P. Ciais, Climate change 2013: the physical science basis, Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, pp.465-570, 2014.

G. Myhre, Climate change 2013: the physical science basis, Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, 2013.

R. Fuge and C. C. Johnson, Iodine and human health, the role of environmental geochemistry and diet, a review, Appl. Geochem, vol.63, pp.282-302, 2015.

R. J. Charlson, J. E. Lovelock, M. O. Andreae, and S. G. Warren, Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, vol.326, pp.655-661, 1987.

M. O. Andreae and P. J. Crutzen, Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry, Science, vol.276, pp.1052-1058, 1997.

H. Korhonen, K. S. Carslaw, D. V. Spracklen, G. W. Mann, and M. T. Woodhouse, Influence of oceanic dimethyl sulfide emissions on cloud condensation nuclei concentrations and royalsocietypublishing.org/journal/rspa, Proc. R. Soc. A, vol.476, 2008.

, seasonality over the remote Southern Hemisphere oceans: a global model study, J. Geophys. Res.-Atmos, vol.113

W. R. Leaitch, Dimethyl sulfide control of the clean summertime Arctic aerosol and cloud, Elementa: Sci. Anthropocene, vol.1, p.17, 2013.

M. D. Willis, Growth of nucleation mode particles in the summertime Arctic: a case study, Atmos. Chem. Phys, vol.16, pp.7663-7679, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01336721

L. Carpenter, Iodine in the marine boundary layer, Chem. Rev, vol.103, pp.4953-4962, 2003.

K. A. Read, Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean, Nature, vol.453, pp.1232-1235, 2008.

L. Carpenter, S. M. Macdonald, M. D. Shaw, R. Kumar, R. W. Saunders et al., Atmospheric iodine levels influenced by sea surface emissions of inorganic iodine, Nat. Geosci, vol.6, pp.108-111, 2013.

R. Hossaini, M. P. Chipperfield, S. A. Montzka, A. Rap, S. Dhomse et al., Efficiency of short-lived halogens at influencing climate through depletion of stratospheric ozone, Nat. Geosci, vol.8, pp.186-190, 2015.

P. D. Nightingale, G. Malin, and P. S. Liss, Production of chloroform and other lowmolecular weight halocarbons by some species of macroalgae, Limnol. Oceanogr, vol.40, pp.680-689, 1995.

F. Keng, S. Phang, N. A. Rahman, E. C. Leedham, C. Hughes et al., Volatile halocarbon emissions by three tropical brown seaweeds under different irradiances, J. Appl. Phycol, vol.25, pp.1377-1386, 2013.

E. Leedham, C. Hughes, F. Keng, S. Phang, G. Malin et al., Emission of atmospherically significant halocarbons by naturally occurring and farmed tropical macroalgae, Biogeosciences, vol.10, pp.3615-3633, 2013.

S. L. Shaw, B. Gantt, and N. Meskhidze, Production and emissions of marine isoprene and monoterpenes: a review, Adv. Meteorol, vol.408696, 2010.

N. Shakhova and I. Semiletov, Methane release and coastal environment in the East Siberian Arctic shelf, J. Mar. Syst, vol.66, pp.227-243, 2007.

S. Naqvi, H. Bange, L. Far?as, P. Monteiro, M. Scranton et al., Marine hypoxia/anoxia as a source of CH 4 and N 2 O, Biogeosciences, vol.7, pp.2159-2190, 2010.

F. Laturnus, Volatile halocarbons released from Arctic macroalgae, Mar. Chem, vol.55, pp.359-366, 1996.

J. Stefels, M. Steinke, S. Turner, G. Malin, and S. Belviso, Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling, Biogeochemistry, vol.83, pp.245-275, 2007.

C. Hughes and S. Sun, Light and brominating activity in two species of marine diatom, Mar. Chem, vol.181, pp.1-9, 2016.

K. Dani and F. Loreto, Trade-off between dimethyl sulfide and isoprene emissions from marine phytoplankton, Trends Plant Sci, vol.22, pp.361-372, 2017.

M. Martino, G. P. Mills, J. Woeltjen, and P. S. Liss, A new source of volatile organoiodine compounds in surface seawater, Geophys. Res. Lett, vol.36, p.1609, 2009.

N. L. Bindoff, Detection and attribution of climate change: from global to regional, Climate Change 2013: The Physical Science Basis. IPCC Working Group I Contribution to AR5, 2013.

D. Luthi, High-resolution carbon dioxide concentration record 650,000-800,000 years before present, Nature, vol.453, pp.379-382, 2008.
URL : https://hal.archives-ouvertes.fr/insu-00378509

M. Willeit, A. Ganopolski, R. Calov, and V. Brovkin, Mid-Pleistocene transition in glacial cycles explained by declining CO 2 and regolith removal, Sci. Adv, vol.5, p.7337, 2019.

K. Caldeira and M. E. Wickett, Anthropogenic carbon and ocean pH, Nature, vol.425, 2003.

J. C. Orr, Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms, Nature, vol.437, pp.681-686, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00124807

L. Bopp, Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, vol.10, pp.6225-6245, 2013.

J. Gattuso, Contrasting futures for ocean and society from different anthropogenic CO 2 emissions scenarios, Science, vol.349, p.4722, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01176217

N. R. Bates, A time-series view of changing surface ocean chemistry due to ocean uptake of anthropogenic CO 2 and ocean acidification, Oceanography, vol.27, pp.126-141, 2014.

B. Hönisch, The geological record of ocean acidification, Science, vol.335, pp.1058-1063, 2012.

U. Riebesell, I. Zondervan, B. Rost, P. D. Tortell, R. E. Zeebe et al., Reduced calcification of marine plankton in response to increased atmospheric CO 2, Nature, vol.407, pp.364-367, 2000.

O. Hoegh-guldberg, Coral reefs under rapid climate change and ocean acidification, Science, vol.318, pp.1737-1742, 2007.

K. J. Kroeker, R. L. Kordas, R. N. Crim, and G. G. Singh, Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms, Ecol. Lett, vol.13, pp.1419-1434, 2010.

R. Gangstø, F. Joos, and M. Gehlen, Sensitivity of pelagic calcification to ocean acidification, Biogeosciences, vol.8, pp.433-458, 2011.

L. T. Bach, U. Riebesell, M. A. Gutowska, L. Federwisch, and K. G. Schulz, A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework, Prog. Oceanogr, vol.135, pp.125-138, 2015.

