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In humans, maternal IgGs are transferred to the fetus from the second trimester of

pregnancy onwards. The transplacental delivery of maternal IgG is mediated by its

binding to the neonatal Fc receptor (FcRn) after endocytosis by the syncytiotrophoblast.

IgGs present in the maternal milk are also transferred to the newborn through the

digestive epithelium upon binding to the FcRn. Importantly, the binding of IgGs to the

FcRn is also responsible for the recycling of circulating IgGs that confers them with a

long half-life. Maternally delivered IgG provides passive immunity to the newborn, for

instance by conferring protective anti-flu or anti-pertussis toxin IgGs. It may, however, lead

to the development of autoimmune manifestations when pathological autoantibodies

from the mother cross the placenta and reach the circulation of the fetus. In recent

years, strategies that exploit the transplacental delivery of antigen/IgG complexes

or of Fc-fused proteins have been validated in mouse models of human diseases

to impose antigen-specific tolerance, particularly in the case of Fc-fused factor VIII

(FVIII) domains in hemophilia A mice or pre-pro-insulin (PPI) in the case of preclinical

models of type 1 diabetes (T1D). The present review summarizes the mechanisms

underlying the FcRn-mediated transcytosis of IgGs, the physiopathological relevance of

this phenomenon, and the repercussion for drug delivery and shaping of the immune

system during its ontogeny.

Keywords: neonatal Fc receptor (FcRn), maternal IgG, immune system ontogeny, immune tolerance induction,

hemophilia A, therapy

INTRODUCTION

The existence of a passive transfer of immunity from the mother to the young was documented
by P. Ehrlich more than a century ago and more than 50 years ago by Brambell et al. (1); it was
a few years before the demonstration that passive transfer of immunity is mediated by maternal
IgGs. The maternal and fetal circulations are separated by cellular barriers differently organized
depending on the species [hemomonochorial in the human (2) and hemotrichorial in the mouse].
In 1964, Brambell et al. hypothesized that the transplacental delivery of maternal IgGs involves a
receptor expressed by placental cells (3). A few years later, a receptor responsible for the trans-
epithelial transport of IgGs across the newborn rat intestine was identified (4, 5). The surface and
intracellular expression of the Fc receptor by the placenta (6) or yolk sac cells (7) and intestinal cells
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(3, 7–10) and its colocalization with IgGs (4, 6) suggested its
involvement in the transfer of maternal IgGs. It led to the
isolation from human placenta of this “IgG transporter” and its
identification as the neonatal Fc receptor (FcRn) (11, 12).

In addition to the transplacental delivery of maternal IgGs,
the FcRn is involved in a plethora of functions including the
transfer of IgGs present in maternal milk to the newborn through
the digestive epithelium, control of IgG and albumin catabolism,
uptake of immune complexes by a variety of cells leading, in
the case of antigen presenting cells, to the presentation of the
endocytosed antigen to T lymphocytes. In the recent years,
strategies that exploit the transplacental delivery of antigen/IgG
complexes or of Fc-fused proteins have been validated in mouse
models of human diseases to trigger antigen-specific immune
tolerance. The present review summarizes the mechanisms
underlying the FcRn-mediated transcytosis of IgGs, the physio-
pathological relevance of this phenomenon and the potential for
in utero drug delivery and manipulation of the immune system.

STRUCTURE AND EXPRESSION OF FcRn

FcRn was first isolated from rat intestinal epithelial cells
(4, 13, 14), rodent yolk sac (7), and finally from human
syncytiotrophoblast cells (15, 16). FcRn is a heterodimeric
molecule constituted of a 14 kDa light chain and a 45–50
kDa heavy chain (14). The heavy chain includes 3 extracellular
domains (α1, α2, and α3), a transmembrane domain, that
allows anchoring to cell membranes, and a short cytoplasmic
domain (17) (Figure 1). The α1 and α2 domains are formed
of 8 antiparallel ß-sheets overhung by 2 α-helices (18–
20). The structural homology of the FcRn with the major
histocompatibility complex class I (MHC-I) was confirmed by
the homology between the coding sequences of the extracellular
domains and transmembrane region of FcRn andMHC-I, and by
crystallography (7, 9, 16, 18, 21). The heavy chain and light chain-
encoding genes are highly conserved across mammalian species
(22–24). Thus, human FCGRT (Fc fragment of IgG receptor and
transporter) gene and mouse ortholog (Fcgrt) encoding FcRn
present a strong sequence homology with 69 and 65% identity at
the nucleotide and amino-acid levels, respectively, and low allelic
polymorphism (22–24). The FCGRT and Fcgrt genes are located
outside theHLA/H2 genes complex, on the 19q13 locus in human
and on chromosome 7 inmice, respectively. The absence of the ß-
microglobulin chain hampers the conformation and functionality
of the FcRn (25) which was used advantageously in ß2 m−/−

mice to demonstrate the implication of FcRn in IgG transmission
(26). Moreover, more evidence came later with the development
of FcRn heavy chain KO mice (27).

During fetal life in rodents, FcRn is expressed by cells of the
yolk sac (7, 22), and, to a greater extent, by epithelial cells in
the jejunum and duodenum (8) where it is maintained until the
time of weaning (3 weeks after birth) and mediates the transfer of
IgGs contained in the colostrum ormaternal milk. After weaning,
FcRn expression in the digestive epithelium is highly reduced
(13, 14, 28, 29). FcRn expression has also been detected in rodent
skin, spleen, liver, and muscle vascular endothelial cells (30–33).

