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Abstract

The precise diagnostics of complex diseases require to integrate a large amount of informa-

tion from heterogeneous clinical and biomedical data, whose direct and indirect interdepen-

dences are notoriously difficult to assess. To this end, we propose an efficient

computational approach to simultaneously compute and assess the significance of multivar-

iate information between any combination of mixed-type (continuous/categorical) variables.

The method is then used to uncover direct, indirect and possibly causal relationships

between mixed-type data from medical records, by extending a recent machine learning

method to reconstruct graphical models beyond simple categorical datasets. The method is

shown to outperform existing tools on benchmark mixed-type datasets, before being applied

to analyze the medical records of eldery patients with cognitive disorders from La Pitié-Sal-

pêtrière Hospital, Paris. The resulting clinical network visually captures the global interde-

pendences in these medical records and some facets of clinical diagnosis practice, without

specific hypothesis nor prior knowledge on any clinically relevant information. In particular, it

provides some physiological insights linking the consequence of cerebrovascular accidents

to the atrophy of important brain structures associated to cognitive impairment.

Author summary

We developed a machine learning approach to analyze medical records and help clinicians

visualize the direct and indirect interrelations between clinical examinations and the vari-

ety of syndromes implicated in complex diseases. The reconstruction of such clinical net-

works is illustrated on the spectrum of cognitive disorders, originating from either

neurodegenerative, cerebrovascular or psychiatric dementias. This global network analysis

is also shown to uncover novel direct associations and possible cause-effect relationships

between clinically relevant information, such as medical examinations, diagnoses, treat-

ments and personal data from patients’ medical records.
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Introduction

The precise diagnostics of neurological disorders require to integrate a large amount of infor-

mation from a variety of biomedical tests and clinical examinations. These diagnostics must

also take into account age-related comorbid medical conditions, such as diabetes and cardio-

vascular diseases, which concern a large fraction of patients, as the incidence of neurodegener-

ative diseases increases with age. Such comorbid medical conditions influence neuropathology

treatment decisions as well as short- and long-term survival of patients but are often over-

looked in clinical trials. This situation underlines the need to directly analyze real life medical

records to learn clinical networks, that are graphical models highlighting direct, indirect and

possibly causal associations between clinically relevant information in patients’ medical

records.

Medical records contain, however, mixed types of data from simple binary or nominal vari-

ables (i.e., with multiple unordered categories) to ordinal (e.g. neuropsychological test scales)

or continuous (e.g. age, body mass index) variables, whose interdependences are not readily

assessed within a unified information-theoretic framework. As mutual information is primar-

ily defined between nominal variables, its estimation for continuous or mixed-type variables is

notoriously difficult beyond the gaussian approximation of continuous distributions, for

which a simple relation exists with correlation coefficients [1]. In particular, arbitrary discreti-

zation of continuous variables tends to underestimate mutual information for small number of

bins, while overestimating it for large number of bins due to finite numbers of patients, as

sketched in Fig 1. Moreover, so far, no rationale provides optimum bin partitions to estimate

mutual information, for typical cohort size of patients. Alternatively, local metric approaches

have been proposed to estimate mutual information [2] and conditional information [3–5],

including between mixed-type variables [6–8], based on k-nearest neighbor (kNN) statistics.

However, the statistical significance of kNN information estimates remains difficult to assess

in practice [2, 9], thereby limiting their use to uncover (conditional) independences between

continuous or mixed-type variables from real-life datasets.

In this paper, we first develop and implement an optimum binning method to simulta-

neously compute and assess the significance of mutual information, as well as conditional mul-

tivariate information, between any combination of continuous or mixed-type variables. The

method is based on minimum description length principles [10, 11] and finds optimum bin

Fig 1. Mutual information computation between continuous or mixed-type variables. Outline of mutual

information computation between continuous or mixed-type variables for a finite dataset of N samples. Mutual

information is estimated through an optimum partitioning of continuous variable(s) (solid red line and arrow) after

introducing a complexity term to account for the finite size of the dataset, see main text.

https://doi.org/10.1371/journal.pcbi.1007866.g001
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partitions, iteratively for each continuous variable, through an efficient dynamic programming

scheme with quadratic complexity, OðN2Þ, where N is the number of patients in the dataset.

This efficient approach is then used to assess direct versus indirectcause-effect relationships

between mixed-type data from medical records, by extending a recent network learning

method [12, 13] to recontruct graphical models beyond simple categorical datasets.

The method is shown to outperform existing tools on benchmark mixed-type datasets,

before being applied to analyze the medical records of eldery patients with cognitive disorders

from La Pitié-Salpêtrière Hospital, Paris. The resulting clinical network visually captures the

global interdependences in these medical records and some facets of clinical diagnosis practice,

without specific hypothesis nor prior knowledge on any clinically relevant information. The

reconstructed clinical network recovers well known as well as novel direct and indirect rela-

tions between medically relevant variables. In particular, it provides some physiological

insights linking the consequence of cerebrovascular accidents to the atrophy of important

brain structures associated to cognitive impairment.

