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Abstract

We present a self-stabilizing leader election algorithm for general networks, with space-
complexity Oplog ∆` log log nq bits per node in n-node networks with maximum degree ∆.
This space complexity is sub-logarithmic in n as long as ∆ “ nop1q. The best space-
complexity known so far for general networks was Oplog nq bits per node, and algorithms
with sub-logarithmic space-complexities were known for the ring only. To our knowledge,
our algorithm is the first algorithm for self-stabilizing leader election to break the Ωplognq
bound for silent algorithms in general networks. Breaking this bound was obtained via the
design of a (non-silent) self-stabilizing algorithm using sophisticated tools such as solving
the distance-2 coloring problem in a silent self-stabilizing manner, with space-complexity
Oplog ∆ ` log lognq bits per node. Solving this latter coloring problem allows us to im-
plement a sub-logarithmic encoding of spanning trees — storing the IDs of the neighbors
requires Ωplog nq bits per node, while we encode spanning trees using Oplog ∆ ` log lognq
bits per node. Moreover, we show how to construct such compactly encoded spanning trees
without relying on variables encoding distances or number of nodes, as these two types of
variables would also require Ωplognq bits per node.

1 Introduction

1.1 Motivation

This paper tackles the problem of designing memory efficient self-stabilizing algorithms for
the leader election problem. Self-stabilization [22] is a general paradigm to provide recovery
capabilities to networks. Intuitively, a protocol is self-stabilizing if it can recover from any
transient failure, without external intervention. Leader election is one of the fundamental
building blocks of distributed computing, as it enables a single node in the network to be
distinguished, and thus to perform specific actions. Leader election is especially important in
the context of self-stabilization as many protocols for various problems assume that a single
leader exists in the network, even after faults occur. Hence, a self-stabilizing leader election
mechanism enables such protocols to be run in networks where no leader is given a priori, by
using simple stabilization-preserving composition techniques [22].

Memory efficiency relates to the amount of information to be sent to neighboring nodes for
enabling stabilization. As a result, only mutable memory (used to store variables) is considered

∗A preliminary version of this paper has appeared in [13, 15].
†Additional support from the ANR project ESTATE.
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for computing memory complexity of a self-stabilizing protocols, while immutable memory (used
to store the code of the protocol) is not considered. A small space-complexity induces a smaller
amount of information transmission, which (1) reduces the overhead of self-stabilization when
there are no faults, or after stabilization [1], and (2) facilitates mixing self-stabilization and
replication [31].

1.2 Related work

A foundational result regarding space-complexity in the context of self-stabilizing silent algo-
rithms1 is due to Dolev et al. [23], stating that in n-node networks, Ωplog nq bits of memory
per node are required for solving tasks such as leader election. So, only talkative algorithms
may have oplog nq-bit space-complexity for self-stabilizing Leader Election solution. Several at-
tempts to design compact self-stabilizing leader election algorithms (i.e., algorithms with space-
complexity oplog nq bits) were performed but restricted to rings. The algorithms by Mayer et
al. [37], by Itkis and Levin [34], and by Awerbuch and Ostrovsky [7] use a constant number of
bits per node, but they only guarantee probabilistic self-stabilization (in the Las Vegas sense).
Deterministic self-stabilizing leader election algorithms for rings were first proposed by Itkis
et al. [35] for rings with a prime number of nodes. Beauquier et al. [8] consider rings of arbi-
trary size, but assume that node identifiers in n-node rings are bounded from above by n` k,
where k is a small constant. The best result known so far in this context [14] is a deterministic
self-stabilizing leader election algorithm for rings of arbitrary size using identifiers of arbitrary
polynomially bounded values, with space complexity Oplog log nq bits per node.

In general networks, self-stabilizing leader election is tightly connected to self-stabilizing
tree-construction. On the one hand, the existence of a leader enables time- and memory-
efficient self-stabilizing tree-construction [16, 24, 18, 12, 36]. On the other hand, growing and
merging trees is the main technique for designing self-stabilizing leader election algorithms in
networks, as the leader is often the root of an inward tree [3, 4, 2]. To the best of our knowledge,
all algorithms that do not assume a pre-existing leader [3, 4, 2, 10] for tree-construction use
Ωplog nq bits per node. This high space-complexity is due to the implementation of two main
techniques, used by all algorithms, and recalled below.

The first main technique is the use of a pointers-to-neighbors variable, that is meant to desig-
nate unambiguously one particular neighbor of every node. For the purpose of tree-construction,
pointers-to-neighbors variables are typically used to store the parent node in the constructed
tree. Specifically, the parent of every node is designated unambiguously by its identifier, re-
quiring Ωplog nq bits for each pointer variable. In principle, it would be possible to reduce the
memory to Oplog ∆q bits per pointer variable in networks with maximum degree ∆, by using
node-coloring at distance 2 instead of identifiers to identify neighbors. However, this, in turn,
would require the availability of a self-stabilizing distance-2 node-coloring algorithm that uses
oplog nq bits per node. Previous self-stabilizing distance-2 coloring algorithms use variables of
large size. For instance, in the algorithm by Herman et al. [32], every node communicates its
distance-3 neighborhood to all its neighbors, which yields a space-complexity of Op∆3 log nq
bits. Johnen et al. [30] draw random colors in the range r0, n2s, which yields a space-complexity
of Oplog nq bits. Finally, while the deterministic algorithm of Blair et al. [9] reduces the space-
complexity to Oplog ∆q bits per node, this is achieved by ignoring the cost of storing another
pointer-to-neighbor variable at each node. In absence of a distance-2 coloring (which their al-
gorithm [9] is precisely supposed to produce), their implementation still requires Ωplog nq bits
per node. To date, no self-stabilizing algorithm implement pointer-to-neighbor variables with

1An algorithm is silent if each of its executions reaches a point in time after which the states of nodes do not
change. A non-silent algorithm is said to be talkative (see [13]).
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space-complexity oplog nq bits in arbitrary networks.
The second main technique for tree-construction or leader election is the use of a distance

variable that is meant to store the distance of every node to the elected node in the network.
Such distance variable is used in self-stabilizing spanning tree-construction for breaking cycles
resulting from arbitrary initial state (see [3, 4, 2]). Clearly, storing distances in n-node networks
may require Ωplog nq bits per node. There are a few self-stabilizing tree-construction algorithms
that are not using explicit distance variables (see, e.g., [20]), but their space-complexity is huge
(e.g. Opn log nq bits of memory per node [20]). Using the general principle of distance variables
with space-complexity below Θplog nq bits was attempted by Awerbuch et al. [7], and Blin
et al. [13]. These papers distribute pieces of information about the distances to the leader
among the nodes according to different mechanisms, enabling to store oplog nq bits per node.
However, these sophisticated mechanisms have only been demonstrated in rings. To date, no
self-stabilizing algorithms implement distance variables with space-complexity oplog nq bits in
arbitrary networks.

Our results

In this paper, we design and analyze a self-stabilizing leader election algorithm with space-
complexity Oplog ∆`log lognq bits in n-node networks with maximum degree ∆. This algorithm
is the first self-stabilizing leader election algorithm for arbitrary networks with space-complexity
oplog nq (whenever ∆ “ nop1q). It is designed for the standard state model (a.k.a. shared memory
model) for self-stabilizing algorithms in networks, and it performs against the unfair distributed
scheduler.

The design of our algorithm requires overcoming several bottlenecks, including the difficulties
of manipulating pointers-to-neighbors, and distance variables using oplog nq bits in arbitrary
networks. Overcoming these bottlenecks was achieved thanks to the development of sub-routine
algorithms, each deserving independent special interest described hereafter.

First, we extend the bit-wise ring publication technique [13] to arbitrary topologies. Our
approach retains the Oplog log nq bits per node complexity for storing identifiers, and is thus
independent of the degree.

Second, we propose the first silent self-stabilizing algorithm for distance-2 coloring that
breaks the space-complexity of Ωplog nq bits of memory per nodes. More precisely this new
algorithm achieves a space-complexity of Oplog ∆ ` log lognq bits of memory per nodes. As
opposed to previous distance-2 coloring algorithms, we do not use full identifiers for encoding
pointer-to-neighbor variables (this would require Oplog nq bits per node). Instead, our compact
representation of the identifiers (using Oplog log nq bits per node) enables symmetry breaking.
This distance-2 coloring permits to distinguish parent and children and a node’s neighbors,
allowing the design of a compact encoding of spanning trees.

Third, we design a new technique to detect the presence of cycles given by the current
set of pointers-to neighbors. This approach does not use distances, but it is based on the
uniqueness of each identifier in the network. Notably, this technique can be implemented by a
silent self-stabilizing algorithm, with space-complexity Oplog ∆` log lognq bits of memory per
nodes.

Last but not least, we design a new technique to avoid the creation of cycles during the
execution of the leader election algorithm. Again, this technique does not use distances but
maintains a spanning forest, which eventually reduces to a single spanning tree rooted at the
leader at the completion of the leader election algorithm. Implementing this technique results
in a self-stabilizing algorithm with space complexity Oplog ∆ ` log log nq bits of memory per
nodes.
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2 Model and definitions

2.1 Protocol syntax and semantics

We consider a distributed system consisting of n processes that form an arbitrary communication
graph. The processes are represented by the nodes of this graph, and the edges represent pairs
of processes that can communicate directly with each other. Such processes are said to be
neighbors. Let G “ pV,Eq be an n-node graph, where V is the set of nodes, and E the set of
edges and ∆ the degree of the graph.

Space-complexity in self-stabilization considers only volatile memory (that is, memory whose
content changes during the execution of the protocol), while non-volatile memory (whose con-
tent does not change during the execution of the protocol, used e.g., to store the code and the
constants, and in particular the node unique identifier) is not included in the space complex-
ity. Volatile memory includes the space allocated for protocol variables, and in particular the
program counter (that commands the next line of code to execute). So, to achieve oplog nq bits
of memory per node, we define helping functions that enable volatile memory to remain below
that threshold.