P. L. Munday, D. L. Dixson, J. M. Donelson, G. P. Jones, M. S. Pratchett et al., Ocean acidification impairs olfactory discrimination and homing ability of a marine fish, Proc. Natl Acad. Sci. USA, vol.106, pp.1848-1852, 2009.

P. L. Munday, D. L. Dixson, M. I. Mccormick, M. Meekan, M. C. Ferrari et al., Replenishment of fish populations is threatened by ocean acidification, Proc. Natl Acad. Sci. USA, vol.107, pp.930-942, 2010.

I. Nagelkerken, B. D. Russell, B. M. Gillanders, and S. D. Connell, Ocean acidification alters fish populations indirectly through habitat modification, Nat. Clim. Change, vol.6, pp.89-93, 2016.

A. J. Lemasson, S. Fletcher, J. M. Hall-spencer, and A. M. Knights, Linking the biological impacts of ocean acidification on oysters to changes in ecosystem services: a review, J. Exp. Mar. Biol. Ecol, vol.492, pp.49-62, 2017.

M. Gehlen, N. Gruber, R. Gangstø, L. Bopp, A. Oschlies et al., Global warming amplified by reduced sulphur fluxes as a result of ocean acidification, JP Gattuso, L Hansson), vol.1, p.975, 2011.

J. Schwinger, J. Tjiputra, N. Goris, K. D. Six, A. Kirkevag et al., Amplification of global warming through pH dependence of DMS production simulated with a fully coupled Earth system model, Biogeosciences, vol.14, pp.3633-3648, 2017.

N. Wannicke, C. Frey, C. S. Law, and M. Voss, The response of the marine nitrogen cycle to ocean acidification, Glob. Change Biol, vol.24, pp.5031-5043, 2018.

D. A. Hutchins and F. Fu, Microorganisms and ocean global change, Nat. Microbiol, vol.2, 2017.

L. Porzio, M. C. Buia, and J. M. Hall-spencer, Effects of ocean acidification on macroalgal communities, J. Exp. Mar. Biol. Ecol, vol.400, pp.278-287, 2011.

C. Brussaard, A. Noordeloos, H. Witte, M. Collenteur, K. Schulz et al., Arctic microbial community dynamics influenced by elevated CO 2 levels, Biogeosciences, vol.10, pp.719-731, 2013.

S. Dutkiewicz, J. J. Morris, M. J. Follows, J. Scott, O. Levitan et al., Impact of ocean acidification on the structure of future phytoplankton communities, Nat. Clim. Change, vol.5, pp.1002-1006, 2015.

K. G. Schulz, Phytoplankton blooms at increasing levels of atmospheric carbon dioxide: experimental evidence for negative effects on prymnesiophytes and positive on small picoeukaryotes. Front. Mar. Sci, vol.4, 2017.

S. Sett, K. G. Schulz, L. T. Bach, and U. Riebesell, Shift towards larger diatoms in a natural phytoplankton assemblage under combined high-CO 2 and warming conditions, J. Plankton Res, vol.40, pp.391-406, 2018.

U. Riebesell and J. Gattuso, Lessons learned from ocean acidification research, Nat. Clim. Change, vol.5, pp.12-14, 2015.

P. G. Falkowski, T. Fenchel, and E. F. Delong, The microbial engines that drive Earth's biogeochemical cycles, Science, vol.320, pp.1034-1039, 2008.

S. Kolb, M. A. Horn, J. C. Murrell, and C. Knief, Editorial: The impact of microorganisms on consumption of atmospheric trace gases, Front. Microbiol, vol.8, 1856.

I. Joint, S. C. Doney, and D. M. Karl, Will ocean acidification affect marine microbes?, ISME J, vol.5, 2011.

A. E. Oliver, L. K. Newbold, A. S. Whiteley, and C. J. Van-der-gast, Marine bacterial communities are resistant to elevated carbon dioxide levels, Environ. Microbiol. Rep, vol.6, pp.574-582, 2014.

F. Baltar, J. Palovaara, M. Vila-costa, G. Salazar, E. Calvo et al., Response of rare, common and abundant bacterioplankton to anthropogenic perturbations in a Mediterranean coastal site, FEMS Microbiol. Ecol, vol.91, p.58, 2015.

T. Hornick, L. T. Bach, K. J. Crawfurd, K. Spilling, E. P. Achterberg et al., Ocean acidification impacts bacteria-phytoplankton coupling at lownutrient conditions, Biogeosciences, vol.14, pp.1-15, 2017.

C. Bunse, Response of marine bacterioplankton pH homeostasis gene expression to elevated CO 2, Nat. Clim. Change, vol.6, pp.483-487, 2016.

A. Engel, J. Piontek, H. Grossart, U. Riebesell, K. G. Schulz et al., Impact of CO 2 enrichment on organic matter dynamics during nutrient induced coastal phytoplankton blooms, J. Plankton Res, vol.36, pp.641-657, 2014.

J. M. Kim, Enhanced production of oceanic dimethylsulfide resulting from CO 2 -induced grazing activity in a high CO 2 world, Environ. Sci. Technol, vol.44, pp.8140-8143, 2010.

J. Piontek, M. Lunau, N. Handel, C. Borchard, M. Wurst et al., Acidification increases microbial polysaccharide degradation in the ocean, Biogeosciences, vol.7, pp.1615-1624, 2010.

T. J. Burrell, E. W. Maas, D. A. Hulston, and C. S. Law, Variable response to warming and ocean acidification by bacterial processes in different plankton communities, Aquat. Microb. Ecol, vol.79, pp.49-62, 2017.

P. Liss, G. Malin, S. Turner, G. Restelli, and . Angeletti, Production of DMS by marine phytoplankton, Dimethyl sulphide: oceans, atmosphere and climate, pp.1-14, 1993.

W. T. Sturges, G. F. Cota, and P. T. Buckley, Bromoform emission from Arctic ice algae, Nature, vol.358, pp.660-662, 1992.

C. Hughes, G. Malin, P. D. Nightingale, and P. S. Liss, The effect of light stress on the release of volatile iodocarbons by three species of marine microalgae, Limnol. Oceanogr. Notes, vol.51, pp.2849-2854, 2006.

J. Stefels, Physiological aspects of the production and conversion of DMSP in marine algae and higher plants, J. Sea Res, vol.43, pp.183-197, 2000.

W. G. Sunda, R. Hardison, R. P. Kiene, E. Bucciarelli, and H. Harada, The effect of nitrogen limitation on cellular DMSP and DMS release in marine phytoplankton: climate feedback implications, Aquat. Sci, vol.69, pp.341-351, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00474534

E. Leedham, S. M. Phang, W. T. Sturges, and G. Malin, The effect of desiccation on the emission of volatile bromocarbons from two common temperate macroalgae, Biogeosciences, vol.12, pp.387-398, 2015.