Methods

Assessing information in continuous or mixed-type data

Information-maximizing discretization of continous data. While mutual information is

usually defined as a discrete summation over nominal variables, i.e., I(X;Y) = ∑x,y px,y log(px,y/px
py), its most general definition consists in taking the supremum over all finite partitions, P and

Q, of variables, X and Y [1],

IðX;YÞ ¼ sup
P;Q

Ið½X�P; ½Y�QÞ ð1Þ

which can be applied to continuous or mixed-type variables. Moreover, by continuing to refine

some initial partitions through the addition of further cut points for continuous variable(s), one

finds a monotonically increasing sequence [1], Ið½X�P; ½Y�QÞ, as depicted on Fig 1. In practice,

however, Eq 1 cannot be used to estimate I(X; Y) from an actual dataset with finite sample size,

as the refinement of partitions eventually assigns each of the N different samples into N differ-

ent bins. This leads to a shift of convergence towards logN instead of the theoretical limit, I
(X; Y), which requires an infinite amount of data (dotted line in Fig 1).

In this paper, we propose to adapt Eq 1 to account for the finite number of samples in actual

datasets,

I0NðX;YÞ ¼ sup
P;Q

I0Nð½X�P; ½Y�QÞ ð2Þ

by introducing a finite size correction to mutual information,

I0Nð½X�P; ½Y�QÞ ¼ INð½X�P; ½Y�QÞ � k0P;QðNÞ
1

N
ð3Þ

where k0P;QðNÞ corresponds to a complexity term introduced in [14, 15] to discriminate

between variable dependence (for I0Nð½X�P; ½Y�QÞ > 0) and variable independence (for

I0Nð½X�P; ½Y�QÞ⩽0) given a finite dataset of size N. In the present context of finding an optimum

discretization for continuous variables, this complexity term introduces a penalty which even-

tually outweights the information gain in refining bin partitions further, when there is not

enough data to support such a refined model, as depicted on Fig 1.

For discrete variables, typical complexity terms correspond to the Bayesian Information

Criterion (BIC), kBICP;QðNÞ ¼ 1=2ðrx � 1Þðry � 1Þ logN, where rx and ry are the number of bins
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for X and Y, or the X- and Y-Normalized Maximum Likelihood (NML) criteria [14–16],

defined as,

kX� NML
P;Q ðNÞ ¼

Xry

y

log Crx
ny
� log Crx

N ð4Þ

kY� NML
P;Q ðNÞ ¼

Xrx

x

log Cry
nx
� log C

ry
N ð5Þ

where Crx
ny

is the parametric complexity associated with the yth bin of variable Y containing ny
samples, and similarly for Cry

nx
with the nx-size bin of variable X in Eq 5.

Parametric complexities Cr
n are defined by summing a multinomial likelihood function over

all possible partitions of n data points into a maximum of r bins as,

Cr
n ¼

X‘k⩾0

‘1þ‘2þ���þ‘r¼n

n!

‘1!‘2! � � � ‘r!

Yr

k¼1

‘k
n

� �‘k

ð6Þ

which can in fact be computed recursively in linear-time [17]. For large n and r, inherent to

large datasets with continuous or mixed-type variables, we found that Cr
n computation can be

made numerically stable by implementing the recursion on parametric complexity ratios Dr
n ¼

Cr
n=C

r� 1

n rather than parametric complexities themselves as,

Dr
n ¼ 1þ

n
ðr � 2ÞDr� 1

n

ð7Þ

log Cr
n ¼

Xr

k¼2

log Dk
n ð8Þ

for r ⩾ 3, with C1

n ¼ 1 and C2

n ¼ D2

n, which can be computed directly with the general formula,

Eq 6, for r = 2,

C2

n ¼
Xn

h¼0

n

h

 !
h
n

� �h n � h
n

� �n� h

ð9Þ

or its Szpankowski approximation for large n (needed for n> 1000 in practice) [18–20],

C2

n ¼

ffiffiffiffiffiffi
np
2

r

1þ
2

3

ffiffiffiffiffiffi
2

np

r

þ
1

12n
þO

1

n3=2

� � !

ð10Þ

’

ffiffiffiffiffiffi
np
2

r

exp
ffiffiffiffiffiffiffiffi

8

9np

r

þ
3p � 16

36np

 !

ð11Þ

For continuous variables, however, the variable categories are not given a priori and need to

be specified and thus encoded in the model complexity within the frame of the Minimum

Description Length (MDL) principle [11]. In absence of priors for any specific partition with r
bins, the model index should be encoded with a uniform distribution over all partitions with

the same number of bins [11]. As there are ð
N� 1

rx � 1
Þ ways to choose rx − 1 out of N − 1 possible

cut points, corresponding to a codelength of log ðN� 1

rx � 1
Þ for a continuous variable X (and
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similarly for Y if it is continuous), the model complexity associated with the partitioning of

continuous or mixed-type variablesbecomes,

k0P;QðNÞ ¼ kP;QðNÞ þ log
N � 1

rx � 1

 !