A node v has access to a constant unique identifier idv, but can only access its identifier one
bit at a time, using the Bitvpiq function, which returns the position of the ith most significant
bit equal to 1 in idv. Even though identifiers require Ωplog nq bits of memory per node in the
worst case, the Bit function can be stored in the immutable code portion of the node. We
present here the pseudocode for the Bitv function at a particular node v. Note that since nodes
have unique identifiers, they are allowed to execute unique code. For example, suppose node v
has identifier 10 (in decimal notation), or 1010 (in binary notation). Then, one can implement
Bitvpiq as follows for v “ 1010:

Bitvpiq :“

$

&

%

4 if i=1
2 if i=2
-1 if i ą 2

Since we assume that all identifiers are Oplog nq bits long, the Bitv function only returns
values with Oplog lognq bits. Also, when executing Function Bitv, the program counter only
requires Oplog lognq values. In turn, this position can be encoded with Oplog lognq bits when
identifiers are encoded using Oplog nq bits, as we assume they are. A node v has access to locally
unique port numbers associated with its adjacent edges. We do not assume any consistency
between port numbers of a given edge. In short, port numbers are constant throughout the
execution but initialized by an adversary. Each process contains variables and rules. Variable
ranges over a domain of values. The variable varv denote the variable var located at node v.
A rule is of the form xlabely : xguardy ÝÑ xcommandy [21]. A guard is a boolean predicate
over process variables. A command is a set of variable-assignments. A command of process p
can only update its own variables. On the other hand, p can read the variables of its neighbors.
This classical communication model is called the state model or the state-sharing communication
model. This model is also used in stabilization-preserving compilers that produce actual code [6,
17, 19, 38].

An assignment of values to all variables in the system is called a configuration. A rule
whose guard is true in some system configuration is said to be enabled in this configuration.
The rule is disabled otherwise. The atomic execution of a subset of enabled rules (at most one
rule per process) results in a transition of the system from one configuration to another. This
transition is called a step. A run of a distributed system is a maximal alternating sequence
of configurations and steps. Maximality means that the execution is either infinite or its final
configuration has no rule enabled.
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2.2 Schedulers

The asynchronism of the system is modeled by an adversary (a.k.a. scheduler) that chooses, at
each step, the subset of enabled processes that are allowed to execute one of their rules during
this step. Those schedulers can be classified according to their characteristics (like fairness,
distribution, ...), and a taxonomy was presented By Dubois et al. [25]. Note that we assume
here an unfair distributed scheduler. This scheduler is the most challenging since no assumption
is made of the subset of enabled processes chosen by the scheduler at each step. We only require
this set to be nonempty if the set of enabled processes is not empty in order to guarantee progress
of the algorithm.

2.3 Predicates and specifications

A predicate is a boolean function over configurations. A configuration conforms to some pred-
icate R, if R evaluates to true in this configuration. The configuration violates the predicate
otherwise. Predicate R is closed in a certain protocol P , if every configuration of a run of P con-
forms to R, provided that the protocol starts from a configuration conforming to R. Note that
if a protocol configuration conforms to R, and the configuration resulting from the execution of
any step of P also conforms to R, then R is closed in P .

A specification for a processor p defines a set of configuration sequences. These sequences
are formed by variables of some subset of processors in the system. This subset always includes
p itself.

Problem specification prescribes the protocol behavior. The output of the protocol is carried
through external variables, that are updated by the protocol, and used to display the results of
the protocol computation. The problem specification is the set of sequences of configurations
of external variables.

A protocol implements the specification. Part of the implementation is the mapping from
the protocol configurations to the specification configurations. This mapping does not have
to be one-to-one. However, we only consider unambiguous protocols where each protocol con-
figuration maps to only one specification configuration. Once the mapping between protocol
and specification configurations is established, the protocol runs are mapped to specification
sequences as follows. Each protocol configuration is mapped to the corresponding specification
configuration. Then, stuttering, the consequent identical specification configurations, is elim-
inated. Overall, a run of the protocol satisfies the specification if its mapping belongs to the
specification. Protocol P solves problem S under a certain scheduler if every run of P produced
by that scheduler satisfies the specifications defined by S. A predicate I is an invariant of pro-
tocol P if every run of P that starts in a state conforming to I satisfies I in every subsequent
configuration. Given two predicates l1 and l2 for protocol P , l2 is an attractor for l1 if every
run of protocol P that starts from a configuration that conforms to l1 contains a configuration
that conforms to l2. Such a relationship is denoted by l1Ź l2. Also, the Ź relation is transitive:
if l1, l2, and l3 are predicates for P , and l1 Ź l2 and l2 Ź l3, then l1 Ź l3. In this last case, l2 is
called an intermediate attractor towards l3.

Definition 1 (Self-stabilization). A protocol P is self-stabilizing [22] to specification S if there
exists a predicate L for P such that:

1. L is an attractor for true,

2. Any run of P starting from a configuration satisfying L satisfies S.

Definition 2 (Leader Election). Consider a system of processes where each process’ set of
variables is mapped to a boolean specification variable leader denoted by `. The leader election
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specification sequence consists in a single specification configuration where a unique process p
maps to `p “ true, and every other process q ‰ p maps to `q “ false.

Definition 3. In the state model, a protocol is silent if and only if every execution is finite.
Otherwise, the protocol is talkative.

We measure time complexity with respect to individual steps performed by each process.
So, the time complexity of a self-stabilizing leader election algorithm is the highest number of
individual steps before a single leader is elected, starting from an arbitrary configuration.

3 Compact self-stabilizing leader election for networks

Our new self-stabilizing leader election algorithm is based on a spanning tree-construction rooted
at a maximum degree node, without using distances. If multiple maximum degree nodes are
present in the network, we break ties with colors and if necessary with identifiers.

Theorem 1. Algorithm called C-LE solves the leader election problem in a talkative self-
stabilizing manner in any n-node graph, assuming the state model and a distributed unfair
scheduler, with Oplog ∆` log lognq bits of memory per node.

Our talkative self-stabilizing algorithm reuses and extends a technique for obtaining compact
identifiers of size Oplog lognq bits of memory per node presented in Section 3.1. Then, the leader
election process consists in running several algorithms layers using decreasing priorities (see also
Figure 1):

1. An original silent self-stabilizing distance-2 coloring presented in subsection 3.2 that per-
mits to implement pointer-to-neighbors with oplog nq bits of memory per node.

2. A silent self-stabilizing cycle destruction and illegitimate sub spanning tree-destruction
reused from previous work [11, 13] presented in subsection 3.3.

3. A new silent self-stabilizing cycle detection that does not use distance to the root variables
presented in subsection 3.4.

4. An original talkative self-stabilizing spanning tree-construction, that still does not use dis-
tance to the root variables, presented in subsection 4. This algorithm is trivially modified
to obtain a leader election algorithm.

5. In section 5, we describe how to integrate all previous components into a leader election
protocol for general graphs.

3.1 Compact memory using identifiers

As many deterministic self-stabilizing leader election algorithms, our approach ends up com-
paring node unique identifiers. However, to avoid communicating the full Ωplog nq bits to each
neighbor at any given time, we reuse the scheme devised in previous work [13] to progressively
publish node identifiers. Let idv be the identifier of node v. We assume that idv “

řk
i“0 bi2

i.
Let Iv “

 

i P t0, ..., ku, bi ‰ 0
(

be the set of all non-zero bit-positions in the binary represen-
tation of idv. Then, Iv can be written as tpos1, ..., posju, where posk ą posk`1. In the process
of comparing node unique identifiers during the leader election algorithm execution, the nodes
must first agree on the same bit-position posj´i`1 (for i “ 1, . . . , j); this step of the algorithm
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Figure 1: Overview of algorithm

defines phase i. Put differently, the bit-positions are communicated in decreasing order of sig-
nificance in the encoding of the identifier. In turn, this may propagate it to their neighbors, and
possibly to the whole network in subsequent phases. This propagation is used in the following
to break symmetries in the coloring problem or to detect a cycle in spanning tree construction.

If all identifiers are in r1, ncs, for some constant c ě 1, then the communicated bit-positions
are less than or equal to crlog ns, and thus can be represented with Oplog log nq bits. However,
the number of bits used to encode identifiers may be different for two given nodes, so there is
no common upper bound for the size of identifiers. We circumvent this problem using a ranking
on bit-positions that is agnostic on the size of the identifiers. We extract of our previous works
the part dedicated to the propagation of the identifier bit by bit in phases, remark that we
slightly modify our previous work. Since we do not assume that the identifiers of every node
are encoded using the same number of bits, simply comparing the i-th most significant bit of
two nodes is irrelevant. Instead, we use variable pBv, which represents the most significant bit-
position of node v. In other words, pBv represents the size of the binary representation of idv.
The variables ph, Bp are the core of the identifier comparison process. Variable phv stores the
current phase number i, while variable Bpv stores the bit-position of idv at phase i. Remark
that the number of non-zero bits can be smaller than the size of the binary representation of the
identifier of the node, so if there are no more non-zero bit at phase i ď pBv, we use Bpv “ ´1.
To make the algorithm more readable, we introduce variable Cidv “ ppBv, phv,Bpvq, called a
compact identifier in the sequel. When meaningful, we use Cid i

v “ p
pBv,Bpvq, where i “ phv.

Node v can trivially detect an error (see predicate ErTpvq) whenever its compact identifier
does not match its global identifier, or its phase is greater than pBv.

ErTpvq ”
“

Cidv ‰ pBitvp1q, phv, Bitvpphvqq
‰

_ pphv ą pBvq (1)

Moreover, the phases of neighboring nodes must be close enough: a node’s phase may not
be more than 1 ahead or behind any of its neighbors; also a node may not have a neighbor
ahead and another behind. Predicate SErBpv, Sq captures these conditions, where Spvq denotes
a subset of neighbors of v. The set S should be understood as an input provided by an upper
layer algorithm.

SErBpv, Sq ”
´

Du,w P Spvq :
`

phu ą phv ` 1
˘

_
`

phu ă phv ´ 1
˘

_ p|phu ´ phw| “ 2q
¯

(2)

If v detects an error through ErTpvq or SErBpv, Sq, it resets its compact identifier to its first
phase value (see command ResetCidpvq). In a talkative process, node identifiers are published
(though compact identifiers) infinitely often. So, when node v and all its active neighbors have
reached the maximum phase (i.e. phv “ pBv), v goes back to phase one. Then, if v has phv “ pBv

and an active neighbor u has phu “ 1, it is not an error. But if v has phv “ 1, one active
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neighbor u has phu “ pBv, and another active neighbor w has phw ą 1, then an error is detected.

