Lélia Blin
email: lelia.blin@lip6.fr

Sébastien Tixeuil
email: sebastien.tixeuil@lip6.fr

Compact Self-Stabilizing Leader Election for General Networks *

We present a self-stabilizing leader election algorithm for general networks, with spacecomplexity Oplog ∆ `log log nq bits per node in n-node networks with maximum degree ∆. This space complexity is sub-logarithmic in n as long as ∆ " n op1q . The best spacecomplexity known so far for general networks was Oplog nq bits per node, and algorithms with sub-logarithmic space-complexities were known for the ring only. To our knowledge, our algorithm is the first algorithm for self-stabilizing leader election to break the Ωplog nq bound for silent algorithms in general networks. Breaking this bound was obtained via the design of a (non-silent) self-stabilizing algorithm using sophisticated tools such as solving the distance-2 coloring problem in a silent self-stabilizing manner, with space-complexity Oplog ∆ `log log nq bits per node. Solving this latter coloring problem allows us to implement a sub-logarithmic encoding of spanning trees -storing the IDs of the neighbors requires Ωplog nq bits per node, while we encode spanning trees using Oplog ∆ `log log nq bits per node. Moreover, we show how to construct such compactly encoded spanning trees without relying on variables encoding distances or number of nodes, as these two types of variables would also require Ωplog nq bits per node.

Introduction 1.Motivation

This paper tackles the problem of designing memory efficient self-stabilizing algorithms for the leader election problem. Self-stabilization [START_REF] Dolev | Self-stabilization[END_REF] is a general paradigm to provide recovery capabilities to networks. Intuitively, a protocol is self-stabilizing if it can recover from any transient failure, without external intervention. Leader election is one of the fundamental building blocks of distributed computing, as it enables a single node in the network to be distinguished, and thus to perform specific actions. Leader election is especially important in the context of self-stabilization as many protocols for various problems assume that a single leader exists in the network, even after faults occur. Hence, a self-stabilizing leader election mechanism enables such protocols to be run in networks where no leader is given a priori, by using simple stabilization-preserving composition techniques [START_REF] Dolev | Self-stabilization[END_REF].

Memory efficiency relates to the amount of information to be sent to neighboring nodes for enabling stabilization. As a result, only mutable memory (used to store variables) is considered for computing memory complexity of a self-stabilizing protocols, while immutable memory (used to store the code of the protocol) is not considered. A small space-complexity induces a smaller amount of information transmission, which [START_REF] Adamek | Using abstract simulation for performance evaluation of stabilizing algorithms: The case of propagation of information with feedback[END_REF] reduces the overhead of self-stabilization when there are no faults, or after stabilization [START_REF] Adamek | Using abstract simulation for performance evaluation of stabilizing algorithms: The case of propagation of information with feedback[END_REF], and (2) facilitates mixing self-stabilization and replication [START_REF] Herman | Error-detecting codes and fault-containing selfstabilization[END_REF].

Related work

A foundational result regarding space-complexity in the context of self-stabilizing silent algorithms1 is due to Dolev et al. [START_REF] Dolev | Memory requirements for silent stabilization[END_REF], stating that in n-node networks, Ωplog nq bits of memory per node are required for solving tasks such as leader election. So, only talkative algorithms may have oplog nq-bit space-complexity for self-stabilizing Leader Election solution. Several attempts to design compact self-stabilizing leader election algorithms (i.e., algorithms with spacecomplexity oplog nq bits) were performed but restricted to rings. The algorithms by Mayer et al. [START_REF] Mayer | Self-stabilizing symmetry breaking in constant-space (extended abstract)[END_REF], by Itkis and Levin [START_REF] Itkis | Fast and lean self-stabilizing asynchronous protocols[END_REF], and by Awerbuch and Ostrovsky [START_REF] Awerbuch | Memory-efficient and self-stabilizing network reset[END_REF] use a constant number of bits per node, but they only guarantee probabilistic self-stabilization (in the Las Vegas sense). Deterministic self-stabilizing leader election algorithms for rings were first proposed by Itkis et al. [START_REF] Itkis | Deterministic, constant space, self-stabilizing leader election on uniform rings[END_REF] for rings with a prime number of nodes. Beauquier et al. [START_REF] Beauquier | Memory space requirements for self-stabilizing leader election protocols[END_REF] consider rings of arbitrary size, but assume that node identifiers in n-node rings are bounded from above by n `k, where k is a small constant. The best result known so far in this context [START_REF] Blin | Compact deterministic self-stabilizing leader election on a ring: the exponential advantage of being talkative[END_REF] is a deterministic self-stabilizing leader election algorithm for rings of arbitrary size using identifiers of arbitrary polynomially bounded values, with space complexity Oplog log nq bits per node.

In general networks, self-stabilizing leader election is tightly connected to self-stabilizing tree-construction. On the one hand, the existence of a leader enables time-and memoryefficient self-stabilizing tree-construction [START_REF] Chen | A self-stabilizing algorithm for constructing spanning trees[END_REF][START_REF] Dolev | Self-stabilization of dynamic systems assuming only read/write atomicity[END_REF][START_REF] Collin | Self-stabilizing depth-first search[END_REF][START_REF] Blin | A super-stabilizing log(n)log(n)approximation algorithm for dynamic steiner trees[END_REF][START_REF] Korman | Fast and compact self stabilizing verification, computation, and fault detection of an mst[END_REF]. On the other hand, growing and merging trees is the main technique for designing self-stabilizing leader election algorithms in networks, as the leader is often the root of an inward tree [START_REF] Afek | Memory-efficient self stabilizing protocols for general networks[END_REF][START_REF] Arora | Distributed reset[END_REF][START_REF] Afek | Self-stabilizing unidirectional network algorithms by power supply[END_REF]. To the best of our knowledge, all algorithms that do not assume a pre-existing leader [START_REF] Afek | Memory-efficient self stabilizing protocols for general networks[END_REF][START_REF] Arora | Distributed reset[END_REF][START_REF] Afek | Self-stabilizing unidirectional network algorithms by power supply[END_REF][START_REF] Blin | A self-stabilizing memory efficient algorithm for the minimum diameter spanning tree under an omnipotent daemon[END_REF] for tree-construction use Ωplog nq bits per node. This high space-complexity is due to the implementation of two main techniques, used by all algorithms, and recalled below.

The first main technique is the use of a pointers-to-neighbors variable, that is meant to designate unambiguously one particular neighbor of every node. For the purpose of tree-construction, pointers-to-neighbors variables are typically used to store the parent node in the constructed tree. Specifically, the parent of every node is designated unambiguously by its identifier, requiring Ωplog nq bits for each pointer variable. In principle, it would be possible to reduce the memory to Oplog ∆q bits per pointer variable in networks with maximum degree ∆, by using node-coloring at distance 2 instead of identifiers to identify neighbors. However, this, in turn, would require the availability of a self-stabilizing distance-2 node-coloring algorithm that uses oplog nq bits per node. Previous self-stabilizing distance-2 coloring algorithms use variables of large size. For instance, in the algorithm by Herman et al. [START_REF] Herman | A distributed tdma slot assignment algorithm for wireless sensor networks[END_REF], every node communicates its distance-3 neighborhood to all its neighbors, which yields a space-complexity of Op∆ 3 log nq bits. Johnen et al. [START_REF] Gradinariu | Self-stabilizing neighborhood unique naming under unfair scheduler[END_REF] draw random colors in the range r0, n 2 s, which yields a space-complexity of Oplog nq bits. Finally, while the deterministic algorithm of Blair et al. [START_REF] Blair | An efficient self-stabilizing distance-2 coloring algorithm[END_REF] reduces the spacecomplexity to Oplog ∆q bits per node, this is achieved by ignoring the cost of storing another pointer-to-neighbor variable at each node. In absence of a distance-2 coloring (which their algorithm [START_REF] Blair | An efficient self-stabilizing distance-2 coloring algorithm[END_REF] is precisely supposed to produce), their implementation still requires Ωplog nq bits per node. To date, no self-stabilizing algorithm implement pointer-to-neighbor variables with space-complexity oplog nq bits in arbitrary networks.

The second main technique for tree-construction or leader election is the use of a distance variable that is meant to store the distance of every node to the elected node in the network. Such distance variable is used in self-stabilizing spanning tree-construction for breaking cycles resulting from arbitrary initial state (see [START_REF] Afek | Memory-efficient self stabilizing protocols for general networks[END_REF][START_REF] Arora | Distributed reset[END_REF][START_REF] Afek | Self-stabilizing unidirectional network algorithms by power supply[END_REF]). Clearly, storing distances in n-node networks may require Ωplog nq bits per node. There are a few self-stabilizing tree-construction algorithms that are not using explicit distance variables (see, e.g., [START_REF] Delaët | Self-stabilization with r-operators revisited[END_REF]), but their space-complexity is huge (e.g. Opn log nq bits of memory per node [START_REF] Delaët | Self-stabilization with r-operators revisited[END_REF]). Using the general principle of distance variables with space-complexity below Θplog nq bits was attempted by Awerbuch et al. [START_REF] Awerbuch | Memory-efficient and self-stabilizing network reset[END_REF], and Blin et al. [START_REF] Blin | Brief announcement: Compact self-stabilizing leader election in arbitrary graphs[END_REF]. These papers distribute pieces of information about the distances to the leader among the nodes according to different mechanisms, enabling to store oplog nq bits per node. However, these sophisticated mechanisms have only been demonstrated in rings. To date, no self-stabilizing algorithms implement distance variables with space-complexity oplog nq bits in arbitrary networks.

Our results

In this paper, we design and analyze a self-stabilizing leader election algorithm with spacecomplexity Oplog ∆`log log nq bits in n-node networks with maximum degree ∆. This algorithm is the first self-stabilizing leader election algorithm for arbitrary networks with space-complexity oplog nq (whenever ∆ " n op1q). It is designed for the standard state model (a.k.a. shared memory model) for self-stabilizing algorithms in networks, and it performs against the unfair distributed scheduler.

The design of our algorithm requires overcoming several bottlenecks, including the difficulties of manipulating pointers-to-neighbors, and distance variables using oplog nq bits in arbitrary networks. Overcoming these bottlenecks was achieved thanks to the development of sub-routine algorithms, each deserving independent special interest described hereafter.

