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Interparticle Coulombic Decay (ICD) is an efficient energy transfer process between two weakly
interacting systems. ICD was recently proposed as the underlying fundamental mechanism for
technological purposes based on quantum dot nanostructures, such as wavelength-sensitive detectors.
Via ICD, an excited donor quantum dot releases its excess energy by ionizing a neighbouring acceptor
dot. Here, we demonstrate that the presence of a third (ICD inactive) quantum dot can serve as
a bridge between the two dots, which is shown to result in an enhancement of the efficiency of the
ICD-mediated energy transfer. Furthermore, our results show that this enhancement is found to
be robust against the change of the characteristics of the bridge quantum dot and particularly the
depth and size. On the other hand, its relative position with respect to the donor and acceptor dots
is found to foster the ICD when it is located in between the two dots. Our findings provide new
insights for the development of ICD-based nanostructure technologies and particularly for rational
design of three coupled quantum dots.
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I. INTRODUCTION

Interparticle Coulombic Decay (ICD) is an efficient energy transfer process between two weakly interacting systems,
first predicted theoretically in [1] and demonstrated experimentally in [2, 3]. Via ICD, an excited donor partner releases
its excess energy by ionizing a neighbouring acceptor species. ICD was demonstrated to be a general phenomenon
since the donor and acceptor partners may be ions, atoms, molecules [4–6], quantum wells [7–9] or quantum dots [10–
13] (see also [14]). It was also shown that the energy transfer is not restricted to the electronic degrees of freedom,
and may for example involve vibronic couplings when the donor is a vibrationnaly excited molecule [15].

In terms of applications, it was recently proposed to use ICD in quantum wells and quantum dots nanostructures
as a fundamental mechanism for technological purposes such as wavelength-sensitive detectors [7, 8, 12]. However,
to achieve a high degree of efficiency of such devices, ICD must be the dominant process. In this context, electron-
phonon couplings are the main competing phenomena [16]. In general, the ICD efficiency decreases with increasing
the distance between the donor and acceptor partners. In contrast, at a large interparticle distance, electron-phonon
couplings are expected to weakly depend on this distance since the nanostructures do not strongly interact with each
other [16]. It is therefore essential to determine the optimal interparticle distances that foster the ICD [10], and thus
permit the enhancement of its efficiency.

In this context, the effects of the shape of quantum dots on the ICD efficiency were investigated, as well as the
shape and characteristics of the involved artificial atoms [12, 17]. It was also recently shown that another ICD
mechanism, so-called superexchange ICD, is possible when the donor and acceptor systems are separated by a bridge
atom. On the benchmark neon-helium-neon trimer, it was demonstrated that the ICD between the two neon atoms
is substantially enhanced in the presence of a bridge helium atom compared to the isolated neon dimer case [18, 19].
In these studies, it was shown that the energy transfer is mediated by virtual states where one electron from one of
the neon is transferred to the bridge helium atom.

In the present work, we study numerically the ICD process in coupled quantum dots in order to achieve a high
degree of efficiency of the ICD-mediated energy transfer between a donor and an acceptor quantum dots. In particular,
we explore the possibility of controlling the ICD by changing the characteristics of the nanostructure. This is achieved
using low dimensional models that effectively model coupled quantum dots, as in [10–13]. The essence of our results
is that a clear enhancement of the ICD rate is observed when inserting a third quantum dot. With the use of a simple
physical model based on perturbation theory, we identify the origin of this enhancement and relate it to two physical
mechanisms: i) the bridge dot modifies the continuum states around the resonance and ii) it yields additional virtual
transitions, which occur via the superexchange ICD mechanism. Moreover, the enhancement is found to exhibit a
weak dependence on the parameters of the third quantum dots (i.e. depth and size), which is an interesting finding
for rational design of three coupled quantum dots. We further discuss the sensitivity of the ICD to the location of
the third quantum dot with respect to the donor and acceptor dots.

Our investigation of the ICD in nanostructures focuses on semiconductors for two and three coupled quantum dots
using a one-dimensional (1D) model. Although a 1D-model has obvious limitations, our main goal is, however, to
search for optimal conditions, under which the ICD rate gets enhanced, which is relevant for a full dimensional model.