TErBpv, Sq ”
´

Du,w P Spvq :
“

p1 ă phv ă pBvq ^ ppphu ą phv ` 1
˘

_
`

phu ă phv ´ 1qq
‰

_

“

pphv “ pBvq ^
`

pphu ą 1q _ pphu ă pBv ´ 1q _ ppphu “ phv ´ 1q ^ pphw “ 1qq
˘‰

_

“

pphv “ 1q ^
`

pphu ą 2q _ pphu ă pBvq _ ppphu “ pBvq ^ pphw “ 2qq
˘‰

¯

(3)

If v detects an error through ErTpvq, SErBpv, Sq or TErBpv, Sq, it resets its compact identifier
to its first phase value:

Erpv, Sq ” ErTpvq _ SErBpv, Sq _ TErBpv, Sq (4)

ResetCidpvq : Cid1
v :“ ppBv, phv,Bpvq “ pBitvp1q, 1, Bitvp1qq (5)

This may trigger similar actions at neighbors in S, so that all such errors eventually disappear.
The compact identifier of u is smaller (respectively greater) than the compact identifier of v,

if the most significant bit-position of u is smaller (respectively greater) than the most significant
bit-position of v, or if the most significant bit-position of u is equal to the most significant bit-
position of v, u and v are in the same phase, and the bit-position of u is smaller (respectively
greater) than the bit-position of v:

Cid i
u ăc Cid

i
v ” p

pBu ă pBvq _
`

ppBv “ pBuq ^ pBpu ă Bpvq
˘

(6)

When two nodes u and v have the same most significant bit-position and the same bit position
at phase i ă pBv, they are possibly equal with respect to compact identifiers (denoted by »c).

Cid i
u »c Cid

i
v ” pi ă

pBvq ^
`

ppBv “ pBuq ^ pBpu “ Bpvq
˘

(7)

Finally, two nodes u and v have the same compact identifier (denoted by “c) if their phase
reaches the size of the binary representation of the identifier of the two nodes, and their last
bit-position is the same.

Cid i
u “c Cid

i
v ” pi “

pBv “ pBuq ^ pBpu “ Bpvq (8)

The predicates SPh`pvq and TPh`pv, Sq check if a node v can increases its phase (or restarts
Cidv), the first one is dedicated to the silent protocols, the second one is dedicated to the talkative
protocols. The command IncPhpvq is dedicated for increasing phases or restarting Cidv. Last,
the command Opt assigns at a node v the minimum (or maximum) compact identifier in the
subset of neighbors Spvq. We have now, all the principals ingredients to use compact identifiers.

Predicate SPh`pvq is true if for every node u in Spvq, either Cid i
u »c Cid

i
v, or phu “ phv ` 1.

SPh`pv, Sq ” @u P Spvq : pCid i
u »c Cid

i
vq _ pphu “ phv ` 1q (9)

Similarly, TPh`pv, Sq is true if for every node u in Spvq, either Cid i
u “c Cid i

v, or phu “
1. Remark that when the self-stabilizing algorithm is talkative, when the phase reaches the
maximum, the publication restart at the first phase. As a consequence, the next phase to
compare when a node reaches the maximum phase is the phase 1.

TPh`pv, Sq ” SPh`pv, Sq _ @u P Spvq : pphv “ pBvq ^
`

pCid i
u “c Cid

i
vq _ pphu “ 1q

˘

(10)
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When TPh`pv, Sq or SPh`pvq is true, v may increase its phase:

IncPhpvq : Cidv :“

#

ppBv, phv ` 1, Bitvpphv ` 1qq if phv ă pBv

ppBv, 1, Bitvp1qq if phv “ pBv
(11)

In some case, we need to compute the minimum or the maximum on compact identifiers.
Let f denote a function that is either minimum or maximum. Let us denote by CpBpv, S, fq the
minimum or the maximum most significant bit of nodes in Spvq.

CpBpv, S, fq “ ftpBw : w P Spvqu (12)

To compare compact identifiers, one must always refer to the same phase; we always consider
the minimum phase for nodes in Spvq.

CPhpv, S, fq “ mintphw : w P Spvq, pBw “ CpBpw, S, fqu (13)

Finally, we compute the minimum or the maximum bit position.

CBppv, S, fq “ ftBpw : w P Spvq, phw “ CPhpw, S, fqu (14)

Predicate MinCidpv, Sq checks if Cidv is equal to the minimum among nodes in Spvq:

MinCidpv, Sq ”
`

Cidv “ pCpBpv, S,minq, CPhpv, S,minq, CBppv, S,minqq
˘

(15)

The predicate MaxCidpv, Sq does the same for the maximum:

MaxCidpv, Sq ”
`

Cidv “ pCpBpv, S,maxq, CPhpv, S,maxq, CBppv, S,maxqq
˘

(16)

Node v may use Opt to assign its local variables the minimum (or maximum) compact
identifier in Spvq.

Optpv, S, fq :

$

&

%

pBv :“ CpBpv, S, fq
phv :“ CPhpv, S, fq
Bpv :“ CBppv, S, fq

(17)

We have now, all the ingredients to use compact identifiers.

id : ppB, ph,Bpq

v : 8,(3,1,3) u3 :17,(4,2,0)u1 : 15,(3,2,2)

u2 : 9,(3,1,3)

u4 : 16,(4,1,4)

(a)

id : ppB, ph,Bpq

v :17,(4,2,0)u : 16,(4,1,4)

v :17,(4,2,0)u : 16,(4,2,K)

TPh`puq

(b)

Figure 2: On the left subfigure (a), the following holds: Cidv and Cidu1 are incomparable;
Cid1

v »c Cid
1
u2

; Cidv ăc Cidu3 ;Cidv ăc Cidu4 , and MaxCidpv,Npvqq “ p4, 1, 4q. On the right
subfigure (b), nodes u and v are incomparable, so u increases its phase.
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3.2 Silent self-stabilizing distance-2 coloring

In this section, we provide a new solution to assign colors that are unique up to distance two
(and bounded by a polynom of the graph degree) in any graph. Those colors are meant to
efficiently implement the pointer-to-neighbor mechanism that otherwise requires Ωplog nq bits
of memory per node. The remaining of the section is organized as follows: Subsection 3.2.1
presents high level concepts of our solution, Subsection 3.2.2 lists functions and predicates used
in the algorithm, Subsection 3.2.3 formally presents the algorithm, while Subsection 3.2.4 is
dedicated to establishing its proof of correctness.

3.2.1 Self-stabilizing algorithm high level description

Our solution uses compact identifiers to reduce memory usage. When a node v has the same
color as (at least one of) its neighbors, then if the node v has the smallest conflicting color in
its neighborhood and is not the biggest identifier among conflicting nodes, then v changes its
color. To make sure a fresh color is chosen by v, all nodes publish the maximum color used by
their neighborhood (including themself). So, when v changes its color, it takes the maximum
advertised color plus one. Conflicts at distance two are resolved as follow: let us consider two
nodes u and v in conflict at distance two, and let w be (one of) their common neighbor; as w
publishes the color of u and v, it also plays the role of a relay, that is, w computes and advertises
the maximum identifiers between u and v, using the compact identifiers mechanisms that were
presented above; a bit by bit, then, if v has the smallest identifier, it changes its color to a fresh
one. To avoid using too many colors when selecting a fresh one, all changes of colors are made
modulo an upper bound on the number of neighbors at distance 2, which is computed locally
by each node.

In our self-stabilizing coloring algorithm, called C-Color, each node v maintains a color
variable denoted by cv and a degree variable denoted by δv. A variable qcv stores the minimum
color in conflict in its neighborhood (including itself). The variable pcv stores the maximum
color observed in its neighborhood. We call v a player node when v has the minimum color in
conflict. Also, we call u a relay node when u does not have the minimum color in conflict, yet at
least two of its neighbors have the minimum color in conflict. The nodes continuously update
their variables according to the minimum and maximum colors published by their neighbors. A
player node whose compact identifier is smaller than the compact identifier of its neighbors (be
them players or relay nodes) becomes a loser node and changes its color. If all the neighborhood
of a player node p has the same phase and the same compact identifier, then p increases its
phase, until it becomes a loser or no conflict remains in p’s neighborhood. When a player node
and its neighborhood reach the maximum phase, they restart at the first phase. A relay node
continuously takes the value of the greatest compact identifier of its player neighbors, for the
purpose that at least one of them becomes a loser. Note that, a node may alternate between
being a relay and a player, until the coloring is complete. This algorithm is silent, once the
system reaches a distance two coloring, the color variables remain the same.

3.2.2 Functions, predicates and actions used by algorithm C-Color

Note that all rules are exclusive, because a node v cannot be both Playerpvq and Relaypvq. Let
us now describe the functions, predicates and actions use by algorithm C-Color. Remember
that N rvs “ Npvq Y tvu. Function ∆pvq returns the maximum degree between v and its
neighbors, and is used to define the range r1,∆pvq2 ` 1s of authorized colors for a node v:

∆pvq “ maxtδu : u P N rvsu (18)
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The function mCpvq returns the minimum color in conflict at distance one and two :

mCpvq :“ mintcu : u,w P N rvs ^ pu ‰ wq ^ pcu “ cwqu (19)

The function MCpvq returns the maximum color used at distance one :

MCpvq :“ max
 

cu : u P N rvs
(

(20)

The predicate Badpvq is true if v has not yet set the right value for either mCpvq or MCpvq.
Moreover, this predicate checks if v’s compact identifier matches its global identifier (see predi-
cate 1: ErTpvq) and if the phases of the subset of v’s neighbors Othpvq are coherent with v (see
predicate 2: SErBpv, Othpvq).