FIGURE 1 | Interaction between the FcRn and IgG. The FcRn is composed of

a heavy chain with three extracellular domains (α1, α2, α3, dark blue) and of

the β-2 microglobulin light chain (β2m, light blue). At acidic pH, salt bridges

are formed upon interactions between the histidine residues His310, His435,

and His436 of the CH2 and CH3 domains of the IgG and glutamate residues

Glu117 and Glu132 of the α2 domain of the heavy chain of FcRn, and the

isoleucine residue Ile1 of the β 2m. The IgG is depicted in orange.

Conversely, in humans, FcRn expression by intestinal epithelial
cells persists during adult life (10, 34). The heavy and light
chains of human FcRn are synthesized by syncytiotrophoblast
cells (6, 16, 35, 36) and by arterial or vascular endothelial cells
of the placenta (37, 38). Human FcRn is detected in different
tissues including the liver, kidneys, lungs, heart, pancreas and
mammary glands (15, 39, 40); it is expressed by hematopoietic
cells (dendritic cells, monocytes, macrophages, and neutrophils,
B lymphocytes) but not by T lymphocytes and natural killer
(NK) cells (41–43). Differences in FcRn expression between
humans and mice are explained by differences in the promoters
controlling FCGRT expression (24, 44).

MECHANISMS OF FcRn-MEDIATED IgG
TRANSPORT

The dependency on pH of the interaction between IgG and the
FcRn was described in different experimental settings. IgGs in
maternal milk bind to intestinal FcRn at pH 6-6.5 and are released
at pH 7.4 (45). The same was found for IgG binding to placental
membranes (13, 46–49). While the increased binding observed
at acidic pH was initially thought to rely on conformational
changes in FcRn (50), it was later found that acidification allows
protonation of histidine residues in the heavy chain of FcRn,
thus stabilizing the FcRn molecule by fostering electrostatic
interactions (17, 19). Furthermore, the CH2 and CH3 domains
of the IgG heavy chain also contain three histidine residues,
that are highly conserved between species (51, 52). At pH < 6,
His310, His435, and His436 in the mouse IgG1 are protonated.
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FIGURE 2 | Transplacental delivery of maternal IgG and its therapeutic implications. (A) In the human, the transplacental delivery of maternal IgG starts during the

second trimester of pregnancy. IgG cross the cytotrophoblast and syncytiotrophoblast cell layers to reach the fetal circulation. IgG transfer involves non-specific fluid

phase internalization. IgG then colocalize with the FcRn in early endosomes where the acidic environment promotes FcRn/IgG interactions. Mature sorting endosomes

transport FcRn/IgG complexes away from lysosomes, rescuing them from lysosomal degradation. IgG is released from FcRn into fetal blood by the partial or complete

fusion of the endosome with the plasma membrane. After the dissociation of the IgG/FcRn complexes, FcRn returns to its original position. The transplacental delivery

of Fcγ-fused proteins (B) such as FVIII-Fc or PPI-Fc, or of immune complexes (C) was validated for therapy in preclinical models in order to shape the fetal immune

system. For simplicity, immune complexes are depicted as single IgG bound to two antigens.

This allows the formation of saline bridges with glutamate 117
and 132 and an aspartate residue inside an anionic pocket of the
α2 domain of the FcRn (17, 19, 21, 47, 50) as well as the Ile1 of the
ß2m (53) (Figure 1). Of note, alanine substitutions of the Ile253,
His310 and His435 abrogate the binding of human IgG1 to the
FcRn at acidic pH (54). Increase in pH above 6 leads to the loss
of CH2-CH3/FcRn interaction because of the deprotonation of
the histidine residues. Crystallographic investigations show that
two FcRn molecules bind a single IgG through each of the Fc
fragments (18). FcRn binding demonstrates a strong specificity
for the IgG isotype. In humans, IgA, IgM, IgD, and IgE are not
or only poorly transported through the placenta (43–47). The
binding of the different IgG subclasses to FcRn also depends
on variations in amino-acid sequences in the CH2 and CH3
domains leading to different affinities for FcRn (55). Indeed,
human IgG1 and IgG4 are the most transferred IgG subclasses,
while IgG3 which possesses an arginine rather than a histidine
at position 435, presents a reduced transplacental delivery and
a three-fold lower half-life than the other IgG subtypes (55–60).
Interestingly, the binding affinity for the FcRn of an IgG of a given
subclass is also influenced by the nature of its complementarity
determining regions (CDR) and antigen-binding fragments (Fab)
(61–63). Likewise, the glycosylation profile of a given IgG
subclass has an impact on IgG transfer and transplacental
delivery of maternal IgG by modifying the affinity for the
FcRn (64–66).

The interspecies specificity of the binding of IgGs to FcRn
has revealed the extreme selectivity of human FcRn for human
IgGs. This explains the poor half-life in the human circulation
of the first therapeutic IgGs of mouse origin. In stark contrast,
the murine FcRn reacts with a high affinity to murine, human,
and bovine IgGs. In particular, the affinity of the murine FcRn for
human IgGs ismuch higher than that of the human FcRn (67, 68).
Such an interspecies binding disparity was also demonstrated
in the case of albumin, another FcRn ligand (69). The human
FcRn has a greater affinity for murine albumin than for the
human molecule. Conversely, the mouse FcRn binds murine
albumin with a high affinity and also binds human albumin (70,
71). Such considerations are very important for the preclinical
validation of therapeutic monoclonal antibodies and molecules
that exploit the Fc- or albumin-fusion technologies and, for
example, justify the use of human Fcγ1 fragments in the design
of chimeric molecules.