R. Tokarczyk and R. M. Moore, Production of volatile organohalogens by phytoplankton cultures, Geophys. Res. Lett, vol.21, pp.285-288, 1994.

W. Sunda, D. J. Kieber, R. P. Kiene, and S. Huntsman, An antioxidant function for DMSP and DMS in marine algae, Nature, vol.418, pp.317-320, 2002.

S. D. Archer, G. A. Tarran, J. A. Stephens, L. J. Butcher, and S. A. Kimmance, Combining cell sorting with gas chromatography to determine phytoplankton group-specific intracellular dimethylsulphoniopropionate, Aquat. Microb. Ecol, vol.62, pp.109-121, 2011.

E. T. Buitenhuis, D. Baar, H. Veldhuis, and M. , Photosynthesis and calcification by Emiliania huxleyi (Prymnesiophyceae) as a function of inorganic carbon species, J. Phycol, vol.35, pp.949-959, 1999.

M. D. Iglesias-rodriguez, Phytoplankton calcification in a high-CO 2 world, Science, vol.320, pp.336-340, 2008.

J. Meyer and U. Riebesell, Reviews and syntheses: responses of coccolithophores to ocean acidification: a meta-analysis, Biogeosciences, vol.12, p.1671, 2015.

H. E. Arnold, P. Kerrison, and M. Steinke, Interacting effects of ocean acidification and warming on growth and DMS production in the haptophyte coccolithophore Emiliania huxleyi, Glob. Change Biol, vol.19, pp.1007-1016, 2013.

V. Avgoustidi, P. D. Nightingale, I. R. Joint, M. Steinke, S. M. Turner et al., Decreased marine dimethyl sulfide production under elevated CO 2 levels in mesocosm and in vitro studies, Environ. Chem, vol.9, pp.399-404, 2012.

A. Spielmeyer and G. Pohnert, Influence of temperature and elevated carbon dioxide on the production of dimethylsulfoniopropionate and glycine betaine by marine phytoplankton, Mar. Environ. Res, vol.73, pp.62-69, 2012.

A. L. Webb, G. Malin, F. E. Hopkins, K. L. Ho, U. Riebesell et al., Ocean acidification has different effects on the production of dimethylsulfide and dimethylsulfoniopropionate measured in cultures of Emiliania huxleyi and a mesocosm study: a comparison of laboratory monocultures and community interactions, Environ. Chem, vol.13, pp.314-329, 2015.

F. E. Hopkins and S. D. Archer, Consistent increase in dimethyl sulfide (DMS) in response to high CO 2 in five shipboard bioassays from contrasting NW European waters, Biogeosciences, vol.11, pp.4925-4940, 2014.

R. Hussherr, Impact of ocean acidification on Arctic phytoplankton blooms and dimethyl sulfide concentration under simulated ice-free and under-ice conditions, Biogeosciences, vol.14, p.2407, 2017.

S. D. Archer, S. A. Kimmance, J. A. Stephens, F. E. Hopkins, R. Bellerby et al., Contrasting responses of DMS and DMSP to ocean acidification in Arctic waters, Biogeosciences, vol.10, pp.1893-1908, 2013.

S. D. Archer, K. Suffrian, K. M. Posman, L. T. Bach, P. A. Matrai et al., Processes that contribute to decreased dimethyl sulfide production in response to ocean acidification in subtropical waters, Front. Mar. Sci, vol.5, p.245, 2018.

F. E. Hopkins, S. M. Turner, P. D. Nightingale, M. Steinke, and P. S. Liss, Ocean acidification and marine biogenic trace gas production, Proc. Natl Acad. Sci. USA, vol.107, pp.760-765, 2010.

F. E. Hopkins, S. A. Kimmance, J. A. Stephens, R. Bellerby, C. P. Brussaard et al., Response of halocarbons to ocean acidification in the Arctic, Biogeosciences, vol.10, pp.2331-2345, 2013.

K. Park, Direct linkage between dimethyl sulfide production and microzooplankton grazing, resulting from prey composition change under high partial pressure of carbon dioxide conditions, Environ. Sci. Technol, vol.48, pp.4750-4756, 2014.

M. Vogt, M. Steinke, S. Turner, A. Paulino, M. Meyerhöfer et al., Dynamics of dimethylsulphoniopropionate and dimethylsulphide under different CO 2 concentrations during a mesocosm experiment, Biogeosciences, vol.5, pp.407-419, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00297926

A. L. Webb, Effect of ocean acidification and elevated fCO 2 on trace gas production by a Baltic Sea summer phytoplankton community, Biogeosciences, vol.13, pp.4595-4613, 2016.

L. T. Bach, Influence of ocean acidification on a natural winter-to-summer plankton succession: first insights from a long-term mesocosm study draw attention to periods of low nutrient concentrations, PLoS ONE, vol.11, 2016.

F. E. Hopkins, S. D. Archer, J. A. Stephens, C. M. Moore, S. Richier et al., 2020 A meta-analysis of microcosm experiments shows that dimethyl sulfide (DMS) production in polar waters is insensitive to ocean acidification, Biogeosciences, vol.17, pp.1-24

, /journal/rspa Proc. R. Soc

N. J. Wyatt, V. Kitidis, E. Woodward, A. P. Rees, S. Widdicombe et al., Effects of high CO 2 on the fixed nitrogen inventory of the Western English Channel, J. Plankton Res, vol.32, pp.631-641, 2010.

A. P. Rees, I. J. Brown, A. Jayakumar, and B. B. Ward, The inhibition of N 2 O production by ocean acidification in cold temperate and polar waters, Deep Sea Res. Part II, vol.127, pp.93-101, 2016.

A. Curson, DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton, Nat. Microbiol, vol.4, pp.540-542, 2018.

M. Galí, R. Simó, M. Vila-costa, C. Ruiz-gonzález, J. M. Gasol et al., Diel patterns of oceanic dimethylsulfide (DMS) cycling: microbial and physical drivers, Global Biogeochem. Cycles, vol.27, pp.620-636, 2013.

M. Galí and R. Simó, A meta-analysis of oceanic DMS and DMSP cycling processes: disentangling the summer paradox, Global Biogeochem. Cycles, vol.29, pp.496-515, 2015.