Badpvq ” pqcv ‰ mCpvqq _ ppcv ‰ MCpvqq _ pErTpvq _ SErBpv, Othpvqq (21)

The predicate Playerpvq is true if v has the minimum color in conflict (announced by its
neighbors or by itself). Observe that the conflict may be at distance one or two:

Playerpvq ” pcv “ mintqcu, u P N rvsuq (22)

The predicate Relaypvq is true if v does not have the minimum color in conflict, and at least
two of its neighbors have the minimum color in conflict:

Relaypvq ” pqcv ‰ cvq ^ pqcv “ mintqcu, u P N rvsuq ^ pDu,w P Npvq, pqcv “ cuq ^ pqcv “ cwqq (23)

The function PlayRpvq returns the subset of v’s neighbors that have the minimum color in
conflict, when v is a relay node:

PlayRpvq :“ tu : u P Npvq ^ cu “ qcvu (24)

The function Othpvq returns the subset of v’s neighbors that are in conflict with v at distance
one, or the set of relay nodes for the conflict at distance two, when v has Playerpvq equal to
true:

Othpvq :“ tu : u P Npvq ^ cu “ cvu Y tu : u P Npvq ^ qcu “ cvu (25)

The predicate Loserpvq is true whenever a competing player of v has a greater bit position
at the same phase. A node whose identifier is maximum among competitors does not change
its color, but any losing competitor does.

Loserpvq ” Du P Othpvq : Cid i
v ăc Cid

i
u (26)

The predicate RUppvq is true if a relay node is not according to its player neighbors, like we
decide to change the color of the node with the minimum identifier the relay node stores the
maximum compact identifier of its player neighbors:

RUppv, PlayRpvqq ” Cidv ‰c MaxCidpv, PlayRpvqq (27)

The action Updatepvq updates the variables qcv,pcv and resets the variables relatives to the
identifier (see command ResetCid(v) in equation 5 ).

Updatepvq : qcv :“ mCpvq;pcv :“ MCpvq;ResetCidpvq; (28)

When a node change its color, it takes the maximum color at distance one and two plus one
modulo ∆pvq2 ` 1, and then add one to assign colors in the range r1, . . . ,∆pvq2 ` 1s.

N ewcolorpvq : cv :“
`

pmaxtMCu : u P N rvsu ` 1q mod ∆pvq2 ` 1
˘

` 1; (29)
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v1 : 9,(4,1,4) v2 :4,(3,1,3) v3 : 8,(4,1,4) v4 : 10,(4,1,4) v5 : 12,(4,1,4)

RColor RBit RBit

v1 : 9,(4,1,4) v2 :(4,1,4) v3 : 8,(4,1,4) v4 : 10,(4,2,1) v5 : 12,(4,2,2)

RUp RUp

v1 : 9,(4,1,4) v2 :(4,1,4) v3 : 8,(4,1,4) v4 : 10,(4,2,1) v5 : 12,(4,2,2)

RBit RBit RColor

v1 : 9,(4,2,0) v2 :(4,1,4) v3 : 8,(4,2,K) v4 : 10,(4,2,1) v5 : 12,(4,2,2)

RUp RUp RUp

v1 : 9,(4,2,0) v2 :(4,2,0) v3 : 8,(4,2,K) v4 : 10,(4,2,1) v5 : 12,(4,2,2)

RColor RUp

v1 : 9,(4,2,0) v2 :(4,2,0) v3 : 8,(4,2,K) v4 : 10,(4,2,1) v5 : 12,(4,2,2)

RUp RUp

v1 : 9,(4,2,0) v2 :(4,2,0) v3 : 8,(4,2,K) v4 : 10,(4,2,1) v5 : 12,(4,2,2)

RUp RUp

v1 : 9,(4,2,0) v2 :(4,2,0) v3 : 8,(4,2,K) v4 : 10,(4,2,1) v5 : 12,(4,2,2)

color 1 color 2 color 3 color 4 no color

Figure 3: An example execution of our coloring scheme is presented for a line network of size 5.
The color of the main rectangle denotes the node’s color (variable cv), the upper left disc color
denotes the maximum color used at distance 1 (variable pcv), the lower left disc color denotes
the minimum color in conflict at distance 1 or 2 (variable qcv). The light gray color denotes the
absence of any color. The rule immediately under a node denotes which rule is executed to
reach the next configuration of the execution.

3.2.3 Algorithm C-Color

The rule R∆ assures that the degree variable is equal to the degree of the node. Each node v must
maintain its color in range r1,∆pvq2 ` 1s to satisfy the memory requirements of our protocol,
where ∆pvq is a function that returns the maximum degree of its neighborhood (including itself).
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Whenever v’s color exceeds its expected range, rule R`∆ resets the color to one. Rule RUp is
dedicated to updating the variables of v whenever they do not match the observed neighborhood
of v (see Badpvq), or when a player node has an erroneous phase variable when comparing its
identifier with another player node (see function Othpvq). In both cases, the v computes the
minimum and maximum color and resets its compact identifier variable (see command Updatepvq
28). The rule RColor increases the color of the node v but maintains the color in some range
(see command N ewcolorpvq 29), when v has the minimum color in conflict and the minimum
identifier. The rule RBit increases the phase of v, when v is a player and does not have the
minimum identifier at the selected phase. The rule RRelay updates the identifier variable when
v is a relay node.

Algorithm 1: C-Color

R∆ : pδv ‰ degpvqq ÝÑ δv :“ degpvq;
R`∆ : pδv “ degpvqq ^ pcv ą ∆pvq2q ÝÑ cv :“ 1;
RUp : pδv “ degpvqq ^ pcv ď ∆pvq2q ^ Badpvq ÝÑ Updatepvq;

RColor : pδv “ degpvqq ^ pcv ď ∆pvq2q ^  Badpvq ^ Playerpvq ^ Loserpvq ÝÑ N ewcolorpvq;

RBit : pδv “ degpvqq ^ pcv ď ∆pvq2q ^  Badpvq ^ Playerpvq ^  Loserpvq ^ SPh`pv, Othpvqq
ÝÑ IncPhpvq;

RRelay : pδv “ degpvqq ^ pcv ď ∆pvq2q ^  Badpvq ^ Relaypvq ^ RUppv, PlayRpvqq
ÝÑ Optpv, PlayRpvq,maxq;

3.2.4 Correctness

Theorem 2. Algorithm C-Color solves the vertex coloration problem at distance two using
∆2 ` 1 colors in a silent self-stabilizing manner in graph, assuming the state model, and a
distributed unfair scheduler. Moreover, if the n node identifiers are in r1, ncs, for some c ě 1,
then C-Color uses Oplog ∆` log log nq bits of memory per node.

In the details of lemmas that are presented in the sequel, we use predicates on configurations.
These predicates are mean to be intermediate attractors towards a legitimate configuration (i.e.,
a configuration with a unique leader). To establish that those predicates are indeed attractors,
we use potential functions [5, 39, 40], that is, functions that map configurations to non-negative
integers, and that strictly decrease after any algorithm step is executed. In the remaining of
the paper, the potential functions we define closely match the proof arguments of the following
Lemma/Theorem. That is, various invariants are defined for each property we wish to prove,
and the potential function makes sure the output value decreases until the invariant is reached.

To avoid additional notations, we use sets of configurations to define predicates; the predicate
should then be understood as the characteristic function of the set (that returns true if the
configuration is in the set, and false otherwise).

Lemma 1. Using a range of r1,∆pvq2`1s for colors at node v is sufficient to enable distance-2
coloring of the graph.

Proof. In the worst case for the number of colors, all neighbors at distance one and two of v
have different colors. Now, v has at most ∆pvq neighbors at distance one, each having ∆pvq´ 1
other neighbors than v. In total, v has at most ∆pvq2 ´∆pvq neighbors at distance up to two,
each having a distinct color. Using a range of r1,∆pvq2`1s for v’s color leaves at least ∆pvq`1
available colors for node v.
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Let cvpγq be the color of v in configuration γ.
Let λ : Γˆ V Ñ N be the following function:

λpγ, vq “

$

&

%

2 if δv ‰ degpvq P γ
1 if pδv “ degpvq P γq ^ cvpγq ą ∆pvq2 ` 1
0 otherwise

Let Λ : Γ Ñ N be the following potential function:

Λpγq “
ÿ

vPV

λpγ, vq

Now, let cvpγ0q be the color of v in configuration γ0, γ0 being defined as the configuration
where Λpγ0q reaches zero.

Let τ : Γˆ V Ñ N be the following function:

τpγ, vq “

"

∆pvq2 ` 1` cvpγ0q ´ cvpγq if cvpγq ą cvpγ0q

cvpγ0q ´ cvpγq otherwise

Let C : Γ Ñ N be the following potential function:

Cpγq “
ÿ

vPV

τpγ, vq

We denote by γ1 the configuration after activation of (a subset of) the nodes in ACpγq where
ACpγq denotes the enabled nodes in γ due to rule RColor.We can now prove the following result:
Cpγ1q ă Cpγq for every configuration γ where ACpγq is not empty.

Lemma 2. Cpγ1q ă Cpγq for every configuration γ such that ACpγq is not empty.

Proof. We consider a node v P ACpγq. After executing rule RColor, v takes a color:

cvpγ
1q “

`

pmaxtMCu : u P N rvsu ` 1q mod ∆pvq2 ` 1
˘

` 1

As a consequence τpγ, vq decreases by at least one, so Cpγ1q ă Cpγq.

Let ψ : Γˆ V Ñ N be the function defined by:

ψpγ, vq “

$

’

’

’

’

&

’

’

’

’

%

n3 if Badpvq is true
p2 log n´ phvq ˆ pn

2 ´ qcvq if  Badpvq ^ Playerpvq is true
2pn2 ´ qcvq if  Badpvq ^ Relaypvq ^  RUppv, PlayRpvqq is true
pn2 ´ qcvq if  Badpvq ^ Relaypvq ^ RUppv, PlayRpvqq is true
0 otherwise

Let Ψ : Γ Ñ N be the potential function defined by:

Ψpγq “
ÿ

vPV

ψpγ, vq

Let Φ : Γ Ñ N3 be the potential function defined by:

Φpγq “ pΛpγq, Cpγq,Ψpγqq.

The comparison between two configurations Φpγq and Φpγ1q is by using lexical order. We
denote by Apγq the (subset of) enabled nodes (for any rule of our algorithm) in configuration γ.
Note that the algorithm is stabilized when every node is neither a player nor a relay, that is the
nodes have no conflict at distance one and two, when Ψpγq “ 0. We define

ΓC “ tγ P Γ : Φpγq “ 0u
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Lemma 3. trueŹ ΓC and ΓC is closed.