The transcytosis of maternal IgG starts with the non-specific
fluid phase internalization by intestinal or placenta epithelial or
endothelial cells (5, 37, 72). Following their internalization, IgGs
accumulate in Rab5+EEA+ early endosomes where they bind to
FcRn upon pH acidification (73). The IgG/FcRn complexes are
released in the intercellular space by partial or complete fusion
of recycling endosomes with the plasma membrane (74, 75).
Once at neutral pH, deprotonation of the histidines allows the
dissociation of IgG from the FcRn (8) (Figure 2A).
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The FcRn-dependent recycling pathway was also widely
studied. As for IgGs transcytosis, IgG recycling begins with
internalization by vascular endothelial cells and macrophages.
IgGs accumulate in Rab5+EEA+ early endosomes where they
colocalize with the FcRn. The binding of IgGs to the FcRn rescues
them from the lysosomal degradation pathway. The matured
Rab4+Rab11a+ sorting endosomes transport the complex away
from lysosomes. In contrast, recombinant IgGs with a mutated
His435, that do not bind FcRn, are routed to the lysosomes and
are degraded (76–78).

FUNCTIONS OF FcRn

Role of The FcRn in IgG Transcytosis
As explained above, the FcRn was first identified for its role in the
transfer of maternal IgGs to the baby during fetal life through
the placenta and during breast-feeding through the digestive
epithelium. During pregnancy in humans, maternal IgGs are
detected in the umbilical cord from 8–10 weeks of gestation
(GW8-10) (79). The concentration of maternal IgGs in the fetal
circulation remains low until the second part of the second
trimester (80) to reach 10% of maternal IgGs at GW22. It then
increases to 50% at GW30 and exceeds the concentration in
maternal blood at the end of the gestation (GW37-40) (81–84).
It was proposed that the increased transfer at the end of gestation
is due to the expansion of the exchange surface which grows from
5 m2 at GW28 to 11–12 m2 at the term (85). In humans, the
majority of maternal IgGs are transferred across the placenta.
In mice, a low but significant IgG transmission is detected at
embryonic day 15 (E15) (86) that peaks at E17 (87). The majority
of IgG is delivered after birth by ingestion of maternal milk.
Antibodies in the colostrum and more generally in the maternal
milk cross the intestinal barrier to reach the fetal circulation
(46, 88). The rodent intestine is permeable to maternal IgGs until
20 days after birth (86–88).

The trans-epithelial and transplacental delivery of maternal
IgGs plays an essential role for the protection of the newborn by
providing passive immunity against a large array of pathogens.
Passive immunity was observed in the 19th century during
the measles epidemic, where babies from mothers who had
survived were protected. The transfer of passive immunity was
however first described by Paul Ehrlich in 1892, when he noticed
that babies were protected against toxins only if the mothers
were themselves resistant. Nowadays, vaccines against influenza,
pertussis, diphtheria, meningococcus, measles, pneumonia and
hepatitis are currently administrated to pregnant women to foster
the development of protective IgGs that are then transferred to
the fetus (89–95). The efficiency and duration of the transferred
passive immunity however depends on the antigenic specificity
of the IgG (91, 92, 96, 97).

Role of The FcRn in The Recycling of
Circulating IgG
Most plasma proteins and immunoglobulins have a short half-life
(1-2 days) in the circulation. In contrast, IgGs present a half-
life of 23 days in humans (98) and 7 days in mice (99). In the
60’s, Brambell et al. proposed that IgG catabolism is regulated

by the same receptor involved in IgG transfer: the FcRn (3, 100).
This was formally demonstrated in models of ß-2-microglobulin
deficient mice (26, 101–103) as well as in FcRn-deficient mice (94,
95) where IgG half-life was systematically reduced. Conversely,
it was restored to normal in transgenic mice expressing the
human FcRn (104). As described in the case of IgG transplacental
or trans-epithelial delivery, IgG recycling involves fluid phase
internalization by vascular endothelial cells and macrophages
(31, 76, 105, 106) and binding by the IgG CH2 and CH3
domains to the FcRn in early endosomes (54, 98, 107, 108). The
binding to the FcRn protects IgGs from lysosomal degradation
and fosters their recycling to the circulation (37, 73, 77, 78).
The FcRn-dependent recycling pathway of IgG is saturable and
unbound IgGs accumulate in the lysosomes where they are
degraded (76, 77, 103).