S. Enami, Y. Sakamoto, K. Hara, K. Osada, M. R. Hoffmann et al., Sizing' heterogeneous chemistry in the conversion of gaseous dimethyl sulfide to atmospheric particles, Environ. Sci. Technol, vol.50, pp.1834-1843, 2016.

S. L. Fiddes, M. T. Woodhouse, Z. Nicholls, T. P. Lane, and R. Schofield, Cloud, precipitation and radiation responses to large perturbations in global dimethyl sulfide, Atmos. Chem. Phys, vol.18, pp.177-187, 2018.

A. S. Mahajan, S. Fadnavis, M. A. Thomas, L. Pozzoli, S. Gupta et al., Quantifying the impacts of an updated global dimethyl sulfide climatology on cloud microphysics and aerosol radiative forcing, J. Geophys. Res.: Atmos, vol.120, pp.2524-2536, 2015.

M. Etminan, G. Myhre, E. Highwood, and K. Shine, Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing, Geophys. Res. Lett, vol.43, pp.614-623, 2016.

S. D. Brooks and D. C. Thornton, Marine aerosols and clouds, Annu. Rev. marine science, vol.10, pp.289-313, 2018.

M. Galí, M. Levasseur, E. Devred, R. Simó, and M. Babin, Sea-surface dimethylsulfide (DMS) concentration from satellite data at global and regional scales, Biogeosciences, vol.15, pp.3497-3519, 2018.

K. J. Sanchez, Substantial seasonal contribution of observed biogenic sulfate particles to cloud condensation nuclei, Sci. Rep, vol.8, pp.1-14, 2018.

R. Von-glasow and P. J. Crutzen, Model study of multiphase DMS oxidation with a focus on halogens, Atmos. Chem. Phys, vol.4, pp.589-608, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00301403

M. Johnson and T. Bell, Coupling between dimethylsulfide emissions and the oceanatmosphere exchange of ammonia, Environ. Chem, vol.5, pp.259-267, 2008.

T. Chen and M. Jang, Secondary organic aerosol formation from photooxidation of a mixture of dimethyl sulfide and isoprene, Atmos. Environ, vol.46, pp.271-278, 2012.

P. Kerrison, D. J. Suggett, L. J. Hepburn, and M. Steinke, Effect of elevated pCO 2 on the production of dimethylsulphoniopropionate (DMSP) and dimethylsulphide (DMS) in two species of Ulva (Chlorophyceae), Biogeochemistry, vol.110, pp.5-16, 2012.

S. Richier, E. P. Achterberg, M. P. Humphreys, A. J. Poulton, D. J. Suggett et al., Geographical CO 2 sensitivity of phytoplankton correlates with ocean buffer capacity, Glob. Change Biol, vol.24, pp.4438-4452, 2018.

C. L. Sabine, The oceanic sink for anthropogenic CO 2, Science, vol.305, pp.367-371, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02088162

C. N. Lewis, K. A. Brown, L. A. Edwards, G. Cooper, and H. S. Findlay, Sensitivity to ocean acidification parallels natural pCO 2 gradients experienced by Arctic copepods under winter sea ice, Proc. Natl Acad. Sci. USA, vol.110, pp.4960-4967, 2013.

C. Thoisen, K. Riisgaard, N. Lundholm, T. G. Nielsen, and P. J. Hansen, Mar. Ecol. Prog. Ser, vol.520, pp.21-34, 2015.

E. Tynan, Physical and biogeochemical controls on the variability in surface pH and calcium carbonate saturation states in the Atlantic sectors of the Arctic and Southern Oceans, Deep Sea Res. Part II, vol.127, pp.7-27, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01498134

E. Popova, A. Yool, Y. Aksenov, A. C. Coward, and T. R. Anderson, Regional variability of acidification in the Arctic: a sea of contrasts, Biogeosciences, vol.11, pp.293-308, 2014.

R. K. Pachauri, Climate change 2014: synthesis report, Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change, 2014.

R. Bénard, Contrasting effects of acidification and warming on dimethylsulfide concentrations during a temperate estuarine fall bloom mesocosm experiment, Biogeosciences, vol.16, pp.1167-1185, 2019.

F. Paulot, D. J. Jacob, M. T. Johnson, T. G. Bell, A. R. Baker et al., Global oceanic emission of ammonia: constraints from seawater and atmospheric observations, Global Biogeochem. Cycles, vol.29, pp.1165-1178, 2015.

T. Jickells, A reevaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean, Global Biogeochem. Cycles, vol.31, pp.289-305, 2017.

P. K. Quinn, R. J. Charlson, and W. H. Zoller, Ammonia, the dominant base in the remote marine troposphere: a review, Tellus B, vol.39, pp.413-425, 1987.

M. T. Johnson, Field observations of the ocean-atmosphere exchange of ammonia: fundamental importance of temperature as revealed by a comparison of high and low latitudes, Global Biogeochem. Cycles, vol.22, p.1019, 2008.

M. Kulmala, T. Petäjä, M. Ehn, J. Thornton, M. Sipilä et al., Chemistry of atmospheric nucleation: on the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation, Annu. Rev. Phys. Chem, vol.65, pp.21-37, 2014.

J. M. Beman, C. Chow, A. L. King, Y. Feng, J. A. Fuhrman et al., Global declines in oceanic nitrification rates as a consequence of ocean acidification, Proc. Natl Acad. Sci. USA, vol.108, pp.208-213, 2011.

S. Das and N. Mangwani, Ocean acidification and marine microorganisms: responses and consequences, Oceanologia, vol.57, pp.349-361, 2015.

X. Gu, K. Li, K. Pang, Y. Ma, and X. Wang, Effects of pH on the growth and NH4-N uptake of Skeletonema costatum and Nitzschia closterium, Mar. Pollut. Bull, vol.124, pp.946-952, 2017.

D. Booge, Can simple models predict large-scale surface ocean isoprene concentrations?, Atmos. Chem. Phys, vol.16, pp.807-818, 2016.

S. C. Hackenberg, Basin-scale observations of monoterpenes in the Arctic and Atlantic Oceans, Environ. Sci. Technol, vol.51, pp.449-459, 2017.

M. J. Kim, G. A. Novak, M. C. Zoerb, M. Yang, B. W. Blomquist et al., Air-sea exchange of biogenic volatile organic compounds and the impact on aerosol particle size distributions, Geophys. Res. Lett, vol.44, pp.3887-3896, 2017.

D. Monaco, C. Hay, M. E. Gartrell, P. Mumby, P. J. Diaz-pulido et al., Effects of ocean acidification on the potency of macroalgal allelopathy to a common coral, Sci. Rep, vol.7, p.41053, 2017.