First, we extend the bit-wise ring publication technique [START_REF] Blin | Brief announcement: Compact self-stabilizing leader election in arbitrary graphs[END_REF] to arbitrary topologies. Our approach retains the Oplog log nq bits per node complexity for storing identifiers, and is thus independent of the degree.

Second, we propose the first silent self-stabilizing algorithm for distance-2 coloring that breaks the space-complexity of Ωplog nq bits of memory per nodes. More precisely this new algorithm achieves a space-complexity of Oplog ∆ `log log nq bits of memory per nodes. As opposed to previous distance-2 coloring algorithms, we do not use full identifiers for encoding pointer-to-neighbor variables (this would require Oplog nq bits per node). Instead, our compact representation of the identifiers (using Oplog log nq bits per node) enables symmetry breaking. This distance-2 coloring permits to distinguish parent and children and a node's neighbors, allowing the design of a compact encoding of spanning trees.

Third, we design a new technique to detect the presence of cycles given by the current set of pointers-to neighbors. This approach does not use distances, but it is based on the uniqueness of each identifier in the network. Notably, this technique can be implemented by a silent self-stabilizing algorithm, with space-complexity Oplog ∆ `log log nq bits of memory per nodes.

Last but not least, we design a new technique to avoid the creation of cycles during the execution of the leader election algorithm. Again, this technique does not use distances but maintains a spanning forest, which eventually reduces to a single spanning tree rooted at the leader at the completion of the leader election algorithm. Implementing this technique results in a self-stabilizing algorithm with space complexity Oplog ∆ `log log nq bits of memory per nodes.

Model and definitions

Protocol syntax and semantics

We consider a distributed system consisting of n processes that form an arbitrary communication graph. The processes are represented by the nodes of this graph, and the edges represent pairs of processes that can communicate directly with each other. Such processes are said to be neighbors. Let G " pV, Eq be an n-node graph, where V is the set of nodes, and E the set of edges and ∆ the degree of the graph.

Space-complexity in self-stabilization considers only volatile memory (that is, memory whose content changes during the execution of the protocol), while non-volatile memory (whose content does not change during the execution of the protocol, used e.g., to store the code and the constants, and in particular the node unique identifier) is not included in the space complexity. Volatile memory includes the space allocated for protocol variables, and in particular the program counter (that commands the next line of code to execute). So, to achieve oplog nq bits of memory per node, we define helping functions that enable volatile memory to remain below that threshold.

A node v has access to a constant unique identifier id v , but can only access its identifier one bit at a time, using the Bit v piq function, which returns the position of the i th most significant bit equal to 1 in id v . Even though identifiers require Ωplog nq bits of memory per node in the worst case, the Bit function can be stored in the immutable code portion of the node. We present here the pseudocode for the Bit v function at a particular node v. Note that since nodes have unique identifiers, they are allowed to execute unique code. For example, suppose node v has identifier 10 (in decimal notation), or 1010 (in binary notation). Then, one can implement Bit v piq as follows for v " 1010:

Bit v piq :" $ & % 4 if i=1 2 if i=2 -1 if i ą 2
Since we assume that all identifiers are Oplog nq bits long, the Bit v function only returns values with Oplog log nq bits. Also, when executing Function Bit v , the program counter only requires Oplog log nq values. In turn, this position can be encoded with Oplog log nq bits when identifiers are encoded using Oplog nq bits, as we assume they are. A node v has access to locally unique port numbers associated with its adjacent edges. We do not assume any consistency between port numbers of a given edge. In short, port numbers are constant throughout the execution but initialized by an adversary. Each process contains variables and rules. Variable ranges over a domain of values. The variable var v denote the variable var located at node v. A rule is of the form xlabely : xguardy ÝÑ xcommandy [START_REF] Dijkstra | Self-stabilizing systems in spite of distributed control[END_REF]. A guard is a boolean predicate over process variables. A command is a set of variable-assignments. A command of process p can only update its own variables. On the other hand, p can read the variables of its neighbors. This classical communication model is called the state model or the state-sharing communication model. This model is also used in stabilization-preserving compilers that produce actual code [START_REF] Arumugam | Prose: A programming tool for rapid prototyping of sensor networks[END_REF][START_REF] Choi | A state-based model of sensor protocols[END_REF][START_REF] Dalton | Desal alpha: An implementation of the dynamic embedded sensor-actuator language[END_REF][START_REF] Mcguire | The Austin Protocol Compiler[END_REF].

An assignment of values to all variables in the system is called a configuration. A rule whose guard is true in some system configuration is said to be enabled in this configuration. The rule is disabled otherwise. The atomic execution of a subset of enabled rules (at most one rule per process) results in a transition of the system from one configuration to another. This transition is called a step. A run of a distributed system is a maximal alternating sequence of configurations and steps. Maximality means that the execution is either infinite or its final configuration has no rule enabled.

Schedulers

The asynchronism of the system is modeled by an adversary (a.k.a. scheduler) that chooses, at each step, the subset of enabled processes that are allowed to execute one of their rules during this step. Those schedulers can be classified according to their characteristics (like fairness, distribution, ...), and a taxonomy was presented By Dubois et al. [START_REF] Dubois | A taxonomy of daemons in self-stabilization[END_REF]. Note that we assume here an unfair distributed scheduler. This scheduler is the most challenging since no assumption is made of the subset of enabled processes chosen by the scheduler at each step. We only require this set to be nonempty if the set of enabled processes is not empty in order to guarantee progress of the algorithm.

Predicates and specifications

A predicate is a boolean function over configurations. A configuration conforms to some predicate R, if R evaluates to true in this configuration. The configuration violates the predicate otherwise. Predicate R is closed in a certain protocol P , if every configuration of a run of P conforms to R, provided that the protocol starts from a configuration conforming to R. Note that if a protocol configuration conforms to R, and the configuration resulting from the execution of any step of P also conforms to R, then R is closed in P .

A specification for a processor p defines a set of configuration sequences. These sequences are formed by variables of some subset of processors in the system. This subset always includes p itself.

Problem specification prescribes the protocol behavior. The output of the protocol is carried through external variables, that are updated by the protocol, and used to display the results of the protocol computation. The problem specification is the set of sequences of configurations of external variables.

A protocol implements the specification. Part of the implementation is the mapping from the protocol configurations to the specification configurations. This mapping does not have to be one-to-one. However, we only consider unambiguous protocols where each protocol configuration maps to only one specification configuration. Once the mapping between protocol and specification configurations is established, the protocol runs are mapped to specification sequences as follows. Each protocol configuration is mapped to the corresponding specification configuration. Then, stuttering, the consequent identical specification configurations, is eliminated. Overall, a run of the protocol satisfies the specification if its mapping belongs to the specification. Protocol P solves problem S under a certain scheduler if every run of P produced by that scheduler satisfies the specifications defined by S. A predicate I is an invariant of protocol P if every run of P that starts in a state conforming to I satisfies I in every subsequent configuration. Given two predicates l 1 and l 2 for protocol P , l 2 is an attractor for l 1 if every run of protocol P that starts from a configuration that conforms to l 1 contains a configuration that conforms to l 2 . Such a relationship is denoted by l 1 Ź l 2 . Also, the Ź relation is transitive: if l 1 , l 2 , and l 3 are predicates for P , and l 1 Ź l 2 and l 2 Ź l 3 , then l 1 Ź l 3 . In this last case, l 2 is called an intermediate attractor towards l 3 .

Definition 1 (Self-stabilization). A protocol P is self-stabilizing [START_REF] Dolev | Self-stabilization[END_REF] to specification S if there exists a predicate L for P such that:

1. L is an attractor for true, 2. Any run of P starting from a configuration satisfying L satisfies S.

Definition 2 (Leader Election). Consider a system of processes where each process' set of variables is mapped to a boolean specification variable leader denoted by . The leader election specification sequence consists in a single specification configuration where a unique process p maps to p " true, and every other process q ‰ p maps to q " f alse. Definition 3. In the state model, a protocol is silent if and only if every execution is finite. Otherwise, the protocol is talkative.

We measure time complexity with respect to individual steps performed by each process. So, the time complexity of a self-stabilizing leader election algorithm is the highest number of individual steps before a single leader is elected, starting from an arbitrary configuration.

3 Compact self-stabilizing leader election for networks Our new self-stabilizing leader election algorithm is based on a spanning tree-construction rooted at a maximum degree node, without using distances. If multiple maximum degree nodes are present in the network, we break ties with colors and if necessary with identifiers.

Theorem 1. Algorithm called C-LE solves the leader election problem in a talkative selfstabilizing manner in any n-node graph, assuming the state model and a distributed unfair scheduler, with Oplog ∆ `log log nq bits of memory per node.

Our talkative self-stabilizing algorithm reuses and extends a technique for obtaining compact identifiers of size Oplog log nq bits of memory per node presented in Section 3.1. Then, the leader election process consists in running several algorithms layers using decreasing priorities (see also Figure 1):

1. An original silent self-stabilizing distance-2 coloring presented in subsection 3.2 that permits to implement pointer-to-neighbors with oplog nq bits of memory per node.

2. A silent self-stabilizing cycle destruction and illegitimate sub spanning tree-destruction reused from previous work [START_REF] Blin | Space-optimal time-efficient silent self-stabilizing constructions of constrained spanning trees[END_REF][START_REF] Blin | Brief announcement: Compact self-stabilizing leader election in arbitrary graphs[END_REF] presented in subsection 3.3.

3.

A new silent self-stabilizing cycle detection that does not use distance to the root variables presented in subsection 3.4.

4. An original talkative self-stabilizing spanning tree-construction, that still does not use distance to the root variables, presented in subsection 4. This algorithm is trivially modified to obtain a leader election algorithm.

5. In section 5, we describe how to integrate all previous components into a leader election protocol for general graphs.