Role of The FcRn in Antigen Capture and
Presentation
The FcRn is expressed by a large variety of immune cells (109).
Because of its structure homology with MHC class I molecules,
FcRn was initially proposed to present endocytosed antigens. It
was however demonstrated that the peptide-binding groove is
occluded in the FcRn molecule (21). The FcRn is nevertheless
indirectly implicated in antigen uptake and presentation (109).
For instance, the expression of the FcRn on neutrophils was
associated with the phagocytosis of IgG1-opsonized bacteria (42).
Because the FcRn does not bind IgGs at neutral pH, it was
proposed that immune complexes are captured and endocytosed
by other FcR receptors. FcRn binding occurs in a second step
once the pH acidifies; it allows sorting of the immune complexes
to loading compartments and promotes antigen presentation as
well as cross-presentation (109–111). The FcRn also transports
IgGs from the intestinal basolateral side to the intestinal lumen
where they form immune complexes with their cognate antigens.
The immune complexes are then transported through the
epithelium of the lamina propria where they are internalized by
antigen presenting cells (i.e., dendritic cells) and presented to T
cells (112–114).

Role of The FcRn in The Recycling of
Circulating Albumin
Albumin is the most abundant protein in plasma. It is involved
in the transport of endogenous and exogenous molecules as
well as in the maintenance of osmotic pressure (115). It is
produced in high quantities and rapidly secreted by the liver
(116) and is found in secretions such as tears, saliva, sweat and
maternal milk. Albumin is characterized by an extended half-life
in blood: it persists for 19 or 2-3 days in the human and mouse
circulation, respectively (69, 117, 118). Such a long half-life is also
mediated by binding to the FcRn. IgG and albumin bind FcRn at
non-overlapping sites, without cooperation or competition. The
interaction between albumin and FcRn is hydrophobic, depends
on acidic pH and presents a 1:1 stoichiometry (119).
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PHYSIOLOGICAL RELEVANCE OF THE
TRANSFER OF MATERNAL IgG

The following chapter summarizes the timing of the development
of the fetal immune system in humans and mice. Notably,
the establishment of the adaptive immune system and the
generation of T and B lymphocytes expressing rearranged T-cell
and B-cell receptors, respectively, at their surface is concomitant
to the transplacental delivery of maternal IgGs, thus creating
a time window when maternal IgGs, that represent the last
step of the expression of the maternal immune system, have
the opportunity to impact the developing adaptive immune
repertoires of the fetus.

Ontogeny of The Human Immune System
During Fetal Life
The development of the immune system starts after 2-3 weeks
of fetal development with the initiation of hematopoiesis and
generation of pluripotent and self-renewing hematopoietic stem
cells (HSC) (Figure 3A) (120). In all mammals, hematopoiesis
first occurs in the mesoderm of the yolk sac, and the
extraembryonic mesenchymal tissue (121). Cells of the innate
immune system are the first to emerge. Erythroid and
granulo-macrophage multipotent progenitors, which give rise
to megakaryocytes and myeloid cells, are detected from the
gestational week (GW) 3 to 4. Dendritic cell-like cells are found
in the yolk sac and the mesenchyme at GW4-6. FromGW4, these
progenitors are released in the circulation and reach the fetal liver,
which becomes the major hematopoietic site until birth, when
the bone marrow takes over (121). With respect to secondary
lymphoid organs, the different subunits of the spleen form during
GW13-28, and the red and white pulps are visible at the end of
the second trimester (122). The development of lymph nodes
occurs at the same period. The involvement of the spleen and
lymph nodes (LN) in hematopoiesis, together with that of the
fetal liver, ceases at birth (123). Between GW8-10, granulocytes,
NK cells and lymphocyte precursors are detected in the fetal
circulation (124). The GW12-19 fetal blood already contains
high levels of erythroid, monocytic and granulocytic progenitors.
Neutrophils are the last type of innate immune cells to be
produced (GW31).

CD7+CD45+ pro-thymocytes with an intracytoplasmic
CD3+ are detected in fetal liver from GW7. CD3 is not expressed
at the surface of thymocytes until GW10 when the cells become
less proliferative (125). T-cell receptor (TcR) rearrangement
starts from GW6-9.5 and is first detected in the fetal liver
before the thymus takes over (126). The colonization of the
thymus by HSC starts at GW8 and the thymus organogenesis is
complete at GW20 (127). Mature CD4 and CD8 single-positive
T lymphocytes leave the thymus for the periphery and reach the
spleen and LN from GW14 onwards (123).

Pro-B cells, which are characterized by the expression of
CD24 and the absence of expression of IgM, are detected in
the fetal liver at GW8. Pre-B cells, that emerge from the pro-B
cell pool, express the immunoglobulin µ chain in the cytoplasm
from GW8 onwards, and at the cell surface at GW10-12

(128). B-cell receptor (BcR) expression is necessary for B cell
proliferation and migration to the periphery (129). IgD surface
expression is detectable from GW13 and surface IgM levels
are maximal around GW7-18. Immature B cells are released in
the circulation and reach the LN at GW14-17 and the spleen
at GW16-23 where they become mature B cells (123). Pre-B
cell quantities decrease from GW13-23 in the fetal omentum
(130). Despite the early burst of Ig production during fetal life,
newborns have low quantities of IgM, IgA and IgE. The neonatal
immune system responds to antigens mainly by producing IgM
with low affinities (131). At birth, the majority of innate and
adaptive cells are immature (132) but the immune system is
functional and complete. The exposure to external antigens after
birth promotes the adaptation and expansion of the immune
system (133, 134).