þ log
N � 1

ry � 1

0

@

1

A ð12Þ

with log ðN� 1

r� 1
Þ ¼ ðr � 1ÞCN;r, where CN,r corresponds to theencoding cost associated to each of

the r − 1 cut points with r = rx or ry.
While finding the supremum of I0Nð½X�P; ½Y�QÞ over all possible partitions P and Q accord-

ing to Eq 2 seems intractable, it can be computed rather efficiently in practice.

The approach is inspired by the computation of an MDL-optimal histogram for a single

continuous variable [11], which can be done exactly in OðN3Þ steps. As the approach cannot

be generalized to more than one variable, we implemented a local optimization heuristics,

which finds the optimum cut points for each continuous variable, iteratively, keeping the parti-

tions of the other continuous variable(s) fixed. This enables to gain an order of magnitude in

the optimization running time at each iteration, which scales as OðN2Þ, as detailed below.

In practice for two variables, we start from an initial (or optimized) X partition with rx bins

of various sizes and an estimate of the number of Y bins, r�y . The sample-scaled mutual infor-

mation with finite size correction, i.e., nI0nðX;YÞ, is then optimized iteratively for n = 1, � � �, N
samples, over all Y partitions, through the following OðN2Þ dynamic programming scheme,

using Eq 4 as parametric complexity,

nI0nðX;YÞ ¼ max
0⩽j<n
½jI0jðX;YÞ þ

Xrx

x

nxy lognxy � ny logny � logCrx
ny
� CN;r�y

� ð13Þ

where the last added Y bin, including ny = n − j samples distributed over the rx bins of X
(with

Prx
x nxy ¼ ny), comes with an independent mutual information contribution,

Prx
x nxy lognxy � ny log ny, a parametric complexity, logCrx

ny
, and encoding cost, CN;r�y

. The ini-

tial condition for j = 0 in (13) is set by convention to include all terms invariant under Y-parti-

tioning, i.e., �
Prx

x nx log ðnx=NÞ þ logCrx
N � ðrx � 1ÞCN;rx

þ CN;r�y
.

Then, adopting this optimized partition for Y, one can apply the same dynamic program-

ming scheme for X using Eq 5 as parametric complexity and iterate the optimization of X and

Y partitions until a stable two-state limit circle is reached. In practice, we set the initial parti-

tioning over X and Y by testing equal-freq discretizations with 2 to dN1/3e bins and choosing

the one which gives thehighest I0NðX;YÞ. We found that while the convergence speed of the

iterative dynamic programming is largely independent of these initial conditions, this scheme

does improve it slightly. This leads after only a few iterations to a good estimate of mutual

information (averaged over limit circle) that is comparable to the existing state of the art, for

both continuous and mixed-type variables, as shown below.

This optimization scheme, Eq 2, and its iterative dynamic programming computation, Eq

13, can also be adapted to compute mutual information involving joined variables, such as

I0NðX; fAigÞ, with corresponding finite size correctionsand cut point encoding costs extended

from Eqs 3–12. Similarly, the approach can compute conditional mutual information, such as

I0NðX;YjfAigÞ, involving continuous or mixed-type variables. To this end, I0NðX;YjfAigÞ needs

to be defined, using the chain rule [1], as the difference between maximized mutual informa-

tion terms involving either {Y, {Ai}} and {Ai} (Eq 14) or {X, {Ai}} and {Ai} (Eq 15) as joined
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variables,

I0NðX;YjfAigÞ ¼ I0NðX;Y; fAigÞ � I0NðX; fAigÞ ð14Þ

¼ I0NðY;X; fAigÞ � I0NðY; fAigÞ ð15Þ

Thus, starting from an initial (or optimized) partition for X, each term of Eq 14 is optimized

with respect to Y and {Ai} partitions using Eq 4 as parametric complexity extended to multivar-

iate categories, ny,{ai} and n{ai}. Then, in turn, each term of Eq 15 is optimized with respect to X
and {Ai} partitions using Eq 5 as parametric complexity extended to multivariate categories,

nx,{ai} and n{ai}. Note, in particular, that {Ai} partitions are optimized separately for each of the

four terms in Eqs 14 & 15, before taking their differences, as these optimized {Ai} partitions

might be different in general.

Learning networks from continuous or mixed-type data

The above information maximization scheme to estimate (conditional) mutual information

between continuous or mixed-type variables can then be used to extend our recent network

learning algorithm MIIC [12] beyond simple categorical datasets.