Our model as well as its numerical implementation based on the time-dependent Schrödinguer equation (TDSE)
and perturbation theory are presented in section II. In section III, we report on the ICD efficiency in the coupled
quantum dots systems with respect to i) the distance between the donor and acceptor species and ii) the characteristics
of the bridge quantum dot. The article ends with the conclusions of this work. Atomic units are used throughout
unless stated otherwise.

II. THEORY AND COMPUTATIONAL DETAILS

A. Quantum dots models

We consider one-dimensional models which have proved to properly account for the essential properties of realistic
three-dimensional quantum dots with respect to ICD [13]. Such models provide a correct description of the electron
dynamics involved in the quantum dots with less computational efforts. The effective two-electron Hamiltonian in
our systems is given as

H(z1, z2) = h1(z1) + h2(z2) + VC(z1, z2), (1)

where zi (i = 1, 2) denotes the coordinate of the ith electron. The one-electron Hamiltonian hi is of the form

hi(zi) = −1

2

∂2

∂z2
i

+ VQD(zi), (2)
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FIG. 1. Scheme of the ICD in two (upper panel) and three (lower panel) coupled quantum dots. Via ICD, the left (donor)
quantum dot releases its excess energy by ionizing the right (acceptor) dot, as indicated by the arrows. The quantum dots are

represented by effective one-dimensional potentials as in [10–13]. E
(j)
n denote the one-electron energies (see text).
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where VQD(zi) is the electron-dot potential (as shown in Fig. 1), built on Gaussian potentials as in [10]:

VQD(zi) = −Zde−σd(zi+R/2)2 − Zme−σm(zi−bm)2 − Zae−σa(zi−R/2)2 . (3)

Here, Zj and σj (j = d,m, a) are respectively the depth and size of the donor, mediator and acceptor quantum
dot potentials. R is the distance between the donor and acceptor quantum dots, which are located symmetrically
around the origin, and bm is the coordinate of the mediator center. In this framework, a two coupled quantum dots
is modeled by setting Zm = 0. In Eq. 1, the single-particle Hamiltonians h1 and h2 are coupled via the interaction
term VC(z1, z2). The latter is a repulsive soft Coulomb potential and is expressed as

VC(z1, z2) =
1√

(z1 − z2)2 + α exp [−β(z1 − z2)2]
. (4)

This model potential has been chosen to avoid the singularity at z1 = z2. The same model has been used in previous
works to describe the correlated electron-electron interaction in connection with the ICD in two coupled quantum
dots (see e.g. [10]).

B. Dynamics and decay widths

The electron dynamics of the nanostructures modeled as above is governed by the TDSE[
H(z1, z2)− i ∂

∂t

]
ψ(z1, z2, t) = 0. (5)

We construct the initial wave function from the eigenstates of the one-electron Hamiltonian, in which one electron is

localized in the excited state φ
(d)
2 of the donor quantum dot and the other in the ground state φ

(a)
1 of the acceptor

quantum dot:

ψ(z1, z2, t = 0) =
1√
2

[φ
(d)
2 (z1)φ

(a)
1 (z2) + φ

(d)
2 (z2)φ

(a)
1 (z1)]. (6)

The energy (E) of the initial state is above the lowest ionization threshold (E∞) of the two-electron system (i.e. so-

called resonant, or quasi-bound, state). The one-electron states denoted by φ
(j)
n (j = d,m, a) (n = 1, 2) are solutions

of the time-independent Schrödinger equation

hi(zi)φ
(j)
n (zi) = E(j)

n φ(j)
n (zi). (7)

The initial wave-function is chosen to be symmetric with respect to electron permutation, which corresponds to a
singlet spin state. We have also performed the calculations for the triplet state case. Similar conclusions as the
ones reported below were reached. Note that the symmetry is conserved throughout propagation. At the end of the
propagation, the decay width Γ for a given quantum dot system is obtained by fitting the computed values of the
autocorrelation function:

a(t) = |〈ψ(t = 0)|ψ(t)〉|2 (8)

to the generic decay function e−Γt.