Proof. The function Λpγq decreases by any execution of rules R∆ and R`∆. Remark that degpvq
is considered a non corruptible local information, so once v has executed R∆, this rule remains
disabled afterwards. Moreover, RColor maintains the value of the color inferior (or equal) to
∆pvq2 ` 1, and other rules modifying the color maintain this invariant. Hence, if the scheduler
activates rules R∆ or R`∆, we obtain Λpγ1q ă Λpγq, otherwise if other rules are activated, then
Λpγ1q “ Λpγq. We already saw that, when the scheduler activates a node v for rule RColor,
we obtain Cpγ1q ă Cpγq. Overall, if the scheduler activates rules R∆, R`∆, or RColor we obtain
Φpγ1q ă Φpγq. We now consider the cases where the scheduler activates other rules.

First, we focus on rule RUp. Let us consider A1pγq, the set of nodes enabled in configuration
γ for this rule, and a node v such that v P A1pγq. In other words, v has Badpvq “ true (see
predicate 21). If v has pqcv ‰ mCpvqq _ ppcv ‰ MCpvqq in γ, then after activation of v, we obtain
qcv “ mCpvq and pcv “ MCpvq in γ1 by the command N ewcolorpvq (see command 29), because
mCpvq and MCpvq depend only on the color of the neighbors of v (see Function 19 and 20). The
same argument applies for pErTpvq _ SErBpv, Othpvqqq, because Cidv is computed only with the
identifier of v. So, after execution of RUp by v, we obtain ψpγ1, vq ă ψpγ, vq, thanks to the
execution of the command Update(v) (see command 28) that assigns false to Badpvq. Remark
that, if the color of the neighbors of v does not change, rule RUp remains disabled. Now, if the
color changes, Φpγq still decreases thanks to Lemma 2.

Let us consider now a configuration where the rule RUp is disabled for every node. Rule RBit

increases the phase of a player node, so after activation of this rule we obtain ψpγ1, vq ă ψpγ, vq.
Executing rule RRelay decreases also ψpγ1, vq due to RUppv, PlayRpvqq (see predicate 27) , because
when all nodes in PlayRpvq (see function 24) have increase their phases, ψ decreases for all v’s
neighbors. Note that, when a conflict for a color c is resolved, a node can become a player node
or a relay node for another color c1, but then c1 ą c. So pn´ c1q ă pn´ cq, hence ψ decreases.

If a node has no conflict at distance one or two, it never changes its color, so once the system
reaches a distance-2 coloring, it remains with the same coloring.

Lemma 4. Algorithm C-Color requires Opmaxtlog ∆, log lognuq bits of memory per node.

Proof. The variables δv, cv,qcv,pcv takeOplog ∆q bits. The compact identifier Cidv takesOplog log nq
bits per node.

Proof of Theorem 2. Direct by Lemma 1, Lemma 3 and Lemma 4.

Lemma 5. Algorithm C-Color converges in Op∆∆2
n3q steps.

Proof. Direct by the potential function Φpγq.

3.3 Cleaning a cycle or an impostor-rooted spanning tree

The graph G is supposed to be colored up to distance 2, thanks to our previous algorithm. To
construct a spanning tree of G, each node v maintains a variable pv storing the color of v’s
parent (H otherwise). The function Chpvq to return the subset of v’s neighbors considered as
its children (that is, each such node u has its pu variable equal v’s color). Note that the variable
parent is managed by the algorithm of spanning tree-construction.

An error is characterized by the presence of inconsistencies between the values of the variables
of a node v and those of its neighbors. In the process of a tree-construction, an error occurring
at node v may have an impact on its descendants. For this reasons, after a node v detects
an error, our algorithm cleans v and all of its descendants. The cleaning process is achieved
by Algorithm Freeze, already presented in previous works [13, 11]. Algorithm Freeze is run
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in two cases: cycle detection (thanks to predicate ErCyclepvq, presented in Subsection 3.4),
and impostor leader detection (thanks to predicate ErSTpvq, presented in Subsection 4). An
impostor leader is a node that (erroneously) believes that it is a root.

When a node v detects a cycle or an impostor root, v deletes its parent. Simultaneously,
v becomes a frozen node. Then, every descendant of v becomes frozen. Finally, from the
leaves of the spanning tree rooted at v, nodes delete their parent and reset all variables that
are related to cycle detection or tree-construction. So, this cleaning process cannot create a
livelock. Algorithm Freeze is a silent self-stabilizing algorithm using Op1q bits of memory per
node.

It is important to note that a frozen node, or the child of a frozen node, does not participate
in cycle detection or spanning tree-construction.

We now recall Freeze in Algorithm 2. This algorithm uses only one binary variable froz.
This approach presents several advantages. After v detecting a cycle, the cycle is broken (v
deletes its parent), and a frozen node cannot reach its own subtree, due to the cleaning process
taking place from the leaves to the root. So, two cleaning processes cannot create a livelock.

Algorithm 2: Algorithm Freeze

RError : ErCyclepvq _ ErSTpvq ÝÑ frozv :“ 1, pv :“ H;
RFroze :  ErCyclepvq ^  ErSTpvq ^ pfrozpv

“ 1q ^ pfrozv “ 0q ÝÑ frozv :“ 1;
RPrun :  ErCyclepvq ^  ErSTpvq ^ pfrozpv

“ 1q ^ pfrozv “ 1q ^ pChpvq “ Hq ÝÑ Resetpvq;

Theorem 3. Algorithm Freeze deletes a cycle or an impostor-rooted sub spanning tree in
n-nodes graph in a silent self-stabilizing manner, assuming the state model, and a distributed
unfair scheduler. Moreover, Algorithm Freeze uses Op1q bits of memory per node and converges
in Opnq steps.

Proof of Theorem 3 is due to Blin et al. [11].

3.4 Silent self-stabilizing algorithm for cycle detection

We present in this subsection a self-stabilizing algorithm to detect cycles (possibly due to
initial incorrect configuration) without using the classical method of computing the distance
to the root. We first present our solution with the assumption of global identifiers (hence using
Oplog nq bits for an n-node network) and then using our compact identifier scheme postponed
in subsection 3.4.3.

3.4.1 Silent Self-stabilizing algorithm with identifiers

The main idea to detect cycles is to use the uniqueness of the identifiers. We flow the minimum
identifier up to the tree to the root, then if a node whose identifier is minimum receives its
identifier, it can detect a cycle. Similarly, if a node v has two children flowing the same minimum
identifier, v can detect a cycle. The main issue to resolve is when the minimum identifier that
is propagated to the root does not exist in the network (that is, it results from an erroneous
initial state).

The variable mv stores the minimum identifier collected from the leaves to the root up to
node v. We denote by Ev the minimum identifier obtained by v during the previous iteration
of the protocol (this can be H). A node v may selects among its children the node u with the
smallest propagated identifier stored in mu, we call this child kid returned by the function kpvq.
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v

u
w

Tw

Figure 4: Spanning structure

Predicate ErCyclepvq is the core of our algorithm. Indeed,
a node v can detect the presence of a cycle if it has a parent and
if (i) one of its children publishes its own identifier, or (ii) two
of its children publish the same identifier. Let us explain those
conditions in more detail. We consider a spanning structure S,
a node v P S and let u and w be two of its children. Suppose
that v and u belong to a cycle C, note that, since a node has a
single parent, w cannot belong to any cycle (see Figure 4). Let
qm be the minimum identifier stored by any variable mz such
that z belongs to S. So, z is either in C, or in the subtree
rooted to w, denoted by Tw.

First, let us consider the case where qm is stored in Tw. As
any node selects the minimum for flowing the m upstream, there
exists a configuration γ where mw “ qm, and a configuration
γ1 ą γ where mu “ qm. In γ1, v can detect an error, due to the
uniqueness of identifier, it is not possible for two children of v to share the same value when
there is no cycle.

Now, let us suppose that qm is in C, and let v1 be the node with the smallest identifier in C, so
mv1 “ qm or mv1 ‰ qm (mv1 ‰ qm means that the identifier qm does not exist in C.) If mv1 “ qm, as
any node selects the minimum for flowing the m upstream, there exists a configuration γ where
mu1 “ qm and u1 is the child of v1 involved in C, then v1 can detect an error. Indeed, due to the
uniqueness of identifier, it is not possible that one of its children store its identifier when there
is no cycle. The remaining case is when mv1 ‰ qm. In this case, as any node selects the minimum
for flowing the m upstream, there exists a configuration γ where mz “ qm, with z belonging to
C. When a node v, its parent and one of its children share the same minimum, they restart
the computation of the minimum identifier. For this purpose, they put their own identifier in
the m variable. To avoid livelock, they also keep track of the previous qm in variable Ev. Now
qm “ mv1 , so the system reaches the first case. Note that the variable Ev blocks the live-lock
but also the perpetual restart of the nodes, as a result of this, a silent algorithm. Moreover, a
node v collects the minimum identifier from the leaves to the root, if mv contains an identifier
bigger than the identifier of the node v, then v detects an error. The same holds, when v has
a mv smaller than mu with u children of v, since the minimum is computed between mkpvq and
its own identifier.

ErCyclepvq ” ppv ‰ Hq ^
´

pmkpvq
“ idvq _ pDpu,wq P Chpvq : mu “ mwq_

pmv ą idvq _
`

pmv ‰ idvq ^ pmv ă mkpvq
q
˘

¯

Our algorithm only contains three rules. The rule RMinpvq updates the variable mv if the
variable mu of a child u is smaller, nevertheless this rule is enabled if and only if the variable
Ev does not contain the minimum mu published by the child. When v and its relatives have the
same minimum, v declares its intent to restart a minimum identifier computation by erasing its
current (and storing it in Ev). The rule RStartpvq is dedicated to declaring its intent to restart.
When all its neighbors have the same intent, v can restart (see rule RIDpvq).

An example execution of Algorithm Break is depicted in Figure 5.