Compact memory using identifiers

As many deterministic self-stabilizing leader election algorithms, our approach ends up comparing node unique identifiers. However, to avoid communicating the full Ωplog nq bits to each neighbor at any given time, we reuse the scheme devised in previous work [START_REF] Blin | Brief announcement: Compact self-stabilizing leader election in arbitrary graphs[END_REF] to progressively publish node identifiers. Let id v be the identifier of node v. We assume that id v "

ř k i"0 b i 2 i . Let I v " i P t0, ..., ku, b i ‰ 0
(be the set of all non-zero bit-positions in the binary representation of id v . Then, I v can be written as tpos 1 , ..., pos j u, where pos k ą pos k`1 . In the process of comparing node unique identifiers during the leader election algorithm execution, the nodes must first agree on the same bit-position pos j´i`1 (for i " 1, . . . , j); this step of the algorithm Put differently, the bit-positions are communicated in decreasing order of significance in the encoding of the identifier. In turn, this may propagate it to their neighbors, and possibly to the whole network in subsequent phases. This propagation is used in the following to break symmetries in the coloring problem or to detect a cycle in spanning tree construction.

If all identifiers are in r1, n c s, for some constant c ě 1, then the communicated bit-positions are less than or equal to crlog ns, and thus can be represented with Oplog log nq bits. However, the number of bits used to encode identifiers may be different for two given nodes, so there is no common upper bound for the size of identifiers. We circumvent this problem using a ranking on bit-positions that is agnostic on the size of the identifiers. We extract of our previous works the part dedicated to the propagation of the identifier bit by bit in phases, remark that we slightly modify our previous work. Since we do not assume that the identifiers of every node are encoded using the same number of bits, simply comparing the i-th most significant bit of two nodes is irrelevant. Instead, we use variable p B v , which represents the most significant bitposition of node v. In other words, p B v represents the size of the binary representation of id v . The variables ph, Bp are the core of the identifier comparison process. Variable ph v stores the current phase number i, while variable Bp v stores the bit-position of id v at phase i. Remark that the number of non-zero bits can be smaller than the size of the binary representation of the identifier of the node, so if there are no more non-zero bit at phase i ď p B v , we use Bp v " ´1. To make the algorithm more readable, we introduce variable Cid v " p p B v , ph v , Bp v q, called a compact identifier in the sequel. When meaningful, we use Cid i v " p p B v , Bp v q, where i " ph v . Node v can trivially detect an error (see predicate ErTpvq) whenever its compact identifier does not match its global identifier, or its phase is greater than p B v .

ErTpvq "

" Cid v ‰ pBit v p1q, ph v , Bit v pph v qq ‰ _ pph v ą p B v q (1)
Moreover, the phases of neighboring nodes must be close enough: a node's phase may not be more than 1 ahead or behind any of its neighbors; also a node may not have a neighbor ahead and another behind. Predicate SErBpv, Sq captures these conditions, where Spvq denotes a subset of neighbors of v. The set S should be understood as an input provided by an upper layer algorithm.

SErBpv, Sq " ´Du, w P Spvq :

`ph u ą ph v `1˘_ `ph u ă ph v ´1˘_ p|ph u ´ph w | " 2q ¯(2)
If v detects an error through ErTpvq or SErBpv, Sq, it resets its compact identifier to its first phase value (see command ResetCidpvq). In a talkative process, node identifiers are published (though compact identifiers) infinitely often. So, when node v and all its active neighbors have reached the maximum phase (i.e. ph v " p B v), v goes back to phase one. Then, if v has ph v " p B v and an active neighbor u has ph u " 1, it is not an error. But if v has ph v " 1, one active neighbor u has ph u " p B v , and another active neighbor w has ph w ą 1, then an error is detected.

TErBpv, Sq " ´Du, w P Spvq :

" p1 ă ph v ă p B v q ^ppph u ą ph v `1˘_ `ph u ă ph v ´1qq ‰ _ " pph v " p B v q ^`pph u ą 1q _ pph u ă p B v ´1q _ ppph u " ph v ´1q ^pph w " 1qq ˘‰_ " pph v " 1q ^`pph u ą 2q _ pph u ă p B v q _ ppph u " p B v q ^pph w " 2qq ˘‰¯ (3)
If v detects an error through ErTpvq, SErBpv, Sq or TErBpv, Sq, it resets its compact identifier to its first phase value:

Erpv, Sq " ErTpvq _ SErBpv, Sq _ TErBpv, Sq (4)
ResetCidpvq :

Cid 1 v :" p p B v , ph v , Bp v q " pBit v p1q, 1, Bit v p1qq (5)
This may trigger similar actions at neighbors in S, so that all such errors eventually disappear. The compact identifier of u is smaller (respectively greater) than the compact identifier of v, if the most significant bit-position of u is smaller (respectively greater) than the most significant bit-position of v, or if the most significant bit-position of u is equal to the most significant bitposition of v, u and v are in the same phase, and the bit-position of u is smaller (respectively greater) than the bit-position of v:

Cid i u ă c Cid i v " p p B u ă p B v q _ `pp B v " p B u q ^pBp u ă Bp v q ˘(6)
When two nodes u and v have the same most significant bit-position and the same bit position at phase i ă p B v , they are possibly equal with respect to compact identifiers (denoted by » c).

Cid i u » c Cid i v " pi ă p B v q ^`p p B v " p B u q ^pBp u " Bp v q ˘(7)
Finally, two nodes u and v have the same compact identifier (denoted by " c) if their phase reaches the size of the binary representation of the identifier of the two nodes, and their last bit-position is the same.

Cid i u " c Cid i v " pi " p B v " p B u q ^pBp u " Bp v q (8)
The predicates SPh `pvq and TPh `pv, Sq check if a node v can increases its phase (or restarts Cid v), the first one is dedicated to the silent protocols, the second one is dedicated to the talkative protocols. The command IncP hpvq is dedicated for increasing phases or restarting Cid v . Last, the command Opt assigns at a node v the minimum (or maximum) compact identifier in the subset of neighbors Spvq. We have now, all the principals ingredients to use compact identifiers. Predicate SPh `pvq is true if for every node u in Spvq, either

Cid i u » c Cid i v , or ph u " ph v `1.
SPh `pv, Sq " @u P Spvq :

pCid i u » c Cid i v q _ pph u " ph v `1q (9)
Similarly, TPh `pv, Sq is true if for every node u in Spvq, either Cid i u " c Cid i v , or ph u " 1. Remark that when the self-stabilizing algorithm is talkative, when the phase reaches the maximum, the publication restart at the first phase. As a consequence, the next phase to compare when a node reaches the maximum phase is the phase 1.

TPh `pv, Sq " SPh `pv, Sq _ @u P Spvq :

pph v " p B v q ^`pCid i u " c Cid i v q _ pph u " 1q ˘(10)
When TPh `pv, Sq or SPh `pvq is true, v may increase its phase:

IncP hpvq : Cid v :" # p p B v , ph v `1, Bit v pph v `1qq if ph v ă p B v p p B v , 1, Bit v p1qq if ph v " p B v (11)
In some case, we need to compute the minimum or the maximum on compact identifiers. Let f denote a function that is either minimum or maximum. Let us denote by C p Bpv, S, f q the minimum or the maximum most significant bit of nodes in Spvq.

C p

Bpv, S, f q " f t p B w :

w P Spvqu (12)
To compare compact identifiers, one must always refer to the same phase; we always consider the minimum phase for nodes in Spvq.

CPhpv, S, f q " mintph w :

w P Spvq, p B w " C p Bpw, S, f qu (13)
Finally, we compute the minimum or the maximum bit position.

CBppv, S, f q " f tBp w : w P Spvq, ph w " CPhpw, S, f qu

Predicate MinCidpv, Sq checks if Cid v is equal to the minimum among nodes in Spvq:

MinCidpv, Sq " `Cid v " pC p Bpv, S, minq, CPhpv, S, minq, CBppv, S, minqq ˘(15)
The predicate MaxCidpv, Sq does the same for the maximum:

MaxCidpv, Sq " `Cid v " pC p Bpv, S, maxq, CPhpv, S, maxq, CBppv, S, maxqq ˘(16)

Node v may use Opt to assign its local variables the minimum (or maximum) compact identifier in Spvq.

Optpv, S, f q :

$ & % p B v :" C p Bpv, S, f q ph v :" CPhpv, S, f q Bp v :" CBppv, S, f q (17)
We have now, all the ingredients to use compact identifiers.

Cid 1 v » c Cid 1 u 2 ; Cid v ă c Cid u 3 ;Cid v ă c Cid u 4
, and MaxCidpv, N pvqq " p4, 1, 4q. On the right subfigure (b), nodes u and v are incomparable, so u increases its phase.

Silent self-stabilizing distance-2 coloring

In this section, we provide a new solution to assign colors that are unique up to distance two (and bounded by a polynom of the graph degree) in any graph. Those colors are meant to efficiently implement the pointer-to-neighbor mechanism that otherwise requires Ωplog nq bits of memory per node. The remaining of the section is organized as follows: Subsection 3.2.1 presents high level concepts of our solution, Subsection 3.2.2 lists functions and predicates used in the algorithm, Subsection 3.2.3 formally presents the algorithm, while Subsection 3.2.4 is dedicated to establishing its proof of correctness.

Self-stabilizing algorithm high level description

Our solution uses compact identifiers to reduce memory usage. When a node v has the same color as (at least one of) its neighbors, then if the node v has the smallest conflicting color in its neighborhood and is not the biggest identifier among conflicting nodes, then v changes its color. To make sure a fresh color is chosen by v, all nodes publish the maximum color used by their neighborhood (including themself). So, when v changes its color, it takes the maximum advertised color plus one. Conflicts at distance two are resolved as follow: let us consider two nodes u and v in conflict at distance two, and let w be (one of) their common neighbor; as w publishes the color of u and v, it also plays the role of a relay, that is, w computes and advertises the maximum identifiers between u and v, using the compact identifiers mechanisms that were presented above; a bit by bit, then, if v has the smallest identifier, it changes its color to a fresh one. To avoid using too many colors when selecting a fresh one, all changes of colors are made modulo an upper bound on the number of neighbors at distance 2, which is computed locally by each node.