C. Perturbation model

To help the interpretation of the results stemming from the TDSE, we use a formalism that is reported in [20, 21].
In our work, the formalism is simplified by making assumptions about the choice of the wave functions involved in the
couplings, as shown below (see also [18] and references therein). Here, our main goal is not to obtain quantitatively
accurate results for the ICD width as much as to identify and discuss the main contributions that lead to the
enhancement of the ICD width in the presence of a third quantum dot. In this context, the decay width is given by

Γ = 2π|〈ψ(t = 0)|Ĥ − E|ψf 〉|2 (9)
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where ψ(t = 0) and E are the initial state and its energy, respectively (see Eq. 6). The final state ψf is in our model

ψf = N

[
ψk +

〈ψdm|Ĥ|ψk〉
(E − Edm)

ψdm

]
(10)

where

ψk =
1√
2

[φ
(d)
1 (z1)k(z2) + φ

(d)
1 (z2)k(z1)], (11)

ψdm =
1√
2

[φ
(d)
2 (z1)φ

(m)
1 (z2) + φ

(d)
2 (z2)φ

(m)
1 (z1)], (12)

N a normalization factor and Edm the energy of the latter state. In Eq. 11, k represents the continuum state at
the energy of the ICD electron (i.e. E − E∞). The second term in Eq. 10 corresponds to the superexchange ICD
term in which the energy transfer is mediated by the state where one electron sits in the donor dot while the second
electron is in the bridge dot. Note that there are other couplings that could be included in the second term (e.g. one
electron is either in the ground state of the donor or of the acceptor dots and the second electron in the bridge). Our
calculations, however, show that their contributions are insignificant and thus are omitted in Eq. 10.More details
about the evaluation of the decay width using Eq. ( 10) can be found in [18].

D. Computational details

We used the same parameters to model the donor and acceptor dots as in [10], i.e. (Zd, Za) =(1.0,0.8) a.u. and
(σd, σa)=(0.25,1.0) a.u., while for the mediator quantum dot a broad range of parameters is considered (see below).

With the use of these parameters, the donor dot supports two-bound states and their eigenenergies are labeled E
(d)
1

and E
(d)
2 , while the acceptor and mediator dots support only one-bound state each and the corresponding energies are

labeled E
(a)
1 and E

(m)
1 , respectively. These single electron energies are given in Fig. 1 for R=14 a.u. and bm=0. Note

that they do not vary by more than 20% with respect to these parameters in the range of values employed in this
work. The time-independent Schrödinger (see Eq. 7) is solved using a Lagrange-mesh method [22, 23] with variational
basis functions of a sinus form. In the interaction term VC(z1, z2), α and β are soft parameters set to 0.01 and 100
a.u., respectively [10].

The time evolution of the electronic wave function ψ(z1, z2, t), which satisfies the TDSE (see Eq. 5), is solved
numerically using a split-operator method combined with a fast Fourier transform algorithm as in [24]. This is carried
out on a symmetric 2D grid of size L = 127.75 a.u. with the grid spacing δz = 0.25 a.u., i.e. 512 grid points along
each direction. The time step used in the calculation is δt = 0.09 a.u. The convergence was checked by performing
additional calculations with twice the size of the box and a smaller time step. Furthermore, a complex absorbing
potential (CAP) placed at positions ±zCAP along each coordinate is employed to avoid artificial reflections. It is
expressed as [11]

WCAP = −iη | zi ± zCAP |k Θ(z ± zCAP ), (13)

where η and k are the strength and the order of the CAP, respectively. Θ is the Heavyside step function. In these
calculations, we used η = 0.003 and k = 2. The boundary is chosen such that zCAP = ±0.85L. Convergence of the
results with respect to the CAP parameters and grid size have been checked.

We applied the fitting procedure to obtain the decay widths (see Eq. 8) at different final times, ranging from 6200
to 12400 a.u.. The results do not change significantly with respect to the latter values.