3.4.2 Correctness of the algorithm Break

Theorem 4. Algorithm Break solves the detection of cycle in n-node graph in a silent self-
stabilizing manner, assuming the state model, and a distributed unfair scheduler. Moreover, if
the n node identifiers are in r1, ncs, for some c ě 1, then algorithm Break uses Oplog nq bits
of memory per node.
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Algorithm 3: Algorithm Break For node v with  ErCyclepvq

RMin : pmv ą mkpvqq ^ pEv ‰ mkpvqq ÝÑ mv :“ mkpvq;

RStart : pmpv
“ mv “ mkpvqq ^ pEv ‰ mvq ÝÑ Ev :“ mv;

RID : pEpv
“ Ev “ Ekpvq “ mvq ^ pmv ‰ idvq ÝÑ mv :“ idv;

idv,mv,Ev

8,7,4

7,6,4

5,5,4

3,4,4

4,2,2

2,18

8,7,4

5,5,4

7,6,4

3,2,4

4,2,2

2,17

8,7,4

7,5,4

5,2,4

3,2,4

4,2,2

2,16

8,5,4

7,2,4

5,2,4

3,2,2

4,2,2

2,14

8,2,4

7,2,4

5,2,2

3,2,2

4,2,2

2,12

8,2,2

7,2,2

5,2,2

3,3,2

4,2,2

2,9

8,8,2

7,7,2

5,5,2

3,3,2

4,4,2

2,4

8,8,2

7,7,2

5,3,2

3,3,2

4,4,2

3,12

8,8,2

7,3,2

5,3,2

3,3,2

4,4,2

3,8

8,3,2

7,3,2

5,3,2

3,3,2

4,4,2

3,4

8,3,2

7,3,2

5,3,2

3,3,2

4,3,2

3,0

Figure 5: An example execution for Algorithm Break is presented on a ring shaped network.
Only id, mv, and Ev are represented for each node. Nodes colored in light gray are activated in
each step by the scheduler. The node colored in orange detects a cycle. Only one of the many
possible execution is represented. Below each configuration γ, we also indicate the value of the
smallest identifier i such as βpγ, iq ą 0, along with the value of the corresponding βpγ, iq (See
Section 3.4.2 for the definition of β.)
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Let i be a natural integer in r1, ncs, representing a possible node identifier. Then, let us
denote by Dpv, iq the set of nodes on the path between v and w, where w is the nearest
descendant of v (w ‰ v) such that mw “ i, if such a node exists. We suppose that every node
u in Dpv, iq has ErCyclepuq “ false. The value i can improve the value mv if and only every
node u in Dpv, iq has a mu ą i and Eu ‰ i. Also, if Eu “ i, the value vanishes during the
execution, note that may be u “ v. Predicate Improve captures this fact. Predicate Improve

is defined recursivly as, to improve a node, its descendants must be improved first. Only when
no descendent can be improved is the node itself bound for action.

Improvepγ, v, iq ”
`

@u P Dpv, iq : pmu ą iq
˘

^
“`

@u P Dpv, iq : Eu ‰ iq
˘

_
`

Du P Dpv, iq : pEu “ iq ^ Improvepγ, u, iq
˘‰ (30)

Let α : Γˆ V ˆ NÑ N be the function defined by:

αpγ, v, iq “

$

’

’

’

’

&

’

’

’

’

%

4 if pmv ą iq ^ pEv ‰ iq ^ Improvepγ, v, iq
3 if pmv “ iq ^ pEv ‰ iq ^ Improvepγ, v, iq
2 if pmv “ iq ^ pEv “ iq ^ Improvepγ, v, iq
1 if pmv ą iq ^ pEv “ iq ^ Improvepγ, v, iq
0 if  Improvepγ, v, iq

Let β : Γˆ NÑ N be the function defined by:

βpγ, iq “
ÿ

vPV

αpγ, v, iq

Figure 5 depicts the evolution of the the values returned by β for the minimum identifier i
such that βpγ, iq ą 0.

Let Ξ : Γ Ñ NIdMax be the function defined by:

Ξpγq “ pβpγ, 1q, . . . , βpγ, IdMaxqq

The comparaison between two configurations Ξpγq and Ξpγ1q is performed using lexical order.
In the following, mvpγq denotes the variable mv in configuration γ. Note that the algorithm
is stabilized when no value i can improve the value stored in mv, that is when Ξpγq “ 0. We
define

ΓB “ tγ P Γ : Ξpγq “ 0u

Lemma 6. trueŹ ΓB and ΓB is closed.

Proof. The starting predicate being true, all possible configurations are taken into consideration.
We simply review the effect of executing the three rules of the algorithm:

• Rule RStartpvq: mvpγq “ mvpγ
1q, so for i ă mvpγ

1q, we have βpγ1, iq “ βpγ, iq. Note that
for i ą mvpγq, v has no effect on βpγ, iq and βpγ1, iq. Now, βpγ,mvq “ 3 because RStartpvq
is enabled for v only if pEv ‰ mvq, and βpγ1,mvq “ 2 because we have pEv “ mvq, thus
βpγ,mvq “ 3 ą βpγ1,mvq “ 2. So, if the scheduler activates v with rule RStartpvq, we
obtain Ξpγ1q ă Ξpγq.

• Rule RID:

– i ă mvpγq: βpγ
1, iq “ βpγ, iq because idv ą mvpγq (otherwise an error is detected).

Also, if i can improve mvpγq, it can also improve mvpγ
1q.
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– mvpγq: Rule RID needs Evpγq “ mvpγq, so βpγ,mvpγqq “ 2. Now, we have Evpγ
1q “

mvpγq ‰ mvpγ
1q, and we obtain βpγ,mvpγqq “ 2 ą βpγ1,mvpγqq “ 1.

As a consequence, βpγ1, iq “ βpγ, iq for i ă mvpγq and βpγ1,mvpγqq ă βpγ,mvpγqq. So, if
the scheduler activates only v for rule RIDpvq, we obtain Ξpγ1q ă Ξpγq.

• Rule RMinpvq: mvpγ
1q ă mvpγq and Evpγq ‰ mvpγ

1q by definition of rule RMinpvq, so in γ,
we have αpγ, v,mvpγ

1qq “ 4 because mvpγ
1q ă mvpγq and mvpγ

1q can improve mvpγq. Now,
we have αpγ1, v,mvpγ

1qq “ 3 because Evpγ
1q ‰ mvpγ

1q. mvpγ
1q ă mvpγq, so if the scheduler

activates only v for rule RMinpvq, we obtain Ξpγ1q ă Ξpγq.

To conclude, Ξpγ1q ă Ξpγq for every configurations γ and γ1, when γ1 occurs later than γ.

Proof of Theorem 4. Now we prove that, in ΓB if the spanning structure S contains a least one
cycle C, then at least one node v in C has ErCyclepvq “ true. For the purpose of contradiction,
let us assume the opposite. Let γ P ΓB and every node v in the cycle C in γ has ErCyclepvq “
false. By definition all the nodes in C have a parent, and all the nodes have mv ě mkv

. Now,
if a node v shares the same m with its parent and its child, then rule RStart is enabled for v, a
contradiction with Ξpγq “ 0. In a cycle, it is not possible that all nodes have mv ą mkv

(due to
well foundedness of integers, at least one node v has mv ă mkv

), which is a contradiction with
the assumption that every node v is such that ErCyclepvq “ false.

Lemma 7. Algorithm Break converges in Opnnq steps.

Proof. Direct by the potential function Ξpγq.

3.4.3 Silent self-stabilizing cycle detection with compact identifiers

We refine algorithm Break to make use of compact identifiers (of size Oplog log nq instead of
global identifiers (of size Oplog nq). With compact identifiers, the main problem is the following:
two nodes u and v can deduce that Cidu “c Cidu if and only if they have observed Cid i

u »c Cid
i
v

during every phase i, with 1 ď i ď pBv. A node v selects the minimum compact identifier
stored in variable m in its neighborhood (including itself). If it is the case that in a previous
configuration, one of v’s children presented v a compact identifier smaller than its own, v became
passive (Variable Activev “ false), and remained active otherwise (Variable Activev “ true).
Only active nodes can continue to increase their phase. Moreover, a node increases its phase
if and only if its parent and one of its children u has the same information, namely Cid i

u »c

Cid i
v »c Cid

i
pv

. Observe that in a spanning tree, it is possible that several nodes do not increase
their phases. For example, leaf nodes are in such a situation. To explain why the absence of
phase increases does not cause trouble, let v be the node with the smallest identifier involved in
a cycle and let us suppose that v has two children, one child u involved in the cycle, and another
child w that isn’t. In some configuration, w may not be able to increase its phase, but then u
reaches the same phase of the active node v, so v increases its phase, and the system reaches a
configuration where Cidiu “c Cid

i
v. Then, v detects an cycle error. Variable Ev combined to this

compact identifier usage permits to obtain a silent algorithm.
Predicate ErCycle now takes into account the error(s) related to compact identifiers man-

agement. It is important to note that the cycle breaking algorithm does not manage phase
differences. Indeed, a node v whose phase is bigger than that of one of its children u assigns
mu to mv, if and only if phv ą phu ` 1 or no child of v has the same compact identifier as v.
The mv variable is be compared using lexicographic order by rule RMin. The modifications to
algorithm Break are minor. We add only one rule to increases the phase: RInc. Only a passive
node can restart. Remark that now the m variable uses Oplog log nq bits. As the p variables
store a color, we obtain a memory requirement of Opmaxtlog ∆, log log nuq bits per node.
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3.4.4 Algorithm C-Break and Predicates

Predicate ErCycle must be updated to take into account this extra care. We denote by kv
the child of v with minimum compact identifier stored in mv. Moreover, predicate ErCycle

now takes into account the error(s) related to compact identifiers management (see Equation 1:
ErTpvq). It is important to note that the cycle breaking algorithm does not manage phase
differences. The compact identifier stored in mv is be compared using lexicographic order by
rule RMin.

ErCyclepvq ” ppv ‰ Hq ^
´

pmkpvq “c Cid
i
vq _ pDpu,wq P Chpvq : mu “c mwq _ pmv ąc Cid

i
vq_

`

pmv fic Cidvq ^ pmv ăc mkpvqq
˘

_ pActivev ^ ErTpvqq
¯

(31)

Algorithm 4: Algorithm C-Break For node v with  ErCyclepvq

RInc :Activev ^ pmpv
»c mv »c mkpvqq ÝÑ IncPhpvq;

RStart : Activev ^ pmpv
»c mv »c mkpvqq ^ pEv fic mvq ÝÑ Ev :“ mv;

RMin : pmv ąc mkpvqq ^ pEv fic mkpvqq ÝÑ mv :“ mkpvq,Activev :“ false;

RID : pEpv
»c Ev »c Ekpvq »c mvq ^ pmv fic Cid

1
v q ÝÑ mv :“ Cid 1

v ,Activev :“ true;

Theorem 5. The algorithm C-Break solves the detection of cycle in arbitrary n-node graph
in a silent self-stabilizing manner, assuming the state model, and a distributed unfair scheduler.
Moreover, if the n node identifiers are in r1, ncs, for some c ě 1, then algorithm C-Break uses
Opmaxtlog ∆, log log nuq bits of memory per node and converges in Opnn log nq steps.