In our self-stabilizing coloring algorithm, called C-Color, each node v maintains a color variable denoted by c v and a degree variable denoted by δ v . A variable q c v stores the minimum color in conflict in its neighborhood (including itself). The variable p c v stores the maximum color observed in its neighborhood. We call v a player node when v has the minimum color in conflict. Also, we call u a relay node when u does not have the minimum color in conflict, yet at least two of its neighbors have the minimum color in conflict. The nodes continuously update their variables according to the minimum and maximum colors published by their neighbors. A player node whose compact identifier is smaller than the compact identifier of its neighbors (be them players or relay nodes) becomes a loser node and changes its color. If all the neighborhood of a player node p has the same phase and the same compact identifier, then p increases its phase, until it becomes a loser or no conflict remains in p's neighborhood. When a player node and its neighborhood reach the maximum phase, they restart at the first phase. A relay node continuously takes the value of the greatest compact identifier of its player neighbors, for the purpose that at least one of them becomes a loser. Note that, a node may alternate between being a relay and a player, until the coloring is complete. This algorithm is silent, once the system reaches a distance two coloring, the color variables remain the same.

Functions, predicates and actions used by algorithm C-Color

Note that all rules are exclusive, because a node v cannot be both Playerpvq and Relaypvq. Let us now describe the functions, predicates and actions use by algorithm C-Color. Remember that N rvs " N pvq Y tvu. Function ∆pvq returns the maximum degree between v and its neighbors, and is used to define the range r1, ∆pvq 2 `1s of authorized colors for a node v:

∆pvq " maxtδ u : u P N rvsu (18)
The function mCpvq returns the minimum color in conflict at distance one and two :

mCpvq :" mintc u : u, w P N rvs ^pu ‰ wq ^pc u " c w qu

The function MCpvq returns the maximum color used at distance one :

MCpvq :" max c u : u P N rvs ((20)
The predicate Badpvq is true if v has not yet set the right value for either mCpvq or MCpvq. Moreover, this predicate checks if v's compact identifier matches its global identifier (see predicate 1: ErTpvq) and if the phases of the subset of v's neighbors Othpvq are coherent with v (see predicate 2: SErBpv, Othpvq).

Badpvq " pq c v ‰ mCpvqq _ pp c v ‰ MCpvqq _ pErTpvq _ SErBpv, Othpvqq (21)
The predicate Playerpvq is true if v has the minimum color in conflict (announced by its neighbors or by itself). Observe that the conflict may be at distance one or two:

Playerpvq " pc v " mintq c u , u P N rvsuq (22)
The predicate Relaypvq is true if v does not have the minimum color in conflict, and at least two of its neighbors have the minimum color in conflict:

Relaypvq " pq c v ‰ c v q ^pq c v " mintq c u , u P N rvsuq ^pDu, w P N pvq, pq c v " c u q ^pq c v " c w qq [START_REF] Dolev | Memory requirements for silent stabilization[END_REF] The function PlayRpvq returns the subset of v's neighbors that have the minimum color in conflict, when v is a relay node:

PlayRpvq :" tu : u P N pvq ^cu " q c v u (24)
The function Othpvq returns the subset of v's neighbors that are in conflict with v at distance one, or the set of relay nodes for the conflict at distance two, when v has Playerpvq equal to true: Othpvq :" tu : u P N pvq ^cu " c v u Y tu :

u P N pvq ^q c u " c v u (25)
The predicate Loserpvq is true whenever a competing player of v has a greater bit position at the same phase. A node whose identifier is maximum among competitors does not change its color, but any losing competitor does.

Loserpvq " Du P Othpvq :

Cid i v ă c Cid i u (26)
The predicate RUppvq is true if a relay node is not according to its player neighbors, like we decide to change the color of the node with the minimum identifier the relay node stores the maximum compact identifier of its player neighbors:

RUppv, PlayRpvqq " Cid v ‰ c MaxCidpv, PlayRpvqq (27)
The action Updatepvq updates the variables q c v , p c v and resets the variables relatives to the identifier (see command ResetCid(v) in equation 5).

Updatepvq : q c v :" mCpvq; p c v :" MCpvq; ResetCidpvq;

When a node change its color, it takes the maximum color at distance one and two plus one modulo ∆pvq 2 `1, and then add one to assign colors in the range r1, . . . , ∆pvq 2 `1s.

N ewcolorpvq : c v :" `pmaxtMC u : u P N rvsu `1q mod ∆pvq The color of the main rectangle denotes the node's color (variable c v), the upper left disc color denotes the maximum color used at distance 1 (variable p c v), the lower left disc color denotes the minimum color in conflict at distance 1 or 2 (variable q c v). The light gray color denotes the absence of any color. The rule immediately under a node denotes which rule is executed to reach the next configuration of the execution.

Algorithm C-Color

The rule R ∆ assures that the degree variable is equal to the degree of the node. Each node v must maintain its color in range r1, ∆pvq 2 `1s to satisfy the memory requirements of our protocol, where ∆pvq is a function that returns the maximum degree of its neighborhood (including itself). Whenever v's color exceeds its expected range, rule R ∆ resets the color to one. Rule R Up is dedicated to updating the variables of v whenever they do not match the observed neighborhood of v (see Badpvq), or when a player node has an erroneous phase variable when comparing its identifier with another player node (see function Othpvq). In both cases, the v computes the minimum and maximum color and resets its compact identifier variable (see command Updatepvq 28). The rule R Color increases the color of the node v but maintains the color in some range (see command N ewcolorpvq 29), when v has the minimum color in conflict and the minimum identifier. The rule R Bit increases the phase of v, when v is a player and does not have the minimum identifier at the selected phase. The rule R Relay updates the identifier variable when v is a relay node.

Algorithm 1: C-Color

R∆ : pδv ‰ degpvqq ÝÑ δv :" degpvq; R ∆ : pδv " degpvqq ^pcv ą ∆pvq 2 q ÝÑ cv :" 1; RUp : pδv " degpvqq ^pcv ď ∆pvq 2 q ^Badpvq ÝÑ Updatepvq;

RColor : pδv " degpvqq ^pcv ď ∆pvq 2 q ^ Badpvq ^Playerpvq ^Loserpvq ÝÑ N ewcolorpvq;

RBit

: pδv " degpvqq ^pcv ď ∆pvq 2 q ^ Badpvq ^Playerpvq ^ Loserpvq ^SPh `pv, Othpvqq ÝÑ IncP hpvq;

RRelay : pδv " degpvqq ^pcv ď ∆pvq 2 q ^ Badpvq ^Relaypvq ^RUppv, PlayRpvqq ÝÑ Optpv, PlayRpvq, maxq;

Correctness

Theorem 2. Algorithm C-Color solves the vertex coloration problem at distance two using ∆ 2 `1 colors in a silent self-stabilizing manner in graph, assuming the state model, and a distributed unfair scheduler. Moreover, if the n node identifiers are in r1, n c s, for some c ě 1, then C-Color uses Oplog ∆ `log log nq bits of memory per node.

In the details of lemmas that are presented in the sequel, we use predicates on configurations. These predicates are mean to be intermediate attractors towards a legitimate configuration (i.e., a configuration with a unique leader). To establish that those predicates are indeed attractors, we use potential functions [START_REF] Arora | Convergence of iteration systems[END_REF][START_REF] Stomp | Structured design of self-stabilizing programs[END_REF][START_REF] Tixeuil | Algorithms and Theory of Computation Handbook[END_REF], that is, functions that map configurations to non-negative integers, and that strictly decrease after any algorithm step is executed. In the remaining of the paper, the potential functions we define closely match the proof arguments of the following Lemma/Theorem. That is, various invariants are defined for each property we wish to prove, and the potential function makes sure the output value decreases until the invariant is reached.

To avoid additional notations, we use sets of configurations to define predicates; the predicate should then be understood as the characteristic function of the set (that returns true if the configuration is in the set, and false otherwise).

Lemma 1. Using a range of r1, ∆pvq 2 `1s for colors at node v is sufficient to enable distance-2 coloring of the graph.

Proof. In the worst case for the number of colors, all neighbors at distance one and two of v have different colors. Now, v has at most ∆pvq neighbors at distance one, each having ∆pvq ´1 other neighbors than v. In total, v has at most ∆pvq 2 ´∆pvq neighbors at distance up to two, each having a distinct color. Using a range of r1, ∆pvq 2 `1s for v's color leaves at least ∆pvq `1 available colors for node v. Proof. The function Λpγq decreases by any execution of rules R ∆ and R ∆. Remark that degpvq is considered a non corruptible local information, so once v has executed R ∆ , this rule remains disabled afterwards. Moreover, R Color maintains the value of the color inferior (or equal) to ∆pvq 2 `1, and other rules modifying the color maintain this invariant. Hence, if the scheduler activates rules R ∆ or R ∆, we obtain Λpγ 1 q ă Λpγq, otherwise if other rules are activated, then Λpγ 1 q " Λpγq. We already saw that, when the scheduler activates a node v for rule R Color , we obtain Cpγ 1 q ă Cpγq. Overall, if the scheduler activates rules R ∆ , R ∆, or R Color we obtain Φpγ 1 q ă Φpγq. We now consider the cases where the scheduler activates other rules.

First, we focus on rule R Up . Let us consider A 1 pγq, the set of nodes enabled in configuration γ for this rule, and a node v such that v P A 1 pγq. In other words, v has Badpvq " true (see predicate [START_REF] Dijkstra | Self-stabilizing systems in spite of distributed control[END_REF]. If v has pq c v ‰ mCpvqq _ pp c v ‰ MCpvqq in γ, then after activation of v, we obtain q c v " mCpvq and p c v " MCpvq in γ 1 by the command N ewcolorpvq (see command 29), because mCpvq and MCpvq depend only on the color of the neighbors of v (see Function 19 and 20). The same argument applies for pErTpvq _ SErBpv, Othpvqqq, because Cid v is computed only with the identifier of v. So, after execution of R Up by v, we obtain ψpγ 1 , vq ă ψpγ, vq, thanks to the execution of the command Update(v) (see command 28) that assigns f alse to Badpvq. Remark that, if the color of the neighbors of v does not change, rule R Up remains disabled. Now, if the color changes, Φpγq still decreases thanks to Lemma 2.