S. Montzka, Scientific Assessment of Ozone Depletion, 2010.

S. Amachi, Y. Kamagata, T. Kanagawa, and Y. Muramatsu, Bacteria mediate methylation of iodine in marine and terrestrial environments, Appl. Environ. Microbiol, vol.67, pp.2718-2722, 2001.

R. M. Moore and O. C. Zafiriou, Photochemical production of methyl iodide in seawater, J. Geophys. Res, vol.99, issue.D8, pp.415-431, 1994.

J. D. Happell and D. Wallace, Methyl iodide in the Greenland/Norwegian Seas and the tropical Atlantic Ocean: evidence for photochemical production, Geophys. Res. Lett, vol.23, pp.2105-2108, 1996.

K. Law, Halogenated very short-lived substances, scientific assessment of ozone depletion: 2006, global ozone research and monitoring project, 2007.

J. C. Laube, A. Engel, H. Bönisch, T. Möbius, D. R. Worton et al., Contribution of very short-lived organic substances to stratospheric chlorine and bromine in the tropics-a case study, Atmos. Chem. Phys, vol.8, pp.7325-7334, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00304148

. .. ,

S. Solomon, R. R. Garcia, and A. R. Ravishankara, On the role of iodine in ozone depletion, J. Geophys. Res, vol.99, issue.D10, pp.491-511, 1994.

D. Davis, J. Crawford, S. Liu, S. Mckeen, A. Bandy et al., Potential impact of iodine on tropospheric levels of ozone and other critical oxidants, J. Geophys. Res, vol.101, pp.2135-2147, 1996.

R. V. Glasow and R. Sander, Modelling halogen chemistry in the marine boundary layer 1. Cloud-free MBL, J. Geophys. Res, vol.107, 2002.

J. M. Makela, Biogenic iodine emissions and identification of end-products in coastal ultrafine particles during nucleation bursts, J. Geophys. Res, vol.107, issue.D19, p.8110, 2002.

Y. Lim, S. Phang, A. Rahman, N. Sturges, W. T. Malin et al., Halocarbon emissions from marine phytoplankton and climate change, Int. J. Environ. Sci. Technol, vol.14, pp.1355-1370, 2017.

P. K. Mithoo-singh, F. Keng, S. Phang, E. Elvidge, W. T. Sturges et al., Halocarbon emissions by selected tropical seaweeds: species-specific and compoundspecific responses under changing pH, PeerJ, vol.5, 2017.

L. J. Carpenter, Update on ozone-depleting substances (ODSs) and other gases of interest to the Montreal protocol, Scientific assessment of ozone depletion, vol.101, pp.1-1, 2014.

A. J. Fassbender, C. L. Sabine, and K. M. Feifel, Consideration of coastal carbonate chemistry in understanding biological calcification, Geophys. Res. Lett, vol.43, pp.4467-4476, 2016.

D. J. Jacob, B. D. Field, E. M. Jin, I. Bey, Q. Li et al., Atmospheric budget of acetone, J. Geophys. Res. Atmos, vol.107, 2002.

D. J. Jacob, Global budget of methanol: constraints from atmospheric observations, J. Geophys. Res. Atmos, vol.110, issue.D8, 2005.

C. A. Marandino, W. J. De-bruyn, S. D. Miller, M. J. Prather, and E. S. Saltzman, Oceanic uptake and the global atmospheric acetone budget, Geophys. Res. Lett, vol.32, p.15, 2005.

R. Beale, P. S. Liss, and P. D. Nightingale, First oceanic measurements of ethanol and propanol, Geophys. Res. Lett, vol.37, p.24607, 2010.

J. L. Dixon, R. Beale, and P. D. Nightingale, Microbial methanol uptake in northeast Atlantic waters, ISME J, vol.5, pp.704-716, 2010.

R. Beale, J. L. Dixon, S. R. Arnold, P. S. Liss, and P. D. Nightingale, Methanol, acetaldehyde, and acetone in the surface waters of the Atlantic Ocean, J. Geophys. Res. Oceans, vol.118, pp.5412-5425, 2013.

J. L. Dixon, R. Beale, and P. D. Nightingale, Production of methanol, acetaldehyde, and acetone in the Atlantic Ocean, Geophys. Res. Lett, vol.40, pp.4700-4705, 2013.

M. Yang, R. Beale, T. Smyth, and B. Blomquist, Measurements of OVOC fluxes by eddy covariance using a proton-transfer-reaction mass spectrometer-method development at a coastal site, Atmos. Chem. Phys, vol.13, pp.6165-6184, 2013.

C. Schlundt, S. Tegtmeier, S. T. Lennartz, A. Bracher, W. Cheah et al., Oxygenated volatile organic carbon in the western Pacific convective centre: ocean cycling, air-sea gas exchange and atmospheric transport, Atmos. Chem. Phys, vol.17, pp.837-847, 2017.

L. J. Carpenter, S. D. Archer, and R. Beale, Ocean-atmosphere trace gas exchange, Chem. Soc. Rev, vol.41, pp.6473-6506, 2012.

L. J. Carpenter and P. D. Nightingale, Chemistry and release of gases from the surface ocean, Chem. Rev, vol.115, pp.4015-4034, 2015.

R. Beale, J. L. Dixon, T. J. Smyth, and P. D. Nightingale, Annual study of oxygenated volatile organic compounds in UK shelf waters, Mar. Chem, vol.171, pp.96-106, 2015.

K. Mopper and W. L. Stahovec, Sources and sinks of low molecular weight organic carbonyl compounds in seawater, Mar. Chem, vol.19, issue.86, pp.90052-90058, 1986.

R. J. Kieber, X. Zhou, and K. Mopper, Formation of carbonyl compounds from UV-induced photodegradation of humic substances in natural waters: fate of riverine carbon in the sea, Limnol. Oceanogr, vol.35, pp.1503-1515, 1990.

X. Zhou and K. Mopper, Photochemical production of low-molecular-weight carbonyl compounds in seawater and surface microlayer and their air-sea exchange, Mar. Chem, vol.56, pp.201-213, 1997.

W. J. De-bruyn, C. D. Clark, L. Pagel, and C. Takehara, Photochemical production of formaldehyde, acetaldehyde and acetone from chromophoric dissolved organic matter in coastal waters, J. Photochem. Photobiol., A, vol.226, pp.16-22, 2011.

J. M. Sieburth and M. D. Keller, Methylaminotrophic bacteria in xenic nanoalgal cultures: incidence, significance, and role of methylated algal osmoprotectants, Biol. Oceanogr, vol.6, pp.383-395, 1989.