Outline of MIIC algorithm. MIIC combines constraint-based approach and informa-

tion-theoretic framework to robustly learn a broad class of causal or non-causal networks

including possible latent variables [12, 13]. MIIC proceeds in three steps:

i). Edge pruning. Starting from a fully connected network, MIIC first removes dispensable

edges by iteratively subtracting the most significant information contributions from indi-

rect paths between each pair of variables. Significant contributors are collected based on

the 3off2 score [14, 15] maximizing conditional three-point information while minimiz-

ing conditional two-point (mutual) information, which reliably assesses conditional

independence, even in the presence of strongly linked variables [21]. The residual (condi-

tional) mutual information including finite size corrections, I0NðX;YjfAigÞ (i.e. after indi-

rect effects of significant contributors, {Ai}, have been subtracted from I0NðX;YÞ), is

related to the removal probability of each edge, PXY¼ expð� NI0NðX;YjfAigÞÞ, where

NI0NðX;YjfAigÞ > 0 corresponds to the strength of the retained edge, as visualized by its

width in MIIC graphical models [12].

ii). Edge filtering (optional). The remaining edges can be further filtered based on confidence

ratio assessment [12],CXY ¼ PXY=hPrand
XY i, where Prand

XY is the average of the probability to

remove the XY edge after randomly permutating the dataset for each variable. Hence, the

lower CXY, the higher the confidence on the XY edge. In practice, filtering edges with CXY

> 0.1 or 0.01 limits the false discovery rates with small datasets, while maintaining satis-

factory true positive rates [12].

iii). Edge orientation. Retained edges are then oriented based on the signature of causality in

observational data given by the sign of (conditional) three-point information [14, 15].

The final network contains up to three types of edges [12]: undirected, directed, as well

as, bidirected edges, which originate from a latent variable, L, unobserved in the dataset

but predicted to be a common cause of X and Y, i.e. X⤎ (L) ⤏ Y. For clarity, bidirected

edges are represented with dashed lines in MIIC networks.

An important aspect of MIIC algorithm is its ability to take into account datasets with miss-

ing values, which are frequent in heterogeneous clinical datasets. In practice, MIIC computes

multivariate information estimates (such as I0NðX;YjfAigÞ) on sub-datasets for which X, Y and
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{Ai} do not have missing values. While including iteratively additional conditioning variables Ai

might further restrict the size of the sub-dataset without missing value, we only consider variables

Ai if their missing values are missing at random (checking Kullback Leibler divergence between

distributions of decreasing supports). If some data is not missing at random, the 3off2 scheme

[14, 15], I(X; Y|{Ai}n) = I(X; Y) − I(X; Y; A1) − I(X; Y; A2|A1)−� � �−I(X; Y; An|{Ai}n−1), might end

without finding conditional independence, ie I(X;Y|{Ai}n)>0, and MIIC edge pruning step is

conservative by retaining the corresponding edge X-Y due to possible bias in the dataset.

MIIC’s extension to continuous or mixed-type data has been implemented in MIIC online

server and R package, see SI.

Results

Application to benchmark synthetic data

Optimum discretization and mutual information estimates for continuous or mixed-

type data. The multivariate discretization scheme and resulting estimates of (conditional)

mutual information were first benchmarked using synthetic data from known mixed or con-

tinuous probability distributions for which (conditional) mutual information can be obtained

either analytically or through numerical integration. Examples of bivariate information-maxi-

mizing discretizations are shown in Fig 2 and S1 Fig for increasing sample size. The number of

bins increases both with the number of samples, S1 Fig, and the magnitude of mutual informa-

tion, IN(X; Y), S2A Fig. These tendencies have intuitive explanations: first, more samples

means that we can assign smaller bins (width-wise) with more certainty; and second, more

information means that more bins are needed to describe the interaction between the variales.

We note that no single discretization of a variable X can be optimal with regards to every joint

distribution, see S3 Fig. While the precise cut points of variable X actually depend on the

Fig 2. Optimum bivariate discretization for mutual information estimate. The proposed information-maximizing discretization

scheme is illustrated for a joint distribution defined as a Gumbel bivariate copula with parameter θ = 5 and marginal distributions

chosen as Gaussian mixtures with three equiprobable peaks and respective means and variances, μX = {0, 4, 6}, σX = {1, 2, 0.7} and μY =

{−3, 6, 9}, σY = {2, 0.5, 0.5}. The information-maximizing partition yields (A) IN(X; Y) = 1.04 for N = 500 samples and (B) IN(X; Y) =

1.142 for N = 10, 000 samples, as compared to the exact expected value I(X; Y) = 1.205 computed with numerical integration. See S1 Fig

for additional results. Codes are provided at https://github.com/vcabeli/miic_PLoS.

https://doi.org/10.1371/journal.pcbi.1007866.g002
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variable Y of interest, the number of X and Y bins are roughly similar(for the chosen test set-

tings), S2A Fig, unlike found with information-maximization discretization methods lacking

complexity terms [22], S2B Fig.