The proof of theorem 5 mimics the proof of algorithm Break. The extra log n steps factor
(with respect to algorithm Break) results from the number of comparisons that are necessary
when using compact identifiers.

4 Talkative spanning tree-construction without distance to the
root

Our approach for self-stabilizing leader election is to construct a spanning tree whose root
is to be the elected leader. Two main obstacles to self-stabilizing tree-construction are the
possibility of an arbitrary initial configuration containing one or more cycles, or the presence
of one or more impostor-rooted spanning trees. We already explained how the cycle detection
and cleaning process takes place, so we focus in this section on cycleless configurations.

The main idea is to mimics the fragments approach introduced by Gallager et al. [29]. In an
ideal situation, at the beginning each node is a fragment, each fragment merges with a neighbor
fragment holding a bigger root signature, and at the end remains only one fragment, rooted in
the root with the biggest signature (that is, the root with maximum degree, maximum color,
and maximum global identifier). To maintain a spanning structure, the neighbors that become
relatives (that is, parents or children) remain relatives after that. Note that the relationship
may evolve through time (that is, a parent can become a child and vice versa). So our algorithm
maintains that as an invariant (see Lemma 8).
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Indeed, when two fragments merge, the one with the root with smaller signature F1 and
the other one with a root with bigger signature F2, the root of F1 is re-rooted toward its
descendants until reaching the node that identified F2. This approach permits to construct an
acyclic spanning structure, without having to maintain distance information. The variable Rv

stores the signature relative to the root (that is, its degree, its color, and its identifier). Note
that, the comparison between two R is done using lexical ordering. The variable newv stores
the color of the neighbor w of v leading to u with Ru ą Rv if there exists such a node, and H
otherwise. The function fpvq returns the color of the neighbor of v with the maximum root
(see 32).

4.1 Algorithm description

Let us now give more details about our algorithm (presented in Algorithm 5). If a root v has a
neighbor u with Ru ą Rv, then v chooses u as its parent (see rule RMerge ). If a node v (not a
root) has a neighbor u with Ru ą Rv, it stores its neighbor’s color in Variable newv, and updates
its Rv to Ru. Yet, it does not change its parent. This behavior creates a path (thanks to Variable
new) between a root r of a sub spanning tree Tr and a node contained in an other sub spanning
tree Tr1 rooted in r1, with Rr1 ą Rr (see rule RPath). The subtree Tr is then re-rooted toward a
node aware of a root with a bigger signature u. Now, when v P Tr’s neighbor u becomes root, it
takes u as a parent (see rules RReRoot and RDel). Finally, the descendants of the re-rooted root
update their root variables (see rule RUpdate). The predicate ErSTpvq (see 33) captures trivial

Algorithm 5: Algorithm ST

RDel : ppv ‰ Hq ^ pppv
“ cvq ÝÑ pv :“ H;

RUpdate : ppv “ fpvqq ^ pppv
‰ cvq ^ pfpvq ‰ Hq ^ pRv ă Rfpvqq ^ pnewv “ Hq ÝÑ Rv :“ Rf;

RPath : ppv R tH, fpvquq ^ pppv
‰ cvq ^ pfpvq ‰ Hq ^ pRv ă Rfpvqq ^ pnewv “ Hq

ÝÑ pRv, newvq :“ pRfpvq, fpvqq;

RMerge : ppv “ Hq ^ pfpvq ‰ Hq ^ pRv ă Rfpvqq ^ pnewfpvq “ Hq ÝÑ ppv,Rvq :“ pfpvq,Rfq;

RReRoot : ppv “ Hq ^ pfpvq ‰ Hq ^ pRv “ Rfpvqq ^ pnewv ‰ Hq ÝÑ ppv, newvq :“ pnewv,Hq;

errors and impostor-root errors for the construction of the spanning tree. Note that it is used
in Freeze only (and not in ST) as these errors are never created by ST and Freeze has higher
priority than Freeze (see Section 4.2).

4.1.1 Predicates

The function fpvq returns the color of the neighbor of v with the maximum root:

fpvq “ tcu : u P Npvq ^ Ru “ maxtRw : w P Npvquu (32)

We now present a list of trivial errors and impostor-root errors for the construction of the
spanning tree. The explanations of the different elements composing the predicate ErSTpvq
follow: (1) A node without relative has its root signature different to its own variables. (2) The
variable δv is not equal to the degree of v. (3) The invariant is not satisfied. (4) A node with
newv “ H (that is, v is not involved in a rerouting process) has a root signature bigger than
that of its parent;(5) A node with newv ‰ H (that is, v is involved in a rerouting process) has
a root signature different from that of its tentative new parent.(6) A root v with newv “ H

and a signature Rv that does not match is own.(7)A node involved in a rerouting process whose
parent’s parent is itself.
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ErSTpvq ”

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

p1q
`

ppv “ Hq ^ pChpvq “ Hq ^ rpRv ‰ pdegv, cv, idvqq _ pnewv ‰ Hqs
˘

_

p2q pδv ‰ degvq_
p3q pnpvq R ttpvu Y Chpvquuq_
p4q

`

pnewv “ Hq ^ pRv ą Rpv
q
˘

_

p5q
`

pnewv ‰ Hq ^ pRv ‰ Rnewvq
˘

_

p6q
`

ppv “ Hq ^ pnewv “ Hq ^ pRv ‰ pdegv, cv, idvqq
˘

_

p7q
`

pnewv ‰ Hq ^ pppv
“ cvq

(33)
Examples of the possible situations are presented in Figure 6.

v

u1

u2

u3u4

(1) Rv “ p5, yellow,wq
(1) newv “ orange
(2) δv “ 5

v

u1

u2

u3u4

(6) Rv “ p5, yellow,wq

v

u1

u2

u3u4

(3) u3 R tpv Y Chpvqu

v

u1

u2

u3u4

(4) Ru1 “ p3, black, 1q

and Rv “ p6, black, 2q

v

u1

u2

u3u4

(5) Ru4 “ p3, black, 1q and Rv “ p6, black, 2q
(7) pu1

“ v

Figure 6: We present various situations arising when evaluating predicate ErSTpvq to true. The
node color denotes its cv variable, the top right circle denote its pv variable (light gray represents
no color), the bottom right square denotes newv variable (light gray represents no color), and
the arrow visually represent the parent-child relationship. Under each situation, the multiset
of numbers represents which conditions of predicate ErSTpvq evaluate too true. For example,
in the first situation, v has degree four yet announces a degree of 5, hence condition (2) of
predicate ErSTpvq evaluates to true.
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4.2 Correctness

Theorem 6. Algorithm ST solves the spanning tree-construction problem in a silent self-
stabilizing way in any n-node graph, assuming the absence of spanning cycle, the state model,
and a distributed unfair scheduler, using Oplog nq bits of memory per node.

Proof of Theorem 6 Let npvq denote the color of v’s neighbor with the maximum degree,
and in case there are several such neighbors, the one with maximum color.

npvq “ tcu : u P Npvq ^ δu “ maxtδw : w P Npvqu ^ cu “ maxtcw : w P N ^ pδw “ δuquu (34)

Lemma 8 (Invariant). For every node v P V such that pv ‰ H and Chpvq ‰ H, npvq P
tpv Y Chpvqu ‰ H remains true.

Proof. Proof by induction

Basis case: When a node v starts the algorithm it chooses for a parent the node with the
maximum degree, if there exist more than one it chooses the one with the maximum
identifier among the ones with the maximum degree. So if a node picks a parent u at
the first execution of the algorithm it takes u “ npvq so for theses nodes the invariant is
preserved. For the nodes v which are a maximum local. We denote by u the node npvq.
Suppose that at the first execution of u, u choses the node w as a parent, that means
Rw ą Ru and Rw ą Rv. So after this execution Ru “ Rw, so now v can choose u as a
parent and the invariant is preserved for node v. So after one execution of the algorithm
for all the nodes the invariant is preserved.

Assumption: Assume true that after t steps of execution, the algorithm preserved the invari-
ant.

Inductive step: Let us consider a node v, by the assumption we have

npvq X ttpvu Y Chpvqu ‰ H

The node v cannot change its children in can only change its parent, and only if v its a
root (see rules RMerge and RReRoot of Algorithm 5). So for v npvq P Chpvq, the rule RMerge

assigns as a parent a new neighbor u (u R Chpvq) so the invariant is preserved. The rule
RReRoot assigns as a parent of v a child of v so the invariant is preserved.

Lemma 9. The descendants u of v with newu “ H have Ru ď Rv.

Proof. Proof by induction on the value Ru with u descendants of v

Base case: Each node v P V with pv “ H and Chpvq “ H has Rv “ pdegv, cv, idvq and
newv “ H, otherwise an error is detected. A node v takes a parent iff there exists a
neighbor w of v such that Rw ą Rv, and in this case v maintains its variable neww “ H,
so the claim is satisfied (see Rule RMerge).

Assumption: Assume that there exists a configuration γ where for every node v P V , all the
descendants u of v with newu “ H have Ru ď Rv.

Inductive step: We consider Configuration γ ` 1. For a node v and every descendants u, the
assumption gives the property that if newu “ H, then Ru ď Rv. Let us now consider the
case where there exists a neighbor w of u with Ru ă Rw.
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´ If w is the parent of u, Ru takes the value of Rw (see rule RUpdate). By the induction
assumption, we have Rw ď Rv (as a parent of u, w is also a descendant of v). So, Ru

remains inferior or equal to Rv.
´ By the induction assumption, if Rw ą Ru, then w cannot be a descendant of u.
´ If w is not in the same subtree of u, u cannot change its parent because u is not a

root (see rule RMerge). So u changes its Ru to Rw, but it sets newu “ w (see rule
RPath).

Now, if there exists a neighbor w of u such that Rw “ Ru, then to execute rule RReRoot, u
must be a root. We obtain a contradiction with our assumption that u is a descendant of
v.