Let us consider now a configuration where the rule R Up is disabled for every node. Rule R Bit increases the phase of a player node, so after activation of this rule we obtain ψpγ 1 , vq ă ψpγ, vq. Executing rule R Relay decreases also ψpγ 1 , vq due to RUppv, PlayRpvqq (see predicate [START_REF] Ducourthial | Self-stabilization with r-operators[END_REF] , because when all nodes in PlayRpvq (see function 24) have increase their phases, ψ decreases for all v's neighbors. Note that, when a conflict for a color c is resolved, a node can become a player node or a relay node for another color c 1 , but then c 1 ą c. So pn ´c1 q ă pn ´cq, hence ψ decreases.

If a node has no conflict at distance one or two, it never changes its color, so once the system reaches a distance-2 coloring, it remains with the same coloring. Proof. Direct by the potential function Φpγq.

Cleaning a cycle or an impostor-rooted spanning tree

The graph G is supposed to be colored up to distance 2, thanks to our previous algorithm. To construct a spanning tree of G, each node v maintains a variable p v storing the color of v's parent (H otherwise). The function Chpvq to return the subset of v's neighbors considered as its children (that is, each such node u has its p u variable equal v's color). Note that the variable parent is managed by the algorithm of spanning tree-construction.

An error is characterized by the presence of inconsistencies between the values of the variables of a node v and those of its neighbors. In the process of a tree-construction, an error occurring at node v may have an impact on its descendants. For this reasons, after a node v detects an error, our algorithm cleans v and all of its descendants. The cleaning process is achieved by Algorithm Freeze, already presented in previous works [START_REF] Blin | Brief announcement: Compact self-stabilizing leader election in arbitrary graphs[END_REF][START_REF] Blin | Space-optimal time-efficient silent self-stabilizing constructions of constrained spanning trees[END_REF]. Algorithm Freeze is run in two cases: cycle detection (thanks to predicate ErCyclepvq, presented in Subsection 3.4), and impostor leader detection (thanks to predicate ErSTpvq, presented in Subsection 4). An impostor leader is a node that (erroneously) believes that it is a root.

When a node v detects a cycle or an impostor root, v deletes its parent. Simultaneously, v becomes a frozen node. Then, every descendant of v becomes frozen. Finally, from the leaves of the spanning tree rooted at v, nodes delete their parent and reset all variables that are related to cycle detection or tree-construction. So, this cleaning process cannot create a livelock. Algorithm Freeze is a silent self-stabilizing algorithm using Op1q bits of memory per node.

It is important to note that a frozen node, or the child of a frozen node, does not participate in cycle detection or spanning tree-construction.

We now recall Freeze in Algorithm 2. This algorithm uses only one binary variable froz. This approach presents several advantages. After v detecting a cycle, the cycle is broken (v deletes its parent), and a frozen node cannot reach its own subtree, due to the cleaning process taking place from the leaves to the root. So, two cleaning processes cannot create a livelock.

Algorithm 2: Algorithm Freeze R Error : ErCyclepvq _ ErSTpvq ÝÑ froz v :" 1, p v :" H; R Froze : ErCyclepvq ^ ErSTpvq ^pfroz p v " 1q ^pfroz v " 0q ÝÑ froz v :" 1; R Prun :
ErCyclepvq ^ ErSTpvq ^pfroz p v " 1q ^pfroz v " 1q ^pChpvq " Hq ÝÑ Resetpvq;

Theorem 3. Algorithm Freeze deletes a cycle or an impostor-rooted sub spanning tree in n-nodes graph in a silent self-stabilizing manner, assuming the state model, and a distributed unfair scheduler. Moreover, Algorithm Freeze uses Op1q bits of memory per node and converges in Opnq steps.

Proof of Theorem 3 is due to Blin et al. [START_REF] Blin | Space-optimal time-efficient silent self-stabilizing constructions of constrained spanning trees[END_REF].

Silent self-stabilizing algorithm for cycle detection

We present in this subsection a self-stabilizing algorithm to detect cycles (possibly due to initial incorrect configuration) without using the classical method of computing the distance to the root. We first present our solution with the assumption of global identifiers (hence using Oplog nq bits for an n-node network) and then using our compact identifier scheme postponed in subsection 3.4.3.

Silent Self-stabilizing algorithm with identifiers

The main idea to detect cycles is to use the uniqueness of the identifiers. We flow the minimum identifier up to the tree to the root, then if a node whose identifier is minimum receives its identifier, it can detect a cycle. Similarly, if a node v has two children flowing the same minimum identifier, v can detect a cycle. The main issue to resolve is when the minimum identifier that is propagated to the root does not exist in the network (that is, it results from an erroneous initial state).

The variable m v stores the minimum identifier collected from the leaves to the root up to node v. We denote by E v the minimum identifier obtained by v during the previous iteration of the protocol (this can be H). A node v may selects among its children the node u with the smallest propagated identifier stored in m u , we call this child kid returned by the function kpvq. Predicate ErCyclepvq is the core of our algorithm. Indeed, a node v can detect the presence of a cycle if it has a parent and if (i) one of its children publishes its own identifier, or (ii) two of its children publish the same identifier. Let us explain those conditions in more detail. We consider a spanning structure S, a node v P S and let u and w be two of its children. Suppose that v and u belong to a cycle C, note that, since a node has a single parent, w cannot belong to any cycle (see Figure 4). Let q m be the minimum identifier stored by any variable m z such that z belongs to S. So, z is either in C, or in the subtree rooted to w, denoted by T w .

First, let us consider the case where q m is stored in T w . As any node selects the minimum for flowing the m upstream, there exists a configuration γ where m w " q m, and a configuration γ 1 ą γ where m u " q m. In γ 1 , v can detect an error, due to the uniqueness of identifier, it is not possible for two children of v to share the same value when there is no cycle. Now, let us suppose that q m is in C, and let v 1 be the node with the smallest identifier in C, so

m v 1 " q m or m v 1 ‰ q m (m v 1 ‰ q m means that the identifier q m does not exist in C.) If m v 1 " q m,
as any node selects the minimum for flowing the m upstream, there exists a configuration γ where m u 1 " q m and u 1 is the child of v 1 involved in C, then v 1 can detect an error. Indeed, due to the uniqueness of identifier, it is not possible that one of its children store its identifier when there is no cycle. The remaining case is when m v 1 ‰ q m. In this case, as any node selects the minimum for flowing the m upstream, there exists a configuration γ where m z " q m, with z belonging to C. When a node v, its parent and one of its children share the same minimum, they restart the computation of the minimum identifier. For this purpose, they put their own identifier in the m variable. To avoid livelock, they also keep track of the previous q m in variable E v . Now q m " m v 1 , so the system reaches the first case. Note that the variable E v blocks the live-lock but also the perpetual restart of the nodes, as a result of this, a silent algorithm. Moreover, a node v collects the minimum identifier from the leaves to the root, if m v contains an identifier bigger than the identifier of the node v, then v detects an error. The same holds, when v has a m v smaller than m u with u children of v, since the minimum is computed between m kpvq and its own identifier.

ErCyclepvq " pp v ‰ Hq ^´pm kpvq " id v q _ pDpu, wq P Chpvq : m u " m w q_ pm v ą id v q _ `pm v ‰ id v q ^pm v ă m kpvq q ˘Ōur algorithm only contains three rules. The rule R Min pvq updates the variable m v if the variable m u of a child u is smaller, nevertheless this rule is enabled if and only if the variable E v does not contain the minimum m u published by the child. When v and its relatives have the same minimum, v declares its intent to restart a minimum identifier computation by erasing its current (and storing it in E v). The rule R Start pvq is dedicated to declaring its intent to restart. When all its neighbors have the same intent, v can restart (see rule R ID pvq).

An example execution of Algorithm Break is depicted in Figure 5.

Correctness of the algorithm Break

Theorem 4. Algorithm Break solves the detection of cycle in n-node graph in a silent selfstabilizing manner, assuming the state model, and a distributed unfair scheduler. Moreover, if the n node identifiers are in r1, n c s, for some c ě 1, then algorithm Break uses Oplog nq bits of memory per node. m v pγq: Rule R ID needs E v pγq " m v pγq, so βpγ, m v pγqq " 2. Now, we have E v pγ 1 q " m v pγq ‰ m v pγ 1 q, and we obtain βpγ, m v pγqq " 2 ą βpγ 1 , m v pγqq " 1.

Algorithm 3: Algorithm Break For node v with ErCyclepvq R Min : pm v ą m kpvq q ^pE v ‰ m kpvq q ÝÑ m v :" m kpvq ; R Start : pm p v " m v " m kpvq q ^pE v ‰ m v q ÝÑ E v :" m v ; R ID : pE p v " E v " E kpvq " m v q ^pm v ‰ id v q ÝÑ m v :" id v ; id v , m v , E v 8,7,4 7,6,4 5,5,4 3,4,4 4,2,2 2,18 8,7,4 5,5,4 7,6,4 3,2,4 4,2,2 2,17 8,7,4 7,5,4 5,2,4 3,2,4 4,2,2 2,16 8,5,4 7,2,4 5,2,4 3,2,2 4,2,2 2,14 8,2,4 7,2,4 5,2,2 3,2,2 4,2,2 2,12 8,2,2 7,2,2 5,2,2 3,3,2 4,2,2 2,9 8,8,2 7,7,2 5,5,2 3,3,2 4,4,2 2,4 8,8,2 7,7,2 5,3,2 3,3,2 4,4,2 3,12 8,8,2 7,3,2 5,3,2 3,3,2 4,4,2 3,8 8,3,2 7,3,2 5,3,2 3,3,2 4,4,2 3,4 8,3,2 7,3,2 5,3,2 3,3,2 4,3,2 3,0
As a consequence, βpγ 1 , iq " βpγ, iq for i ă m v pγq and βpγ 1 , m v pγqq ă βpγ, m v pγqq. So, if the scheduler activates only v for rule R ID pvq, we obtain Ξpγ 1 q ă Ξpγq.