Ontogeny of The Mouse Immune System
During Fetal Life
The development of the immune system in rodents involves, as
in humans, the differentiation of pluripotent HSCs into myeloid
or lymphoid lineage progenitors (135). In mice, hematopoiesis
starts at embryonic day (E) 6.5 (Figure 3B). The first type of HSC,
the erythro-myeloid, and lymphoid progenitor cells are formed
in the yolk sac at E7.25 (136) and macrophages and monocytes
appear at E9 (137). At E10, HSCs are detected in the aorta-gonad-
mesonephros (AGM) (138). Fetal circulation is established at
E8.5, allowing HSCs to leave the AGM and to reach the fetal
liver and the placenta, the two main reservoirs of HSCs at mid-
gestation (E11.5) (139). The development of LN starts between
E7 and E13 depending on their localization (140). LN are rapidly
colonized by T cells and the first LN follicles are formed 1 week
after birth (141). At E13, HSC and lineage-restricted progenitors
reach the fetal spleen (123). The lymphatic network is established
at E15.5 (142). Formation of the bone marrow is one of the last
stages of mice development (E17). At E17.5, HSCs and lineage-
specific progenitors leave the liver to colonize the bone marrow
(143) where they remain until adulthood. Bone marrow HSCs
form the first reserve of stem cells for post-natal life. After E18,
the bone marrow assumes the maintenance of the HSC pool and
the development of hematopoietic cells.

Neutrophils are detected in the circulation for the first time
at E14 at very low numbers (<2%) and reach 20% at E18
(144). Neutrophils and monocytes are, at the fetal and newborn
stages, the first line of defense against infection. At E13–15.5,
hematopoiesis switches from the liver to the thymus for T
cells and the spleen for B cells. The thymus anlage is detected
from E9-10 (123) and its colonization by lymphoid progenitor
cells occurs between E10.5 and E13 (145). T-cell progenitors
are first synthesized from lymphocyte progenitors at E12.5.
Thymocytes first express the TcR and then undergo positive and
negative selection, to eliminate auto-reactive clones. In the late
gestational period (E14-21), simple positive CD4 or CD8T cells
are produced. The bone marrow is the main organ where B-cell
lymphopoiesis takes place (146). The rearrangement of the genes
encoding the B-cell receptor initiates by E13 and IgM+ B cells are
detected at E17 (147).
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FIGURE 3 | Fetal development of the immune system. The time-dependent ontogeny of the human (A) and mouse (B) immune systems is summarized for innate

immune cells (dark blue), adaptive T (green) and B cells (red) and colonization of the lymph nodes and bone marrow (light blue). HSC, hematopoietic stem cells; NK,

natural killer cells; TcR, T-cell receptor; LN, lymph nodes; BcR, B-cell receptor; AGM, aorta-gonad-mesonephros; GW, gestational weeks in the human; E, embryonic

days in mice.
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Shaping of Adaptive Immune Repertoires
by Maternal IgG
Transplacentally delivered maternal IgGs are important for
the protection of newborns from bacterial or viral infections.
Importantly, the transfer of maternal antigen-specific IgGs
influences antigen-specific immune responses later in the life
by altering both the repertoires of T and B lymphocytes in
the progeny. Seminal work by Faure et al. demonstrated that
the transfer of κ light chain-specific maternal IgGs alters the
repertoires of κ light chain-specific T cells and confers a transient
state of tolerance toward peptides derived from the constant
region of the κ light chain (148). This was demonstrated by
following κ light chain constant region (Cκ)-specific CD4+ T
cells in κ light chain knock-out (κ−/−) mice born to κ+/−

mothers. Hence, the transfer of maternal IgGs from mothers
bearing a κ light chain to κ light chain-deficient fetuses
altered in an antigen-dependent manner the repertoires of T
lymphocytes (148).

In the B cell compartment, early idiotypic manipulations via
maternal immunization with antigens or monoclonal IgGs, or
after treatment of newborns with anti-idiotypic IgGs, were shown
to induce profound states of tolerance toward the particular
idiotype (149, 150). In such systems, the suppression of antibody
responses was always reversible. Its recovery was associated
with the expression of the same (151) or different idiotypic
repertoires (152–154). For instance, the transfer of maternal
anti-idiotypic IgGs directed against anti-phosphorylcholine
(PC) antibodies skewed the repertoires of PC-specific B
lymphocytes after immunization of the offspring with PC later in
life (155).

Another example of the importance of normal IgGs in shaping
immune repertoires is provided by studies on intravenous
immunoglobulins for therapeutic use (IVIG). Exploration of
the mechanisms of action of IVIG led to identification of
various F(ab’)2-dependent mechanisms. Through anti-idiotypic
interaction, IVIG neutralizes pathogenic autoantibodies and
shapes the repertoire of auto-IgG-producing B-cell clones
(156). IVIG reciprocally regulates pathogenic Th1/Th17 cells
and immune-protective regulatory T cells by F(ab’)2-dependent
process (157, 158). While both F(ab’)2- and Fc-dependent
regulation of dendritic cells and macrophages by IVIG have
been reported (159–162), F(ab’)2 fragments of IVIG regulate
the functions and repertoires of granulocytes like eosinophils,
basophils and neutrophils (163, 164). In line with these
functions, auto-antibodies to diverse self-molecules have been
identified and isolated from IVIG including HLA class I,
CD40, adhesion molecules, CD4, CD5, Siglecs, IgE, and Fas/
CD95 (156).