Next, we compared our estimation of IN(X; Y) by optimal discretization to the state of the

art Kraskov–Stögbauer–Grassberger (KSG) estimator [2] for continuous distributions, specifi-

cally bivariate Gaussian distributions S4 Fig. Like otherinformation estimators based on kNN

statistics, the KSG approach has a tunable parameter k which will typically scale with the sam-

ple size N, and has to be chosen depending on the objective: the original authors recommend

k = 2 to 4 for the best estimation, and up to N/2 if one is more interested in independence test-

ing. We found that our optimal discretization with the NML complexity does indeed give a

correct estimation of IN(X; Y) for all sample sizes and correlation strengths. Our approach also

natively deals with categorical and mixed (i.e. part categorical and part continuous) variables,

as the master definition of the mutual information, Eq 1, can be applied to variables of any

type. Recent efforts were made to extend the KSG estimator to such cases [6–8] which are fre-

quently encountered in real-life data, and specifically in clinical datasets. We compared the

mixed-type information estimates of our method to other existing methods for varying sample

sizes and found its performance to be similar or superior, S5 Fig. In addition, our information-

maximizing discretization approach facilitates the interpretation of the dependences

between continuous or mixed-type variables by returning their most informative categories.

Information-maximizing discretization and corresponding (conditional) mutual informa-

tion estimates can be computed for any continuous or mixed-type dataset using the

discretizeMutual function from the MIIC R package.

Optimum discretization as an independence test between continuous or mixed-type

variables. Most importantly,our optimum discretization scheme also acts as an indepen-

dence test by allowing for single bin partitions whenever no multiple-bin partitioning can

glean information that is greater than its associated complexity cost. In such cases, our estima-

tor implies variable independence, i.e. IN (X; Y) = 0, with drastically reduced sampling error

and variance, S4 Fig, as compared to other direct estimators such as KSG, which always give

noisy information estimates even for vanishing mutual information between nearly indepen-

dent variables and need additional hypothesis testing to be used as independence test.

Similarly, our approach robustly learns conditional independence,given a set of separating

variables, {Zi}, i.e., IN (X; Y |{Zi}) = 0, S6 Fig, as in the case of a single common ancestor Z of X
and Y, i.e., X Z! Y, with concomitant changes in optimum X and Y partitionings from

multiple to single bins under conditioning over a continuous (S7 Fig) or categorical (S8 Fig)

variable Z. By contrast, spurious dependency between independent variables, X and Y, can be

induced, as expected [23], by conditioning over a common descendent Z, as in the case of a “v-

structure”, X! Z Y, S9 Fig.

Hence, the intrinsic robustness of the present optimum discretization scheme in inferring

(conditional) independence and dependency is an important feature of the method as com-

pared to kNN (conditional) information estimates, whose statistical significance remains diffi-

cult to assess in practice [2, 9].

Reconstruction of benchmark graphical models. We first tested the mixed-type data

extension of MIIC network reconstruction method on benchmark mixed-type data. Datasets

were generated based on non-linear bayesian rules using the R script provided as Supplemen-

tary code; an example of non-Gaussian mixed-type distribution dataset is shown in S10 Fig.

The resulting reconstructed network F-scores are shown in Fig 3 for an increasing proportion

of continuous variables over discrete variables and compared to the recent alternative meth-

ods, CausalMGM [24] and MXM [25], also designed to analyze mixed-type data. Precision,

Recall and F-scores are shown for both skeleton and CPDAG in S11 and S12 Figs, respectively.
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Comparisons with fully continuous datasets, S13 Fig, were also performed with additional

methods, CAM [26], kPC, rank-PC and rank-FCI [27] algorithms, S14 and S15 Figs, and con-

firm the better performance of MIIC over alternative continuous or mixed-type network learn-

ing methods.

Application to medical records of eldery patients with cognitive disorders

We applied this information maximization analysis for mixed-type data to reconstruct a clini-

cal network from the medical records of 1,628 eldery patients consulting for cognitive disor-

ders at La Pitié-Salpêtrière hospital, Paris. The dataset,provided as S1 Table, contains 107

variables of different types (namely, 19 continuous and 88 categorical variables) and heteroge-

neous nature (i.e., variables related to previous medical history, comorbidities and

Fig 3. Reconstruction of benchmark networks for mixed-type, non-linear, non-Gaussian datasets. CPDAG F-scores

obtained for benchmark random networks with 100 nodes and average degree 3 reconstructed from N = 100–5,000 samples

(see histogram example S10 Fig). F-scores obtained with our parameter-free information-theoretic approach MIIC (magenta,

upper surface) are compared to the best results obtained with alternative mixed-type data methods, CausalMGM [24] (blue,

middle surface) and MXM [25] (green, lower surface), by optimizing CausalMGM regularization parameters (λ) and MXM

significance parameter (α), for each sample size N. See additional results in S11–S15 Figs. Codes are provided at https://

github.com/vcabeli/miic_PLoS.

https://doi.org/10.1371/journal.pcbi.1007866.g003
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comedications, scores from cognitive tests, clinical, biological or radiological examinations,

diagnostics and treatments). Beyond the different types and heterogeneous nature of the

recorded data, nodes of the clinical network, Fig 4, can be partitioned into groups associated to

specific dementia disorders and patient clinical context, including comorbidities (diabetes,

hypertension, etc) and related comedications.