To conclude, if u is the descendant of v in configuration γ and it remains a descendant of v
at configuration γ`1, and the value of newu remains empty, then Ru ď Rv in configuration
γ ` 1.

Lemma 10. If there exists an acyclic spanning structure in Configuration γ, then any execution
of a rule maintains an acyclic spanning structure in Configuration γ ` 1. 2

Proof. Proof by induction on the size of the acyclique spanning structure.

Basis case: By contradiction: Remark that, thanks to Algorithm C-Color, there exist a total
order between the neighbors of a node. Let us consider three neighbor nodes a, b, c P V
such that in Configuration γ, a, b and c have no relatives. Then all three nodes are enabled
by rule RMerge. Let us suppose for the purpose of contradiction that in Configuration γ`1
a cycle exists. More precisely: pa “ b, pb “ c and pc “ a, to achieve that :

1. a must choose b as a parent, for that Rb ą Rc

2. b must choose c as a parent, for that Rc ą Ra

3. c must choose a as a parent, for that Ra ą Rb

We obtain a contradiction between (1),(2) and (3).

Assumption: Assume true that in configuration γ there exists an acyclic spanning structure.

Inductive step: Let us consider a node v P V , a node v takes a new parent only in two cases,
and in both case, v must be a root.

Let us consider first rule RMerge, let u be the neighbor of v with Rv ă Ru and newu “ H.
By Lemma 9, u is not a descendant of v, so if v takes u as a new parent, an acyclic
spanning structure is preserved. Now, we consider rule RReRoot. Let u be the neighbor of
v such that Ru “ Rv and newv “ u. In this case, u is either a child of v with newu ‰ H,
or v is not a child of v with newu “ H. If v is a child of v, v takes u as a parent. Remark
that the first action of u is to delete its parent (see rule RDel, and consider the fact that
all other rules require pv R Chpvq), so we do not consider this case as a cycle. If v is not a
child of v with newu “ H, by Lemma 9 u is not a descendant of v. Now, when v takes u
as a parent, this action maintains an acyclic spanning structure.

To conclude, Configuration γ ` 1 maintains a acyclic spanning structure.

2When a node v has pv P Chpvq, we delete pv (see rule RDel), so we do not consider this case as a cycle.
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Lemma 11. If v is a node such that Rv “ Rr, and every ancestor of v (and v itself) have
new “ H. Then r is an ancestor of v, or v itself.

Proof. Suppose for the purpose of contradiction that r ‰ v, and r is not an ancestor of v. By
Lemma 10, v is an element of a sub spanning tree T. Let w be the oldest ancestor of v such
that neww “ H. By hypothesis, every ancestor z of v (including w) has Rz ‰ Rr. By Lemma 9,
we have Rv ď Rz, which contradicts Rv “ Rr.

Lemma 12. Executing Algorithm ST constructs a spanning tree rooted in the node with the
maximum degree, maximum color, maximum identifier, assuming the state model, and a dis-
tributed unfair scheduler.

Proof. Let ψ : Γˆ V Ñ N be the function defined by:

ψpγ, vq “
`

pdeg`´δvq ` pc` ´ cvq ` pid` ´ idvq
˘

where ` is the node with R` ą Rv with v P V zt`u. Now, let φ : Γ ˆ V Ñ N be the function
defined by:

φpγ, vq “

$

&

%

2 if newv ‰ H

1 if ppv
“ cv

0 otherwise

Remark that a node v cannot have newv ‰ H and pv P Chpvq. Otherwise an error is detected
through predicate ErSTpvq.

Let Ψ : Γ Ñ N2 be the potential function defined by:

Ψpγq “
´

ÿ

vPV

ψpγ, vq,
ÿ

vPV

φpγ, vq
¯

.

Let γ be a configuration such that Ψpγq ą 0, and let v be a node in V such that v is enabled
by a rule of Algorithm ST. If v executes rules RUpdate, RMerge, or RPath, then Rv increases and we
obtain ψpγ1, vq ă ψpγ, vq. Now, if v executes rule RReRoot, this implies newv is not empty. After
execution of RReRoot, newv become empty, so φpγ, vq decreases by one. Finally, if v executes rule
RDel, it implies that v had ppv

“ cv, and now pv “ H. As a result, φpγ1, vq “ φpγ, vq ´ 1 “ 0.

Therefore, we obtain Ψpγ1q ă Ψpγq. By Lemmas 10 and 11 we obtain the property that
when Ψpγq “ 0, a spanning tree rooted in ` is constructed.

Lemma 13. Algorithm ST converges in Op∆n3q steps.

Proof. Direct by the potential function Ψpγq.

We adapt ST to use compact identifiers and obtain Algorithm C-ST. It is simple to
compare two compact identifiers when the nodes are neighbors. Along the algorithm execution,
some nodes become non-root, and therefore the remaining root of fragments can be far away,
separated by non-root nodes. To enable multi-hop comparison, we use a broadcasting and
convergecast wave on a spanning structure to assure the propagation of the compact identifier.

Theorem 7. C-ST solves the spanning tree-construction problem in a talkative self-stabilizing
way in any n-node graph, assuming the absence of spanning cycle, the state model, and a
distributed unfair scheduler, in Oplog ∆` log lognq bits of memory per node.
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Let v a node that wants to broadcast its compact identifier. We add a variable check to our
previous algorithm. This variable checks whether every descendant or neighbor shares the same
compact identifier at the same phase before proceeding to the convergecast. More precisely, a
node u must checks if every neighbors w has Cidu »c Cidw, and if every child has checkv “ true.
If so, it sets its variable checkv “ true, and the process goes on until node v. As a consequence,
v increases or restarts its phase and assigns false to check.

Lemma 14. Algorithm C-ST converges in Op∆n3 log nq steps.

The proof of Theorem 7 mimics the proof of Theorem 6.

5 Self-stabilizing leader election

We now present the final assembly of tools we developed to obtain a self-stabilizing leader
election algorithm. We add to Algorithm C-ST an extra variable ` that is maintained as
follows: if a node v has no parent, then `v “ true, otherwise, `v “ false. Variable `v is meant
to be the output of the leader election process.

Our self-stabilizing leader election algorithm results from combining severals algorithms.
As already explained (see Figure 1), a higher priority algorithm resets all the variables used by
lesser priority algorithms. Moreover, lesser priority algorithm do not modify the variables of the
higher priority algorithms. Algorithms are prioritized as follows: C-Color, Freeze, C-Break
and C-ST. First, starting from an arbitrary configuration, C-Color eventually guaranteed that
colors form a distance two coloring in the network, and those colors never change thereafter (the
algorithm is silent). Then, C-Break ensure that no cycles or fake spanning tree go undetected
forever. If one is found, Freeze is used (with a higher priority) to destroy it. So, after C-Break
terminates (and it does since it is silent), no cycle of fake spanning tree exists.

Only algorithm C-ST is talkative, but the number of steps before electing a single leader
forever is bounded once Algorithms C-Color, Freeze, and C-Break all terminate. Thanks to
Theorem 7, we obtain in a finite number of steps a spanning tree rooted in the node with the
maximum degree, maximum color, and maximum identifier (in lexicographic order). Adding a
leader variable as suggested in this section to Algorithm C-ST guarantees that only the root
of the spanning tree r has `r “ true and every other node v P V ztru has `v “ false. Since the
root of the spanning tree remains the same forever, so does the elected leader.

Theorem 1. Algorithm called C-LE solves the leader election problem in a talkative self-
stabilizing manner in any n-node graph, assuming the state model and a distributed unfair
scheduler, with Oplog ∆` log lognq bits of memory per node.

Proof of Theorem 1. We first need to show that the number of activations of rules of algorithm
C-ST are bounded if there exist nodes enabled by C-Color, Freeze or C-Break. Let us
consider a subset of the nodes A enabled for at least one of these algorithms, and by S the
nodes enabled by rule C-ST. The nodes in S belong to some spanning trees (possibly only
one), otherwise at least one of rules of Freeze or C-Break would be enabled. So, there exist
a node in S that is enabled by algorithm C-ST. Algorithm C-ST is talkative, but it runs by
waves, and its waves require that all neighbors of a node v have the same R at each phase.
As we consider connected graphs only, there exists at least one node v in S with a neighbor u
in A. Then, there exists a configuration γ1 where the rules of C-ST are not enabled, because
u cannot have the same R at each phase (since u is not enabled by rules of C-ST). So, only
Algorithms C-Color, Freeze, and C-Break may now be scheduled for execution, as they have
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higher priority. As they are silent and operate under an unfair distributed scheduler, we obtain
convergence.

Let us now consider a configuration γ where no node are enabled for Algorithm C-Color,
Freeze, and C-Break. There exists a node enabled by Algorithm C-ST. Thanks to Theorem 7,
we obtain a spanning tree rooted at the node with the maximum degree, maximum color, and
maximum identifier. As a consequence, only the root r has `r “ true and every other node
v P V ztru has `v “ false.

6 Conclusion

We presented the first self-stabilizing leader election for arbitrary graphs of size n that uses
oplog nq bits of memory per node, breaking a long-standing lower bound. Our solution does
not require any weakening of the usual self-stabilization model, in partucular it withstands the
most general scheduling assumption: the unfair scheduler. Besides tree construction and leader
election, our research paves the way for new memory efficient self-stabilizing algorithms. For
example, some of the solutions for self-stabilizing maximal matching construction use a fixed
number of “pointer to neighbor” variables [33]. Using our distance two coloring process would
permit to go from Oplog nq to Opmaxtlog ∆, log lognuq bits of memory per node.

In the case of ring shaped networks, an important byproduct of our approach is that, with
respect to previous work [14], we no longer require the hypothesis of weak fairness (simple
progress is sufficient), while the space complexity is not altered. Indeed, in a ring, ∆ “ 2, so
our space complexity becomes Oplog lognq bits per nodes, which is the same as in previous
work [14].

Although there exists several techniques and methods to prove self-stabilization is a system-
atic manner [27, 28, 20, 26, 41], in the context of self-stabilization they are currently limited to
systems that reach a fixed point (a.k.a. a fixed single configuration) after finite time. This im-
plies they may only be used for silent protocols. Alas, silent solutions to leader election require
Ωplog nq bits per node [23]. Instead, we developped a systematic approach based on potential
functions that allow to obtain both correctness proofs and step complexity results. We plan to
further formalize these techniques in future work.
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