PATHOLOGICAL IMPLICATIONS OF THE
TRANSPLACENTAL DELIVERY OF
MATERNAL IgG

The transfer of maternal IgGs to the fetus may have pathological
repercussions when the mothers present with autoimmune
disorders caused by self-reactive IgG. In such situations, the

FcRn plays a dual role, increasing disease severity in the mothers
by controlling the concentration of circulating pathogenic IgGs,
and mediating the transmission of pathogenic IgGs to the fetus
thereby inducing disease manifestations. A typical example is the
transfer of the Sjögren’s syndrome upon transplacental delivery of
maternal autoantibodies directed to the nuclear proteins Ro/SSA
and La/SSB (165). The Sjögren’s syndrome affects ∼1/10,000
adults with a majority of women (90%) (166, 167). Anti-
SSA/Ro and SSB/La IgG target the Ro/La ribonucleoprotein
complex constituted by two Ro protein isoforms (52 kDa and
60 kDa) and the La protein (48 kDa). Ro52 is involved in
the regulation of proliferation and cell death (168) and in
the regulation of interferon regulator factor-mediated immune
responses (169, 170), while Ro60 is implicated in the control
of RNA integrity (171). The translocation of these antigens
at the surface of salivary gland cells allows their targeting by
autoantibodies, leading to dysfunction of the exocrine glands,
lymphocytic infiltrates in the salivary gland and parotid gland
enlargement (172, 173).

In ∼2% of babies from Sjögren’s syndrome-affected mothers
(174), the transfer of maternal anti-SSA/Ro and SSB/La is
responsible for the development of neonatal lupus erythematosus
(NLE) leading to the development of rashes, liver damage,
neuropsychiatric impairment (175) or congenital heart block
(CHB). CHB presents with a mortality rate of 18% and requires
implantation of a pacemaker in 70% of the cases (176, 177).
Mothers who give birth to CHB-affected children possess anti-
Ro/anti-LA IgG and may be either asymptomatic or present
with systemic lupus erythematosus, Sjögren’s syndrome or
undifferentiated autoimmune diseases (178, 179). In the case of
anti-SSA/Ro and SSB/La IgG-mediated CHB, the autoantibodies
either target the autoantigen that has translocated on the
cell surface of apoptotic cardiomyocyte (180, 181) and/or
cross-react with L-type calcium channels (LTCCs) present
on the cardiomyocyte surface (182). The interaction between
autoantibodies and autoantigens leads to immune complex
deposition, inflammation, disruption of calcium homeostasis and
calcification, heart fibrosis and signal conduction blockade in the
atrioventricular node (183, 184).

The hemolytic disease of the fetus and newborn (HDFN)
is another example of the contribution of maternal IgGs to
the development of fetal pathologies (185). The maternal IgGs
are directed against Rhesus (Rh) antigens (RhD, RhC, RhE,
K, M, . . . ) expressed by fetal erythroid cells, and are either
self-reactive or have developed against fetal antigens during a
previous pregnancy. The ensuing destruction of red blood cells
induces anemia which in the worst cases results in perinatal
mortality and morbidity (186, 187). The prevalence of HDFN
caused by anti-Rh antibodies others than anti-RhD is 1 in 500
pregnancies (185).

IgG specific for platelet membrane glycoproteins may
also be transferred from the mothers to fetuses. Thus,
anti-platelet autoreactive IgGs develop in 1/500 pregnancy
leading to a disease called autoimmune thrombocytopenia
(188). Autoimmune thrombocytopenia is characterized by
a reduced quantity of platelets and the development of
mucocutaneous bleeding. Alternatively, 1 in 2,000 mothers
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develops alloantibodies directed against paternally derived
platelet antigens. Transplacentally delivered maternal anti-
platelet autoimmune or alloimmune IgGs target fetal platelets
causing the development of fetal thrombocytopenia which, in 1
or 20% of the cases, respectively, is severe and causes intracranial
hemorrhages (189, 190).

More anecdotical, the presence of autoreactive IgGs against
neuronal and glial proteins or of IgGs induced by maternal
infections has been associated with autism spectrum disorders
(191), although available epidemiologic data are too scarce to
confirm any association.

In the mice, the FcRn-mediated transfer of maternal IgE in the
form of IgE/IgG anti-IgE complexes has been associated with the
development of allergic disease (192, 193).

THERAPEUTIC VALUE OF
FcRn-MEDIATED DELIVERY

Increasing the Half-Life of Biological
Therapeutics
The capacity of the FcRn to extend the pharmacokinetics of
therapeutic molecules has been exploited in several instances. To
this end, therapeutic molecules are fused with the Fc fragment
of human IgG, human albumin or an albumin-binding domain.
The first Fc-fused molecule accepted by the FDA was a chimera
between the TNF receptor and the human Fcγ and is used for
the treatment of rheumatoid arthritis (194). Nowadays, several
Fc-fused molecules are approved for clinical use, including
drugs for the treatment of immune thrombocytopenic purpura
(195), asthma, psoriasis, etc. [reviewed in Rath et al. (196)].
Notably, the Fc fusion technology has been used in the field
of hemophilia. The Fc fusion of coagulation factor XI and of
pro-coagulant factor VIII (FVIII), that have short intrinsic half-
lives, was shown to increase the half-life of the molecules in
the patients, thus, allowing the reduction of injection frequency
(68, 197). More recently, modifications of the CH2 and CH3
domains of the human Fcγ by mutagenesis have allowed an
increase in the affinity for the FcRn and thus further extend
the pharmacokinetic of Fc-fused products (198–200). Of note,
targeting albumin (201–204) or using albumin-fusion technology
is also used in the case of coagulation factor IX for the treatment
of hemophilia B (205), as well as for biotherapeutics for the
treatment of diabetes (201, 206), cancer (202, 204) or rheumatoid
arthritis (207).