Parkisonian syndromes. The first group of nodes contains variables classically linked to

primary degenerative dementias associated to parkinsonian syndromes (Park_Sd), notably the

rarity and slowness of movements, tremor at rest and muscle stiffness, caused either by a par-

kinsonian dementia (PARK_DEM, 80% of cases) or a dementia with Lewy bodies (LEWY,

15% of cases). Park_Sd are identified with the Unified Parkinson Disease Rating Scale

(UPDRS) which distinguishes them from Parkinson plus syndromes such as Progressive

Supranuclear Palsy (PSP), Cortico Basal Degeneration (CBD) or Multiple System Atrophy

(MSA). Parkinsonian syndromes are also linked to more frequent falls, idiopathic Parkinson’s

disease (IPD) and associated to orthostatic hypotension (OHT), in agreement with previous

studies [28]. By contrast, dementia with Lewy bodies (LEWY) is found to be directly associated

to cognitive fluctuations, halluciations and Rapid eye movement sleep Behavior Disorder

(RBD) as well as indirectly connected (2nd neighbor) to confusions and behavioural changes

assessed through the Neuro Psychiatric Inventory (NPI) score and with a deficit of self-aware-

ness (Anosognosia). LEWY diagnoses are also correctly associated with dopamine transporter

imaging (DAT-scan) examination [29].

Alzheimer’s versus dysexecutive syndromes. The second and largest group of nodes

mostly consists of the results from neuropsychologic tests used to assess the cognitive

Fig 4. Network reconstructed from medical records of 1,628 eldery patients with cognitive disorders. Square (resp. circle) nodes

correspond to discrete (resp. continuous) variables. Red (resp. blue) edges correspond to correlation (resp. anticorrelation) between

variables. Dotted edges reflect latent variables, see Discussion.

https://doi.org/10.1371/journal.pcbi.1007866.g004
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functions of patients and diagnose Alzheimer’s disease versus dysexecutive syndromes. Two

types of tests can be distinguished: simple tests probing a precise cerebral function and com-

posite tests combining the results of multiple simple tests to explore more global cognitive pro-

cesses. The Trail Making Test part A (TMTA) is a simple test primarily used to examine

cognitive processing speed (continuous score) by recording the time needed by the patient to

connect ordered nodes (from 1 to 25) randomly placed on a sheet of paper. Our network anal-

ysis shows that TMTA is directly connected to a number of other simple tests, such as forward

memory spans probing attentional capacity, backward memory spans probing immediate

working memory, immediate recall of Taylor or Rey complex figures, verbal semantic fluency

(Issacs set test) and the clock-drawing test. This highlights the rationale of neuropsychology in

combining simple tests into more informative composite tests. Three composite tests are

included in the clinical network, the Mini Mental State (MMS), the Frontal Assessment Battery

(FAB) and the Montreal Cognitive Association (MoCA) tests.

• The Mini Mental State (MMS) test assesses cognitive functions related to memory, spacial

and temporal orientations but not to executive functions, which require to integrate multiple

information sources. MMS is found to be the main hub (with 15 neighbors) of the recon-

structed network, as it is directly connected, as expected, to most of the memory test results

(forward/backward verbal and visuospatial memory spans, biographic memory and delayed

recalls of Taylor or Rey–Osterrieth complex figures). By constrast, MMS is found to be nega-

tively correlated to the Alzheimer’s diagnostic, through the MMS 3 word memory test,

which is known to be one of the most specific tests for Alzheimer’s disease, together with the

Free and Cued Selective Reminding (FCSR) test. Interestingly, our network analysis shows

that the Alzheimer’s disease diagnostic is directly connected to the FCSR test through the

low percent reactivity to cueing, which identifies genuine storage deficits (not facilitated by

cueing) due to amnesic syndrome of the hippocampal type known to be characteristic of Alz-

heimer’s disease [30].

• The Frontal Assessment Battery (FAB) test is complementary to MMS, as it is entirely

focussed on executive functions, centralized in the frontal cortex; it is thus very consistent

that FAB is found to be directly connected and negatively correlated to dysexecutive syn-

drome. Note, however, that patients suffering from dysexecutive syndrome do not typically

show poor FCSR scores unlike Alzheimer patients. This confirms the specificity and sensibil-

ity of the FCSR test to Alzheimer’s disease [31].