• Rule R Min pvq: m v pγ 1 q ă m v pγq and E v pγq ‰ m v pγ 1 q by definition of rule R Min pvq, so in γ, we have αpγ, v, m v pγ 1 qq " 4 because m v pγ 1 q ă m v pγq and m v pγ 1 q can improve m v pγq. Now, we have αpγ 1 , v, m v pγ 1 qq " 3 because E v pγ 1 q ‰ m v pγ 1 q. m v pγ 1 q ă m v pγq, so if the scheduler activates only v for rule R Min pvq, we obtain Ξpγ 1 q ă Ξpγq.

To conclude, Ξpγ 1 q ă Ξpγq for every configurations γ and γ 1 , when γ 1 occurs later than γ.

Proof of Theorem 4. Now we prove that, in Γ B if the spanning structure S contains a least one cycle C, then at least one node v in C has ErCyclepvq " true. For the purpose of contradiction, let us assume the opposite. Let γ P Γ B and every node v in the cycle C in γ has ErCyclepvq " f alse. By definition all the nodes in C have a parent, and all the nodes have m v ě m kv . Now, if a node v shares the same m with its parent and its child, then rule R Start is enabled for v, a contradiction with Ξpγq " 0. In a cycle, it is not possible that all nodes have m v ą m kv (due to well foundedness of integers, at least one node v has m v ă m kv), which is a contradiction with the assumption that every node v is such that ErCyclepvq " f alse.

Lemma 7. Algorithm Break converges in Opn n q steps.

Proof. Direct by the potential function Ξpγq.

Silent self-stabilizing cycle detection with compact identifiers

We refine algorithm Break to make use of compact identifiers (of size Oplog log nq instead of global identifiers (of size Oplog nq). With compact identifiers, the main problem is the following: two nodes u and v can deduce that Cid u " c Cid u if and only if they have observed Cid i u » c Cid i v during every phase i, with 1 ď i ď p B v . A node v selects the minimum compact identifier stored in variable m in its neighborhood (including itself). If it is the case that in a previous configuration, one of v's children presented v a compact identifier smaller than its own, v became passive (Variable Active v " f alse), and remained active otherwise (Variable Active v " true). Only active nodes can continue to increase their phase. Moreover, a node increases its phase if and only if its parent and one of its children u has the same information, namely

Cid i u » c Cid i v » c Cid i p v .
Observe that in a spanning tree, it is possible that several nodes do not increase their phases. For example, leaf nodes are in such a situation. To explain why the absence of phase increases does not cause trouble, let v be the node with the smallest identifier involved in a cycle and let us suppose that v has two children, one child u involved in the cycle, and another child w that isn't. In some configuration, w may not be able to increase its phase, but then u reaches the same phase of the active node v, so v increases its phase, and the system reaches a configuration where Cid i u " c Cid i v . Then, v detects an cycle error. Variable E v combined to this compact identifier usage permits to obtain a silent algorithm.

Predicate ErCycle now takes into account the error(s) related to compact identifiers management. It is important to note that the cycle breaking algorithm does not manage phase differences. Indeed, a node v whose phase is bigger than that of one of its children u assigns m u to m v , if and only if ph v ą ph u `1 or no child of v has the same compact identifier as v. The m v variable is be compared using lexicographic order by rule R Min . The modifications to algorithm Break are minor. We add only one rule to increases the phase: R Inc . Only a passive node can restart. Remark that now the m variable uses Oplog log nq bits. As the p variables store a color, we obtain a memory requirement of Opmaxtlog ∆, log log nuq bits per node.

Algorithm C-Break and Predicates

Predicate ErCycle must be updated to take into account this extra care. We denote by k v the child of v with minimum compact identifier stored in m v . Moreover, predicate ErCycle now takes into account the error(s) related to compact identifiers management (see Equation 1: ErTpvq). It is important to note that the cycle breaking algorithm does not manage phase differences. The compact identifier stored in m v is be compared using lexicographic order by rule R Min .

ErCyclepvq " pp v ‰ Hq ^´pm kpvq " c Cid i v q _ pDpu, wq P Chpvq : m u " c m w q _ pm v ą c Cid i v q_

`pm v fi c Cid v q ^pm v ă c m kpvq q ˘_ pActive v ^ErTpvqq (31)
Algorithm 4: Algorithm C-Break For node v with ErCyclepvq

R Inc : Active v ^pm p v » c m v » c m kpvq q ÝÑ IncP hpvq; R Start : Active v ^pm p v » c m v » c m kpvq q ^pE v fi c m v q ÝÑ E v :" m v ;
R Min : pm v ą c m kpvq q ^pE v fi c m kpvq q ÝÑ m v :" m kpvq , Active v :" f alse;

R ID : pE p v » c E v » c E kpvq » c m v q ^pm v fi c Cid 1 v q ÝÑ m v :" Cid 1 v , Active v :" true;
Theorem 5. The algorithm C-Break solves the detection of cycle in arbitrary n-node graph in a silent self-stabilizing manner, assuming the state model, and a distributed unfair scheduler. Moreover, if the n node identifiers are in r1, n c s, for some c ě 1, then algorithm C-Break uses Opmaxtlog ∆, log log nuq bits of memory per node and converges in Opn n log nq steps.

The proof of theorem 5 mimics the proof of algorithm Break. The extra log n steps factor (with respect to algorithm Break) results from the number of comparisons that are necessary when using compact identifiers.

Talkative spanning tree-construction without distance to the root

Our approach for self-stabilizing leader election is to construct a spanning tree whose root is to be the elected leader. Two main obstacles to self-stabilizing tree-construction are the possibility of an arbitrary initial configuration containing one or more cycles, or the presence of one or more impostor-rooted spanning trees. We already explained how the cycle detection and cleaning process takes place, so we focus in this section on cycleless configurations. The main idea is to mimics the fragments approach introduced by Gallager et al. [START_REF] Gallager | A distributed algorithm for minimumweight spanning trees[END_REF]. In an ideal situation, at the beginning each node is a fragment, each fragment merges with a neighbor fragment holding a bigger root signature, and at the end remains only one fragment, rooted in the root with the biggest signature (that is, the root with maximum degree, maximum color, and maximum global identifier). To maintain a spanning structure, the neighbors that become relatives (that is, parents or children) remain relatives after that. Note that the relationship may evolve through time (that is, a parent can become a child and vice versa). So our algorithm maintains that as an invariant (see Lemma 8). Indeed, when two fragments merge, the one with the root with smaller signature F 1 and the other one with a root with bigger signature F 2 , the root of F 1 is re-rooted toward its descendants until reaching the node that identified F 2 . This approach permits to construct an acyclic spanning structure, without having to maintain distance information. The variable R v stores the signature relative to the root (that is, its degree, its color, and its identifier). Note that, the comparison between two R is done using lexical ordering. The variable new v stores the color of the neighbor w of v leading to u with R u ą R v if there exists such a node, and H otherwise. The function fpvq returns the color of the neighbor of v with the maximum root (see 32).

Algorithm description

Let us now give more details about our algorithm (presented in Algorithm 5). If a root v has a neighbor u with R u ą R v , then v chooses u as its parent (see rule R Merge). If a node v (not a root) has a neighbor u with R u ą R v , it stores its neighbor's color in Variable new v , and updates its R v to R u . Yet, it does not change its parent. This behavior creates a path (thanks to Variable new) between a root r of a sub spanning tree T r and a node contained in an other sub spanning tree T r 1 rooted in r 1 , with R r 1 ą R r (see rule R Path). The subtree T r is then re-rooted toward a node aware of a root with a bigger signature u. Now, when v P T r 's neighbor u becomes root, it takes u as a parent (see rules R ReRoot and R Del). Finally, the descendants of the re-rooted root update their root variables (see rule R Update). The predicate ErSTpvq (see 33) captures trivial Algorithm 5: Algorithm ST

RDel

: pp v ‰ Hq ^pp p v " cvq ÝÑ p v :" H;

RUpdate : pp v " fpvqq ^pp p v ‰ cvq ^pfpvq ‰ Hq ^pRv ă R fpvq q ^pnewv " Hq ÝÑ Rv :" R f ;

RPath : pp v R tH, fpvquq ^pp p v ‰ cvq ^pfpvq ‰ Hq ^pRv ă R fpvq q ^pnewv " Hq ÝÑ pRv, newvq :" pR fpvq , fpvqq;

RMerge : pp v " Hq ^pfpvq ‰ Hq ^pRv ă R fpvq q ^pnew fpvq " Hq ÝÑ pp v , Rvq :" pfpvq, R f q;

RReRoot : pp v " Hq ^pfpvq ‰ Hq ^pRv " R fpvq q ^pnewv ‰ Hq ÝÑ pp v , newvq :" pnewv, Hq;

errors and impostor-root errors for the construction of the spanning tree. Note that it is used in Freeze only (and not in ST) as these errors are never created by ST and Freeze has higher priority than Freeze (see Section 4.2).

Predicates

The function fpvq returns the color of the neighbor of v with the maximum root:

fpvq " tc u : u P N pvq ^Ru " maxtR w : w P N pvquu

We now present a list of trivial errors and impostor-root errors for the construction of the spanning tree. The explanations of the different elements composing the predicate ErSTpvq follow: (1) A node without relative has its root signature different to its own variables. (2) The variable δ v is not equal to the degree of v. (3) The invariant is not satisfied. (4) A node with new v " H (that is, v is not involved in a rerouting process) has a root signature bigger than that of its parent;(5) A node with new v ‰ H (that is, v is involved in a rerouting process) has a root signature different from that of its tentative new parent.(6) A root v with new v " H and a signature R v that does not match is own.(7)A node involved in a rerouting process whose parent's parent is itself.

´If w is the parent of u, R u takes the value of R w (see rule R Update). By the induction assumption, we have R w ď R v (as a parent of u, w is also a descendant of v). So, R u remains inferior or equal to R v . ´By the induction assumption, if R w ą R u , then w cannot be a descendant of u. ´If w is not in the same subtree of u, u cannot change its parent because u is not a root (see rule R Merge). So u changes its R u to R w , but it sets new u " w (see rule R Path). Now, if there exists a neighbor w of u such that R w " R u , then to execute rule R ReRoot , u must be a root. We obtain a contradiction with our assumption that u is a descendant of v.