Saturation of The IgG Recycling Pathway
As explained earlier, the FcRn-dependent recycling pathway
is saturable. This property has been exploited as a strategy to
eliminate endogenous pathogenic IgGs. Historically the recycling
pathway was saturated with IVIG injected in large amounts.
IVIG compete with endogenous IgGs for the binding to the
FcRn, thus promoting their routing to the lysosomal degradation
pathway and lowering their levels in the circulation (208, 209).
Nevertheless, owing to the cumbersome procedures as well as
cost and possible side effects associated with IVIG treatment,
alternative therapies are being developed. Novel molecules,

referred to as “antibodies that enhance IgG degradation” or
“Abdegs” (210), that bind to the FcRn with a higher affinity
than IgG and in a pH-independent manner, have recently been
generated. Moreover, FcRn-blocking monoclonal antibodies,
such as Rozanolixizumab (211), SYNT001 (212), M281
(213) and Efgartigimod (214) are currently in phase 2 or 3
clinical trials (NCT04200456, NCT03075878, NCT04119050,
NCT04225156). These molecules hold promise for the
treatment of IgG-mediated diseases such as systemic lupus
erythematosus, myasthenia gravis or immune thrombocytopenic
purpura (210, 215).

Shaping of The Immune System in The
Offspring
The capacity of maternal IgGs to cross the placenta during
pregnancy or the epithelial barrier during breastfeeding in an
active FcRn-dependent manner can be exploited to educate
the immune system of the offspring and confer protection
in several human pathologies such as asthma, type-1 diabetes
(T1D), hemophilia A (Figures 2B,C). Allergic asthma is one of
the most represented allergic diseases with, according to the
WHO, 235million people affected (216). Allergic diseases have an
increased prevalence, particularly in developed countries owing
to changes in lifestyle (217) and environmental exposure during
early life (218). Asthma develops following the polarization
of CD4+ T cells toward a Th2 subtype, upon activation by
usually innocuous inhaled or ingested allergens. The secretion
of IL-4 by Th2 cells induces the differentiation of B cells into
plasma cells, which secrete allergen-specific IgE. IgE-allergen
immune complexes then interact with mast cells through the
FcεR, leading to degranulation and release of vasoactive amines
(219). Asthma is characterized by a chronic inflammation of the
lungs and mucus accumulation, causing respiratory difficulties
(220, 221). During pregnancy, allergens inhaled or ingested
by the mother shape the immune system of the fetus (222).
Indeed, allergens contained in mothers’ diets were proposed to
cross the placenta and to be present in maternal milk (223).
As described in the case of passive protection conferred by
maternal IgG against infectious, breastfeeding protects children
against the development of asthma. Such a protection implicates
the transmission of the antigen in the form of IgG immune
complexes, in a FcRn-dependentmanner leading to the induction
of active immune tolerance (224, 225). Importantly, for tolerance
to be induced, mothers have to be exposed to allergens during
the breastfeeding period (226–228). In the mouse, breastfeeding
by mothers sensitized to ovalbumin (OVA), used as a model
allergen, promotes a higher induction of tolerance in the progeny
than breastfeeding by non-sensitized mothers. Transmission
of the allergen from the mothers to the offspring induces
OVA-specific regulatory T cells (Tregs), which proliferate and
suppress Th2 responses in an allergen-specific manner (229,
230). Depletion of allergen-specific Tregs abolished protection
in the pups. Importantly, the induction of OVA-specific Tregs
was dependent on the transfer to babies through the FcRn of
allergen-IgG immune complexes contained in the breast milk,
as shown by the fact that FcRn-deficient mice breastfed by
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exposed mothers were not protected from the development
of asthma (229). Interestingly, the protection against allergens
conferred by breastfeeding is sustained beyond the elimination
of maternal IgG from the offspring circulation (229). Recent
studies show that following FcRn-mediated delivery of OVA-IgG
immune complexes, the allergens are internalized by neonatal
conventional DC (cDC) (230). While antigen-IgG immune
complexes may first be transferred through the placenta, transfer
of the allergen through maternal milk may be necessary to
get optimal protection. Whether the preventive administration
to human of allergen-containing IgG immune complexes may
reduce the incidence of asthma in individuals at risk remains to
be established.

Education of the fetus’ or newborn’s immune system by
antigens delivered by maternal IgGs may occur spontaneously
as explained above. The intentional transplacental delivery of
disease-relevant antigens exploiting the FcRn as a Trojan
horse from the mothers’ circulation to the fetus’ was
recently validated in two experimental models of human
diseases: T1D and alloimmunization to therapeutic FVIII in
hemophilia A. Hemophilia A is a rare X-linked hemorrhagic
disorder characterized by the lack of functional pro-coagulant
FVIII. Bleedings are treated or prevented by the intravenous
administration of therapeutic FVIII. The main complication
in FVIII replacement therapy is the development of a specific
IgG-mediated neutralizing anti-FVIII immune response (231).
Several interventional strategies have been attempted in FVIII-
deficient mice, an animal model of severe hemophilia A, in
order to induce FVIII-specific immune tolerance (232). Among
these, we demonstrated that the injection to pregnant FVIII-KO
mice of the immunodominant A2 and C2 domains of FVIII
fused to mouse Fcγ1 allows the transplacental delivery of A2Fc
and C2Fc. The A2Fc and C2Fc were captured by SIRPα+

migratory conventional DCs (cDCs) and reached the fetal
thymus where they induced antigen-specific natural Tregs. The
immune response to exogenous FVIII was drastically reduced
following replacement therapy in offspring from A2Fc/C2Fc
treated mothers as compared to offspring from control
mothers (233).