P. D. Nightingale, Low molecular weight halocarbons in seawater, 1991.

B. G. Heikes, Atmospheric methanol budget and ocean implication, Global Biogeochem. Cycles, vol.16, 2002.

J. Dixon, R. Beale, and P. Nightingale, Rapid biological oxidation of methanol in the tropical Atlantic: significance as a microbial carbon source, Biogeosciences, vol.8, pp.2707-2716, 2011.

C. D. Nevison, R. F. Weiss, and D. J. Erickson, Global oceanic emissions of nitrous oxide, J. Geophys. Res. Oceans, vol.100, pp.809-824, 1995.

S. Menon, Couplings between changes in the climate system and biogeochemistry, 2007.

A. R. Ravishankara, J. S. Daniel, and R. W. Portmann, Nitrous oxide (N 2 O): the dominant ozone-depleting substance emitted in the 21st century, Science, vol.326, pp.123-125, 2009.

A. R. Babbin, D. Bianchi, A. Jayakumar, and B. B. Ward, Rapid nitrous oxide cycling in the suboxic ocean, Science, vol.348, pp.1127-1129, 2015.

A. Freing, D. W. Wallace, and H. W. Bange, Global oceanic production of nitrous oxide, Phil. Trans. R. Soc. B, vol.367, pp.1245-1255, 2012.

M. H. Huesemann, A. D. Skillman, and E. A. Crecelius, The inhibition of marine nitrification by ocean disposal of carbon dioxide, Mar. Pollut. Bull, vol.44, pp.142-148, 2002.

V. Kitidis, B. Laverock, L. C. Mcneill, A. Beesley, D. Cummings et al., Impact of ocean acidification on benthic and water column ammonia oxidation, Geophys. Res. Lett, vol.38, 2011.

V. Kitidis, G. H. Tilstone, T. J. Smyth, R. Torres, and C. S. Law, Carbon monoxide emission from a Mauritanian upwelling filament, Mar. Chem, vol.127, pp.123-133, 2011.

D. R. Clark, I. J. Brown, A. P. Rees, P. J. Somerfield, and P. I. Miller, The influence of ocean acidification on nitrogen regeneration and nitrous oxide production in the northwest European shelf sea, Biogeosciences, vol.11, pp.4985-5005, 2014.

R. W. Fulweiler, H. E. Emery, E. M. Heiss, and V. M. Berounsky, Assessing the role of pH in determining water column nitrification rates in a coastal system, Estuaries Coasts, vol.34, 1095.

L. A. Codispoti, Interesting times for marine N 2 O, Science, vol.327, pp.1339-1340, 2010.

D. A. Hutchins, M. R. Mulholland, and F. Fu, Nutrient cycles and marine microbes in a CO 2 -enriched ocean, Oceanography, vol.22, pp.128-145, 2009.

J. L. Bowen, P. J. Kearns, M. Holcomb, and B. B. Ward, Acidification alters the composition of ammonia-oxidizing microbial assemblages in marine mesocosms, Mar. Ecol. Prog. Ser, vol.492, pp.1-8, 2013.

A. E. Santoro, C. Buchwald, M. R. Mcilvin, and K. L. Casciotti, Isotopic signature of N 2 O produced by marine ammonia-oxidizing archaea, Science, vol.333, pp.1282-1285, 2011.

C. R. Loescher, A. Kock, M. Koenneke, J. Laroche, H. W. Bange et al., Production of oceanic nitrous oxide by ammonia-oxidizing archaea, Biogeosciences, vol.9, pp.2419-2429, 2012.

C. Wuchter, ) royalsocietypublishing.org/journal/rspa, Proc. Natl Acad. Sci. USA 103, vol.12, pp.317-329, 2006.

W. Qin, Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation, Proc. Natl Acad. Sci. USA 111, vol.12, pp.504-516, 2014.

Y. Pan, L. Ye, B. Ni, and Z. Yuan, Effect of pH on N 2 O reduction and accumulation during denitrification by methanol utilizing denitrifiers, Water Res, vol.46, pp.4832-4840, 2012.

T. F. Stocker, 2013: climate change 2013: the physical science basis, Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, 2013.

. Wmo, The global climate in, pp.2011-2016, 2016.

D. J. Wuebbles and K. Hayhoe, Atmospheric methane and global change, Earth Sci. Rev, vol.57, pp.177-210, 2002.

M. Grunwald, O. Dellwig, M. Beck, J. W. Dippner, J. A. Freund et al., Methane in the southern North Sea: sources, spatial distribution and budgets, Estuar. Coast. Shelf Sci, vol.81, pp.445-456, 2009.

G. Forster, R. C. Upstill-goddard, N. Gist, C. Robinson, G. Uher et al., Nitrous oxide and methane in the Atlantic Ocean between 50 N and 52 S: latitudinal distribution and sea-to-air flux, Deep Sea Res. Part II, vol.56, pp.964-976, 2009.

R. C. Upstill-goddard and J. Barnes, Methane emissions from UK estuaries: re-evaluating the estuarine source of tropospheric methane from Europe, Mar. Chem, vol.180, pp.14-23, 2016.

A. Kock, S. Gebhardt, and H. W. Bange, Methane emissions from the upwelling area off Mauritania (NW Africa), Biogeosciences, vol.5, pp.1119-1125, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00297964

R. P. Kiene, . Rogers, and . Whitman, Production and consumption of methane in aquatic systems, Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes, pp.111-146, 1991.

E. Damm, B. Rudels, U. Schauer, S. Mau, and G. Dieckmann, Methane excess in Arctic surface water-triggered by sea ice formation and melting, Sci. Rep, vol.5, p.16179, 2015.

D. M. Karl, L. Beversdorf, K. M. Björkman, M. J. Church, A. Martinez et al., Aerobic production of methane in the sea, Nat. Geosci, vol.1, p.473, 2008.

D. J. Repeta, S. Ferrón, O. A. Sosa, C. G. Johnson, L. D. Repeta et al., Marine methane paradox explained by bacterial degradation of dissolved organic matter, Nat. Geosci, vol.9, 2016.

B. D. Tilbrook and D. M. Karl, Methane sources, distributions and sinks from California coastal waters to the oligotrophic North Pacific gyre, Mar. Chem, vol.49, pp.51-64, 1995.

J. Swinnerton, V. Linnenbom, and R. Lamontagne, The ocean: a natural source of carbon monoxide, Science, vol.167, pp.984-986, 1970.