To conclude, if u is the descendant of v in configuration γ and it remains a descendant of v at configuration γ `1, and the value of new u remains empty, then R u ď R v in configuration γ `1. We obtain a contradiction between (1),(2) and (3).

Assumption: Assume true that in configuration γ there exists an acyclic spanning structure.

Inductive step: Let us consider a node v P V , a node v takes a new parent only in two cases, and in both case, v must be a root.

Let us consider first rule R Merge , let u be the neighbor of v with R v ă R u and new u " H. By Lemma 9, u is not a descendant of v, so if v takes u as a new parent, an acyclic spanning structure is preserved. Now, we consider rule R ReRoot . Let u be the neighbor of v such that R u " R v and new v " u. In this case, u is either a child of v with new u ‰ H, or v is not a child of v with new u " H. If v is a child of v, v takes u as a parent. Remark that the first action of u is to delete its parent (see rule R Del , and consider the fact that all other rules require p v R Chpvq), so we do not consider this case as a cycle. If v is not a child of v with new u " H, by Lemma 9 u is not a descendant of v. Now, when v takes u as a parent, this action maintains an acyclic spanning structure.

To conclude, Configuration γ `1 maintains a acyclic spanning structure.

Let v a node that wants to broadcast its compact identifier. We add a variable check to our previous algorithm. This variable checks whether every descendant or neighbor shares the same compact identifier at the same phase before proceeding to the convergecast. More precisely, a node u must checks if every neighbors w has Cid u » c Cid w , and if every child has check v " true. If so, it sets its variable check v " true, and the process goes on until node v. As a consequence, v increases or restarts its phase and assigns f alse to check. Lemma 14. Algorithm C-ST converges in Op∆n 3 log nq steps.

The proof of Theorem 7 mimics the proof of Theorem 6.

Self-stabilizing leader election

We now present the final assembly of tools we developed to obtain a self-stabilizing leader election algorithm. We add to Algorithm C-ST an extra variable that is maintained as follows: if a node v has no parent, then v " true, otherwise, v " f alse. Variable v is meant to be the output of the leader election process.

Our self-stabilizing leader election algorithm results from combining severals algorithms. As already explained (see Figure 1), a higher priority algorithm resets all the variables used by lesser priority algorithms. Moreover, lesser priority algorithm do not modify the variables of the higher priority algorithms. Algorithms are prioritized as follows: C-Color, Freeze, C-Break and C-ST. First, starting from an arbitrary configuration, C-Color eventually guaranteed that colors form a distance two coloring in the network, and those colors never change thereafter (the algorithm is silent). Then, C-Break ensure that no cycles or fake spanning tree go undetected forever. If one is found, Freeze is used (with a higher priority) to destroy it. So, after C-Break terminates (and it does since it is silent), no cycle of fake spanning tree exists.

Only algorithm C-ST is talkative, but the number of steps before electing a single leader forever is bounded once Algorithms C-Color, Freeze, and C-Break all terminate. Thanks to Theorem 7, we obtain in a finite number of steps a spanning tree rooted in the node with the maximum degree, maximum color, and maximum identifier (in lexicographic order). Adding a leader variable as suggested in this section to Algorithm C-ST guarantees that only the root of the spanning tree r has r " true and every other node v P V ztru has v " f alse. Since the root of the spanning tree remains the same forever, so does the elected leader.

Theorem 1. Algorithm called C-LE solves the leader election problem in a talkative selfstabilizing manner in any n-node graph, assuming the state model and a distributed unfair scheduler, with Oplog ∆ `log log nq bits of memory per node.

Proof of Theorem 1. We first need to show that the number of activations of rules of algorithm C-ST are bounded if there exist nodes enabled by C-Color, Freeze or C-Break. Let us consider a subset of the nodes A enabled for at least one of these algorithms, and by S the nodes enabled by rule C-ST. The nodes in S belong to some spanning trees (possibly only one), otherwise at least one of rules of Freeze or C-Break would be enabled. So, there exist a node in S that is enabled by algorithm C-ST. Algorithm C-ST is talkative, but it runs by waves, and its waves require that all neighbors of a node v have the same R at each phase. As we consider connected graphs only, there exists at least one node v in S with a neighbor u in A. Then, there exists a configuration γ 1 where the rules of C-ST are not enabled, because u cannot have the same R at each phase (since u is not enabled by rules of C-ST). So, only Algorithms C-Color, Freeze, and C-Break may now be scheduled for execution, as they have higher priority. As they are silent and operate under an unfair distributed scheduler, we obtain convergence.

Let us now consider a configuration γ where no node are enabled for Algorithm C-Color, Freeze, and C-Break. There exists a node enabled by Algorithm C-ST. Thanks to Theorem 7, we obtain a spanning tree rooted at the node with the maximum degree, maximum color, and maximum identifier. As a consequence, only the root r has r " true and every other node v P V ztru has v " f alse.

Conclusion

We presented the first self-stabilizing leader election for arbitrary graphs of size n that uses oplog nq bits of memory per node, breaking a long-standing lower bound. Our solution does not require any weakening of the usual self-stabilization model, in partucular it withstands the most general scheduling assumption: the unfair scheduler. Besides tree construction and leader election, our research paves the way for new memory efficient self-stabilizing algorithms. For example, some of the solutions for self-stabilizing maximal matching construction use a fixed number of "pointer to neighbor" variables [START_REF] Inoue | An efficient silent self-stabilizing 1-maximal matching algorithm under distributed daemon without global identifiers[END_REF]. Using our distance two coloring process would permit to go from Oplog nq to Opmaxtlog ∆, log log nuq bits of memory per node.

In the case of ring shaped networks, an important byproduct of our approach is that, with respect to previous work [START_REF] Blin | Compact deterministic self-stabilizing leader election on a ring: the exponential advantage of being talkative[END_REF], we no longer require the hypothesis of weak fairness (simple progress is sufficient), while the space complexity is not altered. Indeed, in a ring, ∆ " 2, so our space complexity becomes Oplog log nq bits per nodes, which is the same as in previous work [START_REF] Blin | Compact deterministic self-stabilizing leader election on a ring: the exponential advantage of being talkative[END_REF].

Although there exists several techniques and methods to prove self-stabilization is a systematic manner [START_REF] Ducourthial | Self-stabilization with r-operators[END_REF][START_REF] Ducourthial | Self-stabilization with path algebra[END_REF][START_REF] Delaët | Self-stabilization with r-operators revisited[END_REF][START_REF]r-semi-groups: A generic approach for designing stabilizing silent tasks[END_REF][START_REF] Viroli | Engineering resilient collective adaptive systems by self-stabilisation[END_REF], in the context of self-stabilization they are currently limited to systems that reach a fixed point (a.k.a. a fixed single configuration) after finite time. This implies they may only be used for silent protocols. Alas, silent solutions to leader election require Ωplog nq bits per node [START_REF] Dolev | Memory requirements for silent stabilization[END_REF]. Instead, we developped a systematic approach based on potential functions that allow to obtain both correctness proofs and step complexity results. We plan to further formalize these techniques in future work.

Figure 1 :

 1 Figure 1: Overview of algorithm

Figure 2 :

 2 Figure 2: On the left subfigure (a), the following holds: Cid v and Cid u 1 are incomparable; Cid 1 v » c Cid 1 u 2 ; Cid v ă c Cid u 3 ;Cid v ă c Cid u 4 , and MaxCidpv, N pvqq " p4, 1, 4q. On the right subfigure (b), nodes u and v are incomparable, so u increases its phase.

Figure 3 :

 3 Figure 3: An example execution of our coloring scheme is presented for a line network of size 5.The color of the main rectangle denotes the node's color (variable c v), the upper left disc color denotes the maximum color used at distance 1 (variable p c v), the lower left disc color denotes the minimum color in conflict at distance 1 or 2 (variable q c v). The light gray color denotes the absence of any color. The rule immediately under a node denotes which rule is executed to reach the next configuration of the execution.

Lemma 3 .

 3 true Ź Γ C and Γ C is closed.

Lemma 4 .

 4 Algorithm C-Color requires Opmaxtlog ∆, log log nuq bits of memory per node. Proof. The variables δ v , c v , q c v , p c v take Oplog ∆q bits. The compact identifier Cid v takes Oplog log nq bits per node. Proof of Theorem 2. Direct by Lemma 1, Lemma 3 and Lemma 4. Lemma 5. Algorithm C-Color converges in Op∆ ∆ 2 n 3 q steps.

Figure 4 :

 4 Figure 4: Spanning structure

Figure 5 :

 5 Figure 5: An example execution for Algorithm Break is presented on a ring shaped network. Only id, m v , and E v are represented for each node. Nodes colored in light gray are activated in each step by the scheduler. The node colored in orange detects a cycle. Only one of the many possible execution is represented. Below each configuration γ, we also indicate the value of the smallest identifier i such as βpγ, iq ą 0, along with the value of the corresponding βpγ, iq (See Section 3.4.2 for the definition of β.)

Lemma 10 .

 10 If there exists an acyclic spanning structure in Configuration γ, then any execution of a rule maintains an acyclic spanning structure in Configuration γ `1. 2 Proof. Proof by induction on the size of the acyclique spanning structure. Basis case: By contradiction: Remark that, thanks to Algorithm C-Color, there exist a total order between the neighbors of a node. Let us consider three neighbor nodes a, b, c P V such that in Configuration γ, a, b and c have no relatives. Then all three nodes are enabled by rule R Merge . Let us suppose for the purpose of contradiction that in Configuration γ `1 a cycle exists. More precisely: p a " b, p b " c and p c " a, to achieve that : 1. a must choose b as a parent, for that R b ą R c 2. b must choose c as a parent, for that R c ą R a 3. c must choose a as a parent, for that R a ą R b

An algorithm is silent if each of its executions reaches a point in time after which the states of nodes do not change. A non-silent algorithm is said to be talkative (see[START_REF] Blin | Brief announcement: Compact self-stabilizing leader election in arbitrary graphs[END_REF]).

When a node v has p v P Chpvq, we delete p v (see rule RDel), so we do not consider this case as a cycle.