III. RESULTS AND DISCUSSION

The ICD mechanisms to be discussed are schematically depicted in Fig. 1 for the case of two (upper panel) and
three coupled quantum dots (lower panel). The top diagram represents a direct process, in which the excess energy
of the donor can be used to directly ionize the electron from the acceptor. In the case of three coupled quantum dots,
the excess energy is mediated by the presence of a third quantum dot located between the donor and acceptor during
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FIG. 2. Ratio between the decay widths for three and two coupled quantum dots as a function of the distance between the
donor and acceptor dots (R). Inset: Decay widths for two (dashed red line) and three (blue line) coupled quantum dots. The
parameters (see text) of the bridge quantum dot are (Zm=0.6; σm=4.0).

the ICD. In the perturbation theory picture, this additional effect is taken into account via an extra term related to
the superexchange ICD, as outlined in connection with Eq. 10. This mechanism has been discussed for trimers and
has been shown to lead to an enhancement of the efficiency of the ICD width [18].

Stimulated by these recent findings [18] and by fundamental interest of quantum dots for nanotechnological purposes,
we aim in this work at searching for optimal conditions characterizing a third quantum dot, and under which the
ICD width gets enhanced. Here the characteristics of this third quantum dot (depth, size and relative position),
which is referred to as bridge, are chosen such that the energies of the bound states of the donor and acceptor remain
unchanged with respect to the case of two coupled quantum dots. This is an important condition for ensuring the
physical interpretation of the efficiency of the ICD in the presence of a bridge quantum dot.

We consider both scenarios depicted in Fig. 1 and calculate the corresponding decay widths. To evaluate the
enhancement of the ICD, we present in Fig. 2 the ratio

ρ =
Γ3QD

Γ2QD
(14)

between the decay widths for the three coupled (Γ3QD) and two coupled (Γ2QD) dots as a function of the distance
R between the donor and acceptor dots (all other parameters fixed) is shown in Fig. 2. The widths for each system
are displayed in the inset of the same figure. The parameters of the bridge quantum dot are Zm=0.6, σm=4.0 and
bm = 0.0 (i.e. the bridge dot is at the midpoint between the donor and acceptor dots). It is shown that, in general,
the decay widths decrease with increasing R for both systems. However, this trend is not monotonous as already
discussed in [10]: for some interparticule distances the electron-electron interaction creates an effective potential that
may trap the ICD electron, delaying the decay process (e.g at R ' 17 and 19 a.u. for the two and three QD cases,
respectively). The ratio between the decay widths varies between about 0.1 and 2.3, showing that a significantly
larger ICD efficiency (i.e. a faster decay) can be achieved for some interparticle distances in the presence of the bridge
dot. As seen in the figure, the largest enhancement of the decay process is obtained here at about R ' 13.5 a.u.

To provide insights into the observed enhancement, we make use of a simple physical model as described in Sec-
tion II C. The model is based on perturbation theory and has the advantage of separating direct processes from indirect
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FIG. 3. Ratio between the decay widths for three and two coupled quantum dots as a function of the parameters (see text)
of the bridge quantum dot, for R = 13.5 a.u. Some contour lines are indicated by the cyan lines.

ones. The model, therefore enables us to identify the main contributions responsible of the observed enhancement
of the ICD width in Fig. 2. Here, the bride quantum dot can lead to the observed enhancement around R ' 13.5
a.u. via two mechanisms: it can modify the continuum states around the resonance (see [7] for more details) and can
participate in the energy transfer via superexchange ICD. To disentangle and quantify both contributions we have
computed the decay widths using the perturbation model reported in II C. Above R=12 a.u., the results stemming
from this model agrees quantitatively with that of the numerically exact TDSE calculations. Below R=12 a.u., the
coupling between ψk and ψdm becomes too strong and the perturbation correction is not adequate. We, therefore,
focus on the results of the model within its range of validity (i.e. R > 12 a.u.). By removing the superexchange ICD
term in Eq. 10 (i.e. ψf = ψk), it is possible to quantify the contributions of both mechanisms discussed above. These
calculations show that both mechanisms contribute nearly equally for R ∼ 13.0 − 18.0 a.u. (not shown). At larger
distances, the superexchange ICD mechanism does not contribute since the coupling between ψdm and ψk decreases
exponentially with the distance (see [18]). We mention here that the perturbation model predicts that the superex-
change ICD mechanism largely dominates at distances below 12.0-13.0 a.u. However, as noted above the model is not
quantitative in this interparticle distance range and further works are needed.