L. Conte, S. Szopa, R. Séférian, and L. Bopp, The oceanic cycle of carbon monoxide and its emissions to the atmosphere, Biogeosciences, vol.16, pp.881-902, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02058835

P. Forster, Changes in atmospheric constituents and in radiative forcing, 2007.

S. T. Lennartz, The influence of dissolved organic matter on the marine production of carbonyl sulfide (OCS) and carbon disulfide (CS 2 ) in the Peruvian upwelling, Ocean Sci, vol.15, pp.1071-1090, 2019.

G. Uher and A. Mo, Photochemical production of carbonyl sulfide in North Sea water: a process study, Limnol. Oceanogr, vol.42, pp.432-442, 1997.

M. Chin and D. Davis, Global sources and sinks of OCS and CS2 and their distributions, Global Biogeochem. Cycles, vol.7, pp.321-337, 1993.

S. F. Watts, The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide, Atmos. Environ, vol.34, pp.761-779, 2000.

A. Kettle, U. Kuhn, V. Hobe, M. Kesselmeier, J. Andreae et al., Global budget of atmospheric carbonyl sulfide: temporal and spatial variations of the dominant sources and sinks, J. Geophys. Res.: Atmos, vol.107, issue.D22, p.4658, 2002.

C. Brühl, J. Lelieveld, P. Crutzen, and H. Tost, The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate, Atmos. Chem. Phys, vol.12, pp.1239-1253, 2012.

S. T. Lennartz, Direct oceanic emissions unlikely to account for the missing source of atmospheric carbonyl sulfide, Atmos. Chem. Phys, vol.17, pp.385-402, 2017.

M. Steinacher, F. Joos, T. L. Frolicher, G. K. Plattner, and S. C. Doney, Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model, Biogeosciences, vol.6, pp.515-533, 2009.

J. C. Comiso, Large decadal decline of the Arctic multiyear ice cover, J. Climate, vol.25, pp.1176-1193, 2012.

E. Shadwick, T. Trull, H. Thomas, and J. Gibson, Vulnerability of polar oceans to anthropogenic acidification: comparison of Arctic and Antarctic seasonal cycles, 2013.

I. Semiletov, Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon, Nat. Geosci, vol.9, pp.361-365, 2016.

S. C. Doney, V. J. Fabry, R. A. Feely, and J. A. Kleypas, Ocean acidification: the other CO 2 problem, Annu. Rev. Mar. Sci, vol.1, pp.169-192, 2009.

V. J. Fabry, J. B. Mcclintock, J. T. Mathis, and J. M. Grebmeier, Ocean acidification at high latitudes: the bellweather, Oceanography, vol.22, 2009.

B. I. Mcneil and R. J. Matear, Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO 2, Proc. Natl Acad. Sci. USA 105, vol.18, pp.860-878, 2008.

C. Hauri, T. Friedrich, and A. Timmermann, Abrupt onset and prolongation of aragonite undersaturation events in the Southern Ocean, Nat. Clim. Change, vol.6, pp.172-176, 2016.

R. Chang, Aerosol composition and sources in the central Arctic Ocean during ASCOS, Atmos. Chem. Phys, vol.11, pp.619-629, 2011.

D. B. Collins, Frequent ultrafine particle formation and growth in the Canadian Arctic marine environment, Atmos. Chem. Phys, vol.17, p.13119, 2017.

T. Jarníková and P. D. Tortell, Towards a revised climatology of summertime dimethylsulfide concentrations and sea-air fluxes in the Southern Ocean, Environ. Chem, vol.13, pp.364-378, 2016.

D. T. Mccoy, S. M. Burrows, R. Wood, D. P. Grosvenor, S. M. Elliott et al., Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo, Sci. Adv, vol.1, 2015.

A. , ACIA: Arctic climate impact assessment, 2005.

L. Kapsenberg, A. L. Kelley, E. C. Shaw, T. R. Martz, and G. E. Hofmann, Near-shore Antarctic pH variability has implications for the design of ocean acidification experiments, Sci. Rep, vol.5, p.9638, 2015.

C. Hoppe, K. Wolf, N. Schuback, P. D. Tortell, and B. Rost, Compensation of ocean acidification effects in Arctic phytoplankton assemblages, Nat. Clim. Change, vol.8, pp.529-533, 2018.

R. A. Feely, C. L. Sabine, J. M. Hernandez-ayon, D. Ianson, and B. Hales, Evidence for upwelling of corrosive 'acidified' water onto the continental shelf, Science, vol.320, pp.1490-1492, 2008.

E. B. Osborne, R. C. Thunell, N. Gruber, R. A. Feely, and C. R. Benitez-nelson, Decadal variability in twentieth-century ocean acidification in the California Current Ecosystem, Nat. Geosci, vol.13, pp.43-49, 2020.

S. J. Weeks, B. Currie, and A. Bakun, Massive emissions of toxic gas in the Atlantic, Nature, vol.415, pp.493-494, 2002.

C. D. Nevison, T. J. Lueker, and R. F. Weiss, Quantifying the nitrous oxide source from coastal upwelling, Global Biogeochem. Cycles, vol.18, 1018.

E. Gutknecht, Coupled physical/biogeochemical modeling including O 2 -dependent processes in the Eastern Boundary Upwelling Systems: application in the Benguela, Biogeosciences, vol.10, pp.3559-3591, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00949573

C. S. Law, Evolving research directions in surface ocean-lower atmosphere (SOLAS) science, Environ. Chem, vol.10, pp.1-16, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00998637

D. L. Arevalo-martínez, A. Kock, C. Löscher, R. A. Schmitz, and H. W. Bange, Massive nitrous oxide emissions from the tropical South Pacific Ocean, Nat. Geosci, vol.8, pp.530-533, 2015.

C. Löscher, Water column biogeochemistry of oxygen minimum zones in the eastern tropical North Atlantic and eastern tropical South Pacific oceans, Biogeosciences (BG), vol.13, pp.3585-3606, 2016.

T. Ohde and I. Dadou, Seasonal and annual variability of coastal sulphur plumes in the northern Benguela upwelling system, PLoS ONE, vol.13, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01713215

R. A. Feely, Chemical and biological impacts of ocean acidification along the west coast of North America, Estuar. Coast. Shelf Sci, vol.183, pp.260-270, 2016.

R. A. Feely, R. R. Okazaki, W. Cai, N. Bednar?ek, S. R. Alin et al., The combined effects of acidification and hypoxia on pH and aragonite saturation in the coastal waters of the California current ecosystem and the northern Gulf of Mexico, Cont. Shelf Res, vol.152, pp.50-60, 2018.

