145/1143997.1144085
https://doi.org/10.1007/978-3-030-04070-3_14
https://doi.org/10.1162/evco_a_00222
https://doi.org/10.1007/978-3-642-32937-1_23
https://doi.org/10.1007/978-3-642-32937-1_23
https://doi.org/10.1162/evco_a_00194
https://doi.org/10.1109/TEVC.2014.2302006
https://doi.org/10.1109/TEVC.2014.2302006
https://doi.org/10.13140/RG.2.2.23838.64327
https://doi.org/10.13140/RG.2.2.23838.64327
https://doi.org/10.1145/3319619.3326913
https://doi.org/10.1016/S0065-2458(08)60520-3
https://github.com/sjvrijn/ModEA
https://github.com/sjvrijn/ModEA
https://pypi.org/project/ModEA/0.3.0/
https://pypi.org/project/ModEA/0.3.0/
https://doi.org/10.1109/SSCI.2016.7850138
https://doi.org/10.1109/SSCI.2016.7850138
https://doi.org/10.1145/3071178.3071205
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
http://arxiv.org/abs/1111.2249
http://arxiv.org/abs/1111.2249

	Abstract
	1 Introduction
	2 Experimental Setup
	3 Fixed-Budget Performance Regression
	3.1 Impact of Feature Selection

	4 Fixed-Budget Algorithm Selection
	4.1 Impact of the Threshold Value and the Feature Portfolio
	4.2 Impact of the Algorithm Portfolio
	4.3 Impact of the Feature Sample Size

	5 Conclusions
	Acknowledgments
	References