We now investigate the sensitivity of ICD with respect to the parameters of the bridge species. In Fig. 3, we present
the ratio ρ (Eq. 14) as a function of Zm and σm. The distance between the donor and acceptor species is fixed at
R = 13.5 a.u. and bm is kept equal to 0 (i.e. the bridge dot is again fixed at the midpoint between the donor and
acceptor dots). Our results show that, for Zm ranging from 0.3 to 0.6 and σm ranging from 4 to 10 a.u, the ICD
width is enhanced in the presence of the bridge dot by a factor comprised between about 1.6 and 2.4.

Furthermore, in Fig. 4, we show the decay width as a function of the position bm of the bridge quantum dot, for
R = 13.5 a.u. We report only results for values of bm which do not modify significantly the energies of the donor
and acceptor quantum dots, as compared to the centered case (bm = 0). One can see in the middle panel that the
enhancement of the ICD process is maximal when the bridge dot is at midpoint between the two other quantum
dots. The ICD process becomes weaker as the bridge dot approaches the acceptor one (i.e. bm > 0). The energies of
the donor are significantly modified when the bridge dot is moved towards it (i.e. bm < 0). A change in the donor
potential affects the efficiency of the ICD process. As mentioned above, we are interested in the enhancement of the
ICD process owing only to the presence of the third dot. We therefore do not report results for −13 < bm < 0.

The left and right panels in Fig. 4 show the decay width when the bridge dot is located on the left side of the donor
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FIG. 4. Decay widths as a function of the position of the bridge quantum dot, for R = 13.5 a.u. (i.e. the donor and acceptor
dots are fixed at −6.75 a.u. and 6.75 a.u., respectively.). The red dashed-line indicate the decay width in absence of the bridge.
Note that we have limited the range of bm to the values that do not change significantly the energies of the donor and acceptor
dots with respect to the two coupled quantum dots case.

(bm < −R/2) or on the right side of the acceptor (bm > +R/2), respectively. It is interesting to note that the ICD
is substantially enhanced when the bridge dot is placed in the left side of the donor dot, showing that the relative
position of the bridge, donor and acceptor dots is also a relevant parameter for the optimization of the ICD rate.
The observed behavior of the decay widths, reported in Fig. 4, is related to interferences between the direct path (i.e.
ψ(t = 0) → ψk) and the one corresponding to the transition via the virtual state ψdm (i.e. via the superexchange
ICD mechanism). These interferences lead to the enhancement or suppression of the decay width depending on the
location of the bridge quantum dot. This can be understood from the perturbation model defined above and which
incorporates virtual transitions in the final state, as shown in Eq. (10). A similar effect has been recently discussed
for three body ICD processes occurring in atomic clusters [25].

At this point, we conclude that the efficiency of the ICD-mediated energy transfer can be achieved for a broad
range of parameters characterizing the inserted bridge quantum dot. This is an interesting finding for rational design
of three coupled quantum dots.

IV. CONCLUSION

We have shown that energy transfer mediated by the Interparticle Coulombic Decay (ICD) process between two
quantum dots can be substantially enhanced in the presence of a third bridge dot. The efficiency of the process can
thus be improved by more than a factor of 2. Furthermore, we have investigated the mechanisms leading to such
increase and how the latter depends on the characteristics (depth, size and relative position) of the bridge species. It
was found that the efficiency of the ICD is robust against the change of the depth and size of the inserting bridge dot.
On the other hand, this efficiency was shown to be sensitive to the relative position of the bridge dot with respect to
the donor and acceptor quantum dots. Our findings, therefore, offer alternative routes to manipulate the ICD and
ultimately design three coupled quantum dots. This work provides new insights into the energy transfer processes in
nanostructures and should be useful for the development of quantum dot based technologies.
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