• Finally, the Montreal Cognitive Association (MoCA) composite test integrates a variety of

other tests such as the clock-drawing test, the phonetic fluency test as well as semantic flu-

ency test (Isaacs Set Test), which is consistent with the direct connections recovered between

MoCA and these three individual tests in the inferred network.

Psychiatric conditions. The third group of nodes concerns variables associated with the

psychiatric conditions of patients. It includes their past psychiatric history (Psy_Hist) and

present psychiatric conditions, i.e., anxio-depressive or bipolar (BIPO) syndromes, associated

treatments (antidepressants, psychotropes, benzodiazepine BZD and neuroleptics NLP) and

finally scores used to diagnose depression (GDS_15) and a deterioration in the quality of life

(QoL). The analysis of all the links between these variables confirms the overall consistency of

this psychiatric cluster: a good quality of life is closely associated with a low GDS_15 score

(corresponding to a low probability of depression). Note, however, that psychiatric pathologies

are all linked to each other, underlying the difficulty to distinguish them accurately. Yet, our
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network analysis shows that patients with bipolar syndrome (BIPO) tend to show better scores

at the FCSR recall test.

Vascular versus mixed forms of dementias. The fourth group of nodes of the clinical

network is associated with variables implicated in vascular dementias (VASC_DEM) originat-

ing from cerebral vascular accidents (CVA) which damage brain regions essential for cognitive

processes. Different types and sizes of vascular accidents are distinguished from microbleeds

to ischemic stroke (clot) and lacunae (empty spaces in the deep brain structures). These more

severe vascular accidents may also lead to degenerative dementia syndromes, corresponding to

a mixed form of dementia (MIXED_FORMS), which is inferred to be directly associated to

low MMS scores and poor scores at the FCSR Recall test (i.e., negative direct links). VASC_-

DEM and MIXED_FORMS are also found to be connected to the Fazekas scale [32], which

detects and quantifies white matter hyperintensities in the brain that are the consequence of

cerebral small vessel disease including demyelination and axonal loss of neuronal cells. The

Fazekas scale is found to be directly associated to low cognitive processing speed (TMTA) and

also strongly correlated to the Scheltens scale [33] quantifying the severity of hippocampal

atrophy, in agreement with a recent independent report [34]. The hippocampus is a brain

structure involved in memory and space navigation, which is consistent with our finding of a

direct negative association between Scheltens scale and MMS score. Interestingly, this pre-

dicted association between the Fazekas and the Scheltens scales, inferred from our unsuper-

vised global network analysis, provides some physiological insights linking the consequence of

vascular accidents (Fazekas scale) to the atrophy of important brain structures (Scheltens

scale) and, thereby, to cognitive and functional impairments, as reported in clinical studies

linking white matter hyperintensities (Fazekas scale) to cognitive impairment [35].

Patient clinical context. The last important group of nodes of the clinical network includes

variables associated with the patient clinical context including comorbidities, related examina-

tions and treatments. These are different anterior chronic diseases, such as arterial hypertension

(AHT), diabetes, chronic obstructive pulmonary disease (COPD), atrial fibrillation (AFib), that

might have an impact on the patient’s vital prognosis. All the links within this comorbidity clus-

ter are very consistent, each pathology being directly associated with its known risk and predis-

position factors, biological markers, specific examinations and treatments. In particular,

diabetes is associated with a high body mass index (BMI), glycated hemoglobin blood test

(HbA1c), treatment by oral antidiabetic (OAD) drugs and statin; COPD is associated with sleep

apnea syndrome (SAS) and the risk of respiratory failure, the use of bronchiodilator drugs and

the necessity to quit smoking; AHT is associated with an increase risk of mixed form dementia

and treatments by angiotensin receptor blockers (ARBs), beta-blockers and other anti-hyper-

tension (Anti HT) drugs; Finally, AFib, detected by electrocardiogram (ECG), is associated

with an increased risk of heart failure and high levels of thyroid-stimulating hormone (TSH)

and treated with vitamine K antagonist (VKA) and direct oral anticoagulants (DOAC).

Discussion

We report in this paper a novel optimal discretization method to simultaneously compute and

assess the significance of mutual information, as well as conditional multivariate information,

between any combination of continuous or mixed-type variables. The approach is used to

reconstruct graphical models from mixed-type datasets by uncovering direct, indirect and pos-

sibly causal relationships in complex heterogenous data. The method is shown to outperform

state-of-the-art approaches on benchmark mixed-type datasets, before being applied to analyze

the medical records of eldery patients with cognitive disorders from La Pitié-Salpêtrière Hospi-

tal, Paris.
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From a methodological perspective, this information-maximizing discretization approach

facilitates the interpretation of either the dependences or the independencies between continu-

ous or mixed-type variables. First, obtaining optimal discretization helps explain the depen-

dences in terms of the most informative categories of continuous variables. Second, and most

importantly, optimal discretization also acts as an independence test by allowing for single bin

partitions whenever multiple-bin partitioning provides less information than its associated

complexity cost.