T1D is a multifactorial autoimmune disease characterized by
the destruction of the insulin-producing ß cells of the pancreas.
The incidence of T1D is increasing with an estimate of 420
million individuals affected world-wide (234). Destruction of
ß cells by autoreactive T cells causes a deficiency in insulin
leading to glucosemetabolism impairment. People with T1Dmay
develop blindness, heart attack, kidney failure, . . . Insulin is one
ofmany self-antigens targeted by pathogenic T cells in T1D (235).
Using G9Cα−/−.NODmice that express a transgenic TcR derived
from the insulin-reactive G9C8 CD8 T-cell clone and using NOD
mice, a model of spontaneous T1D development, Culina et al.
were able to delay the onset and reduce the incidence of T1D
in offspring from mothers injected with a preproinsulin (PPI)-
Fcγ1 fusion protein (236). As shown in the case of FVIII-Fc
fusion proteins, PPI-Fc injected during pregnancy was delivered
through the syncytiotrophoblast to the fetuses and was captured
by SIRPα+ migratory cDCs. Unexpectedly, the presence of the
antigen led to an increase in the recruitment of CD8+ T cells

at the periphery, the cells were however less cytotoxic. The low
affinity of the TcR from G9C8 CD8+ T cells for its target peptide
allowed the induction of specific Tregs.

The capacity of FcRn to transfer maternal IgGs to the
baby’s circulation has also been exploited with the mere
objective of correcting congenital deficiencies in essential
enzymatic activities, referred to as lysosomal storage diseases.
Lysosomal storage diseases represent a large panel of pathologies
characterized by deficiencies in lysosomal enzymes that cause
the accumulation of non-digested proteins in the lysosomes
of various organs. The affected individuals develop variable
morbidities ranging from severe physical impairment to death.
Mucopolysaccharidoses (MPS) are members of lysosomal storage
diseases and are caused by deficiencies in enzymes involved
in the degradation of glycosaminoglycans in the lysosomes. In
particular, MPS VII is caused by a deficiency in B-glucuronidase
enzyme (GUS) (237). MPS are currently treated by intravenous
administration of the lacking enzymes (238–240). Enzyme
replacement therapy (ERT) is however hampered by the rapid
clearance of the therapeutic enzymes, and by the fact that large
amounts of enzymes are required to achieve a modest clearance
of the non-digested lysosomal proteins (241). Importantly, ERT is
also complicated by the development of neutralizing antibodies.
In 2008, Grubb et al. injected pregnant MPS mice with a Fc-fused
GUS enzyme. The GUS-Fc chimeric protein was transplacentally
delivered to the fetuses in a FcRn-dependent manner (242, 243).
After reaching the fetal circulation, the GUS-Fc distributed to
brain, liver, spleen, heart, kidneys, lungs and eyes where it was as
active as the native enzyme and resolved protein accumulation.
Whether the strategy was able to induce tolerance to GUS-Fc was
not reported, however.

CONCLUSIONS

The combination of a better understanding of the mechanisms
underlying the transplacental delivery of maternal IgGs with the
advent of the Fc-fusion technology is opening a novel therapeutic
field. Indeed, taking advantage of the FcRn-dependent materno-
fetal interface should lead in the near future to new therapies
to confer immune tolerance to antigenic targets of pathogenic
immune responses. Despite the promise hold by this strategy,
several challenges remain. While Fc-mediated transfer of antigen
induces long-lasting (i.e., tested until 7-8 weeks of age) immune
tolerance in preclinical mouse models, there is no data as
yet to suggest that the same is true in primates, and it
is adventurous to anticipate the long-term effects on the
immune system of the offspring, notably in organisms with
longer life expectancies. In addition, questions related to the
dose of Fc-fused antigens to be injected to the pregnant
mothers and optimal time-window for administration remain to
be addressed.

Another aspect relates to the identification of the patients who
will benefit from such preventive treatments. For instance, in the
case of hemophilia A, 5–30% of the patients develop neutralizing
anti-FVIII IgGs (244). Several risk factors have been identified as
increasing the probability for a patient to develop allo-antibodies
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to therapeutic FVIII (i.e., disease severity, polymorphisms in
immune genes, ability to control inflammatory and immune
responses) (244). Yet, it is nowadays impossible to discriminate
with certainty patients who will develop neutralizing anti-
FVIII IgGs from those who will not. Among patients with
the highest risk, the odds would be to treat three patients to
prevent the pathogenic immune response that should develop
in one of them. The situation is obviously less favorable in
the case of diseases, the onset of which is more complicated
to predict than alloimmunization to therapeutic FVIII in
hemophilia A, such as T1D, or for which the target antigen is
not known.
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