Let c v pγq be the color of v in configuration γ. Let λ : Γ ˆV Ñ N be the following function: λpγ, vq " $ & % 2 if δ v ‰ degpvq P γ 1 if pδ v " degpvq P γq ^cv pγq ą ∆pvq 2 `1 0 otherwise Let Λ : Γ Ñ N be the following potential function:

Λpγq " ÿ vPV λpγ, vq Now, let c v pγ 0 q be the color of v in configuration γ 0 , γ 0 being defined as the configuration where Λpγ 0 q reaches zero.

Let τ : Γ ˆV Ñ N be the following function:

τ pγ, vq " " ∆pvq 2 `1 `cv pγ 0 q ´cv pγq if c v pγq ą c v pγ 0 q c v pγ 0 q ´cv pγq otherwise Let C : Γ Ñ N be the following potential function:

Cpγq "

We denote by γ 1 the configuration after activation of (a subset of) the nodes in A C pγq where A C pγq denotes the enabled nodes in γ due to rule R Color .We can now prove the following result: Cpγ 1 q ă Cpγq for every configuration γ where A C pγq is not empty. Lemma 2. Cpγ 1 q ă Cpγq for every configuration γ such that A C pγq is not empty.

Proof. We consider a node v P A C pγq. After executing rule R Color , v takes a color:

As a consequence τ pγ, vq decreases by at least one, so Cpγ 1 q ă Cpγq.

Let ψ : Γ ˆV Ñ N be the function defined by:

if Badpvq ^Relaypvq ^RUppv, PlayRpvqq is true 0 otherwise Let Ψ : Γ Ñ N be the potential function defined by: Ψpγq "

Let Φ : Γ Ñ N 3 be the potential function defined by: Φpγq " pΛpγq, Cpγq, Ψpγqq.

The comparison between two configurations Φpγq and Φpγ 1 q is by using lexical order. We denote by Apγq the (subset of) enabled nodes (for any rule of our algorithm) in configuration γ. Note that the algorithm is stabilized when every node is neither a player nor a relay, that is the nodes have no conflict at distance one and two, when Ψpγq " 0. We define Γ C " tγ P Γ : Φpγq " 0u Let i be a natural integer in r1, n c s, representing a possible node identifier. Then, let us denote by Dpv, iq the set of nodes on the path between v and w, where w is the nearest descendant of v (w ‰ v) such that m w " i, if such a node exists. We suppose that every node u in Dpv, iq has ErCyclepuq " f alse. The value i can improve the value m v if and only every node u in Dpv, iq has a m u ą i and E u ‰ i. Also, if E u " i, the value vanishes during the execution, note that may be u " v. Predicate Improve captures this fact. Predicate Improve is defined recursivly as, to improve a node, its descendants must be improved first. Only when no descendent can be improved is the node itself bound for action. Improvepγ, v, iq " `@u P Dpv, iq : pm u ą iq ˘^"`@ u P Dpv, iq :

Let α : Γ ˆV ˆN Ñ N be the function defined by:

Let β : Γ ˆN Ñ N be the function defined by: βpγ, iq " Let Ξ : Γ Ñ N IdM ax be the function defined by:

Ξpγq " pβpγ, 1q, . . . , βpγ, IdM axqq

The comparaison between two configurations Ξpγq and Ξpγ 1 q is performed using lexical order.

In the following, m v pγq denotes the variable m v in configuration γ. Note that the algorithm is stabilized when no value i can improve the value stored in m v , that is when Ξpγq " 0. We define Γ B " tγ P Γ : Ξpγq " 0u Lemma 6. true Ź Γ B and Γ B is closed.

Proof. The starting predicate being true, all possible configurations are taken into consideration. We simply review the effect of executing the three rules of the algorithm:

• Rule R Start pvq: m v pγq " m v pγ 1 q, so for i ă m v pγ 1 q, we have βpγ 1 , iq " βpγ, iq. Note that for i ą m v pγq, v has no effect on βpγ, iq and βpγ 1 , iq. Now, βpγ, m v q " 3 because R Start pvq is enabled for v only if pE v ‰ m v q, and βpγ 1 , m v q " 2 because we have pE v " m v q, thus βpγ, m v q " 3 ą βpγ 1 , m v q " 2. So, if the scheduler activates v with rule R Start pvq, we obtain Ξpγ 1 q ă Ξpγq.

• Rule R ID :

i ă m v pγq: βpγ 1 , iq " βpγ, iq because id v ą m v pγq (otherwise an error is detected). Also, if i can improve m v pγq, it can also improve m v pγ 1 q.

ErSTpvq "

) Examples of the possible situations are presented in Figure 6.

(5) R u 4 " p3, black, 1q and R v " p6, black, 2q (7) p u 1 " v Figure 6: We present various situations arising when evaluating predicate ErSTpvq to true. The node color denotes its c v variable, the top right circle denote its p v variable (light gray represents no color), the bottom right square denotes new v variable (light gray represents no color), and the arrow visually represent the parent-child relationship. Under each situation, the multiset of numbers represents which conditions of predicate ErSTpvq evaluate too true. For example, in the first situation, v has degree four yet announces a degree of 5, hence condition (2) of predicate ErSTpvq evaluates to true.

Correctness

Theorem 6. Algorithm ST solves the spanning tree-construction problem in a silent selfstabilizing way in any n-node graph, assuming the absence of spanning cycle, the state model, and a distributed unfair scheduler, using Oplog nq bits of memory per node.

Proof of Theorem 6 Let npvq denote the color of v's neighbor with the maximum degree, and in case there are several such neighbors, the one with maximum color.

npvq " tc u : u P N pvq ^δu " maxtδ w : w P N pvqu ^cu " maxtc w : w P N ^pδ w " δ u quu (34) Lemma 8 (Invariant). For every node v P V such that p v ‰ H and Chpvq ‰ H, npvq P tp v Y Chpvqu ‰ H remains true.

Proof. Proof by induction

Basis case: When a node v starts the algorithm it chooses for a parent the node with the maximum degree, if there exist more than one it chooses the one with the maximum identifier among the ones with the maximum degree. So if a node picks a parent u at the first execution of the algorithm it takes u " npvq so for theses nodes the invariant is preserved. For the nodes v which are a maximum local. We denote by u the node npvq. Suppose that at the first execution of u, u choses the node w as a parent, that means R w ą R u and R w ą R v . So after this execution R u " R w , so now v can choose u as a parent and the invariant is preserved for node v. So after one execution of the algorithm for all the nodes the invariant is preserved.

Assumption: Assume true that after t steps of execution, the algorithm preserved the invariant.

Inductive step: Let us consider a node v, by the assumption we have

The node v cannot change its children in can only change its parent, and only if v its a root (see rules R Merge and R ReRoot of Algorithm 5). So for v npvq P Chpvq, the rule R Merge assigns as a parent a new neighbor u (u R Chpvq) so the invariant is preserved. The rule R ReRoot assigns as a parent of v a child of v so the invariant is preserved.

Proof. Proof by induction on the value R u with u descendants of v

Base case: Each node v P V with p v " H and Chpvq " H has R v " pdeg v , c v , id v q and new v " H, otherwise an error is detected. A node v takes a parent iff there exists a neighbor w of v such that R w ą R v , and in this case v maintains its variable new w " H, so the claim is satisfied (see Rule R Merge).

Assumption: Assume that there exists a configuration γ where for every node v P V , all the descendants u of v with new u " H have R u ď R v .

Inductive step: We consider Configuration γ `1. For a node v and every descendants u, the assumption gives the property that if new u " H, then R u ď R v . Let us now consider the case where there exists a neighbor w of u with R u ă R w .

Lemma 11. If v is a node such that R v " R r , and every ancestor of v (and v itself) have new " H. Then r is an ancestor of v, or v itself.

Proof. Suppose for the purpose of contradiction that r ‰ v, and r is not an ancestor of v. By Lemma 10, v is an element of a sub spanning tree T. Let w be the oldest ancestor of v such that new w " H. By hypothesis, every ancestor z of v (including w) has R z ‰ R r . By Lemma 9, we have R v ď R z , which contradicts R v " R r .

Lemma 12. Executing Algorithm ST constructs a spanning tree rooted in the node with the maximum degree, maximum color, maximum identifier, assuming the state model, and a distributed unfair scheduler.

Proof. Let ψ : Γ ˆV Ñ N be the function defined by: ψpγ, vq " `pdeg ´δv q `pc ´cv q `pid ´id v q where is the node with R ą R v with v P V zt u. Now, let φ : Γ ˆV Ñ N be the function defined by: φpγ, vq "

Remark that a node v cannot have new v ‰ H and p v P Chpvq. Otherwise an error is detected through predicate ErSTpvq.

Let Ψ : Γ Ñ N 2 be the potential function defined by: Ψpγq " ´ÿ vPV ψpγ, vq,

Let γ be a configuration such that Ψpγq ą 0, and let v be a node in V such that v is enabled by a rule of Algorithm ST. If v executes rules R Update , R Merge , or R Path , then R v increases and we obtain ψpγ 1 , vq ă ψpγ, vq. Now, if v executes rule R ReRoot , this implies new v is not empty. After execution of R ReRoot , new v become empty, so φpγ, vq decreases by one. Finally, if v executes rule R Del , it implies that v had p p v " c v , and now p v " H. As a result, φpγ 1 , vq " φpγ, vq ´1 " 0.

Therefore, we obtain Ψpγ 1 q ă Ψpγq. By Lemmas 10 and 11 we obtain the property that when Ψpγq " 0, a spanning tree rooted in is constructed. Lemma 13. Algorithm ST converges in Op∆n 3 q steps.

Proof. Direct by the potential function Ψpγq.

We adapt ST to use compact identifiers and obtain Algorithm C-ST. It is simple to compare two compact identifiers when the nodes are neighbors. Along the algorithm execution, some nodes become non-root, and therefore the remaining root of fragments can be far away, separated by non-root nodes. To enable multi-hop comparison, we use a broadcasting and convergecast wave on a spanning structure to assure the propagation of the compact identifier.

Theorem 7. C-ST solves the spanning tree-construction problem in a talkative self-stabilizing way in any n-node graph, assuming the absence of spanning cycle, the state model, and a distributed unfair scheduler, in Oplog ∆ `log log nq bits of memory per node.