N. Bednarsek, R. Feely, M. Beck, O. Glippa, M. Kanerva et al., El Niñorelated thermal stress coupled with upwelling-related ocean acidification negatively impacts cellular to population-level responses in pteropods along the California Current System with implications for increased bioenergetic costs, Front. Mar. Sci, vol.5, 2018.

K. Fennel, Advancing marine biogeochemical and ecosystem reanalyses and forecasts as tools for monitoring and managing ecosystem health. Front, Mar. Sci, vol.6, 2019.

C. H. Frame, E. Lau, I. V. Nolan, . Ej, T. J. Goepfert et al., Acidification enhances hybrid N 2 O production associated with aquatic ammonia-oxidizing microorganisms, Front. Microbiol, vol.7, 2017.

Á. López-urrutia, S. Martin, E. Harris, R. P. Irigoien, and X. , Scaling the metabolic balance of the oceans, Proc. Natl Acad. Sci. USA, vol.103, pp.8739-8744, 2006.

M. I. O'connor, M. F. Piehler, D. M. Leech, A. A. Bruno, and J. F. , Warming and resource availability shift food web structure and metabolism, PLoS Biol, vol.7, 2009.

A. Capotondi, M. A. Alexander, N. A. Bond, E. N. Curchitser, and J. D. Scott, Enhanced upper ocean stratification with climate change in the CMIP3 models, J. Geophys. Res. Oceans, vol.117, p.4031, 2012.

R. Wang, Influence of anthropogenic aerosol deposition on the relationship between oceanic productivity and warming, Geophys. Res. Lett, vol.42, pp.745-755, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01400901

N. Gruber, Warming up, turning sour, losing breath: ocean biogeochemistry under global change, Phil. Trans. R. Soc. A, vol.369, 1980.

J. E. Rheuban, S. C. Doney, D. C. Mccorkle, and R. W. Jakuba, Quantifying the effects of nutrient enrichment and freshwater mixing on coastal ocean acidification, J. Geophys. Res. Oceans, vol.124, pp.9085-9100, 2019.

A. D. Barton, A. J. Irwin, Z. V. Finkel, and C. A. Stock, Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities, Proc. Natl Acad. Sci. USA, vol.113, pp.2964-2969, 2016.

L. Polimene, S. D. Archer, M. Butenschön, and J. I. Allen, A mechanistic explanation of the Sargasso Sea DMS 'summer paradox, Biogeochemistry, vol.110, pp.243-255, 2012.

J. Martinez-rey, L. Bopp, M. Gehlen, A. Tagliabue, and N. Gruber, Projections of oceanic N 2 O emissions in the 21st century using the IPSL Earth system model, Biogeosciences, vol.12, pp.4133-4148, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01806163

A. Landolfi, C. Somes, W. Koeve, L. M. Zamora, and A. Oschlies, Oceanic nitrogen cycling and N 2 O flux perturbations in the Anthropocene, Global Biogeochem. Cycles, vol.31, pp.1236-1255, 2017.

G. Battaglia and F. Joos, Marine N 2 O emissions from nitrification and denitrification constrained by modern observations and projected in multimillennial global warming simulations, Global Biogeochem. Cycles, vol.32, pp.92-121, 2018.

O. D. Andrews, N. L. Bindoff, P. R. Halloran, T. Ilyina, L. Quéré et al., Detecting an external influence on recent changes in oceanic oxygen using an optimal fingerprinting method, Biogeosciences, vol.10, pp.1799-1813, 2013.

A. Oschlies, O. Duteil, J. Getzlaff, W. Koeve, A. Landolfi et al., Patterns of deoxygenation: sensitivity to natural and anthropogenic drivers, Phil. Trans. R. Soc. A, vol.375, 2017.

U. Riebesell, Enhanced biological carbon consumption in a high CO 2 ocean, Proc. R. Soc. A, vol.450, pp.545-548, 2007.

A. Oschlies, K. G. Schulz, U. Riebesell, and A. Schmittner, Simulated 21st century's increase in oceanic suboxia by CO 2 -enhanced biotic carbon export, Global Biogeochem. Cycles, vol.22, 2008.

O. Andrews, E. Buitenhuis, L. Quéré, C. Suntharalingam, and P. , Biogeochemical modelling of dissolved oxygen in a changing ocean, Phil. Trans. R. Soc. A, vol.375, 2017.

T. F. Thingstad, Counterintuitive carbon-to-nutrient coupling in an Arctic pelagic ecosystem, Nature, vol.455, pp.387-390, 2008.

A. Tagliabue, L. Bopp, and M. Gehlen, The response of marine carbon and nutrient cycles to ocean acidification: large uncertainties related to phytoplankton physiological assumptions, Global Biogeochem. Cycles, vol.25, 2011.

A. R. Gunderson, E. J. Armstrong, and J. H. Stillman, Multiple stressors in a changing world: the need for an improved perspective on physiological responses to the dynamic marine environment, Annu. Rev. Mar. Sci, vol.8, pp.357-378, 2016.

P. W. Boyd, Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change-a review, Glob. Change Biol, vol.24, pp.2239-2261, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01806710

P. W. Boyd, S. T. Lennartz, D. M. Glover, and S. C. Doney, Biological ramifications of climate-change-mediated oceanic multi-stressors, Nat. Clim. Change, vol.5, pp.71-79, 2015.

K. T. Lohbeck, U. Riebesell, and T. B. Reusch, Adaptive evolution of a key phytoplankton species to ocean acidification, Nat. Geosci, vol.5, 2012.

K. T. Lohbeck, U. Riebesell, and T. B. Reusch, Gene expression changes in the coccolithophore Emiliania huxleyi after 500 generations of selection to ocean acidification, Proc. R. Soc. B, vol.281, 2014.

M. Pan?i?, P. J. Hansen, A. Tammilehto, and N. Lundholm, Resilience to temperature and pH changes in a future climate change scenario in six strains of the polar diatom Fragilariopsis cylindrus, Biogeosciences, vol.12, pp.4235-4244, 2015.

Y. Wang, R. Zhang, Q. Zheng, Y. Deng, J. D. Van-nostrand et al., Bacterioplankton community resilience to ocean acidification: evidence from microbial network analysis, ICES J. Mar. Sci, vol.73, pp.865-875, 2016.

U. Riebesell, V. J. Fabry, L. Hansson, and J. Gattuso, Guide to best practices for ocean acidification research and data reporting, vol.258, 2011.