From the perspective of clinical applications, the method is able to globally uncover interde-

pendences within complex heterogeneous data from medical records without specific hypothe-

sis nor prior knowledge on any clinically relevant information. The reconstructed clinical

network from cognitive disorder patients (Fig 4) recovers well known as well as novel direct

and indirect relations between medically relevant variables.

In addition, we found that this reconstructed clinical network captures also some facets of

the neurologist’s reasoning behind the diagnoses of distinct dementias. In particular, diagnosis

nodes can be interpreted as “explanatory” variables associated to a number of “explaining-

away effects” [23] in the form of “v-structures”, i.e., D1! S/E D2, whenever alternative

diagnoses, D1 or D2, can independently explain a given syndrome, S, or the result of a specific

examination, E. Examples discussed in more details above are PARK_DEM! PARK_Sd 

LEWY, VASC_DEM! Fazekas MIXED_FORMS and VASC_DEM! Ischemic_Stroke

 MIXED_FORMS. In addition, anticorrelations between different diagnostic nodes reflect

the alternative choices of diagnosis by the neurologist, either in the form of “differential diag-

noses” through a reasoning by elimination, in particular, to diagnose Alzheimer’s disease, i.e.,
VASC_DEM a ALZHEIMER, or in the form of a latent variable, visualized as bidirected

dotted edges and corresponding to alternative diagnoses by the neurologist, i.e., ALZHEI-

MER⤎diagnosis⤏MIXED_FORMS or ALZHEIMER⤎diagnosis⤏BIPO. Latent variables may

also represent the clinician’s decisions between alternative treatments, e.g., APD⤎clinician_de-
cision⤏VKA or a nonrecorded or implicite information in the patient personal or medical his-

tory, e.g., active_smoker⤎ever_smoked⤏quit_smoking, Fig 4.

The main strengths of our clinical network reconstruction method are three-fold. First, it

performs an unbiased check on the database content (expected, yet missing direct links in the

reconstructed network hint to likely problems in the database e.g., erroneous or missing data).

Second, it does not need any expert-informed hypothesis and provides, without prior knowl-

edge in the field, graphical models complementing analyses by experts. Finally, it can discover

novel unexpected direct interdependencies between clinically relevant information, such as

the direct connection between Fazekas and Scheltens scales, Fig 4, which may provide some

physiological insights and suggest new research directions for further investigation.

Hence, beyond the challenge of learning clinical networks from mixed-type data, our

method offers a user-friendly global visualisation tool of complex, heterogeneous clinical data

which could help other practitioners visualize and analyze direct, indirect and possibly causal

effects from patient medical records.

Supporting information

S1 File. Supplementary Materials and Methods. Benchmark data generation (continuous

and discrete variables). Performance measures. Benchmark parameter tuning. Resource avail-

ability.

(PDF)

S1 Table. Dataset from 1,628 eldery patients with cognitive disorders from La Pitié-Salpê-
trière hospital, Paris. The dataset, fully deidentified, contains 107 variables of different types
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(namely, 19 continuous and 88 categorical variables) and heterogeneous nature (i.e., variables

related to previous medical history, comorbidities and comedications, scores from cognitive

tests, clinical, biological or radiological examinations, diagnostics and treatments).

(XLSX)

S1 Fig. Optimum bivariate discretization for mutual information estimation. The pro-

posed information-maximizing discretization scheme is illustrated for a joint distribution

defined as a Gumbel bivariate copula with parameter θ = 5 and univariate marginal-distribu-

tion functions chosen as Gaussian mixtures with three equiprobable peaks and respective

means and variances, μX = {0, 4, 6}, σX = {1, 2, 0.7} and μY = {−3, 6, 9}, σY = {2, 0.5, 0.5}. Infor-

mation-maximizing partitions are displayed for different sample sizes with corresponding

mutual information estimates: (A) N = 100 samples, IN(X; Y) = 0.928 (and I0NðX;YÞ ¼ 0:649);

(B) N = 500 samples, IN(X; Y) = 1.040 (and I0NðX;YÞ ¼ 0:866); (C) N = 1, 000 samples,

IN(X; Y) = 1.096 (and I0NðX;YÞ ¼ 0:977); (D) N = 10, 000 samples, IN(X; Y) = 1.142 (and

I0NðX;YÞ ¼ 1:075). The actual mutual information value was computed through numerical

integrationof the marginals and the joint probability distribution and yields, I(X; Y) = 1.205, in

good agreement with the obtained estimates for large N.

(EPS)

S2 Fig. Adaptive information-maximizing partitions depending on interaction strength.

To assess the range in bin numbers depending on the strength of interaction between vari-

ables, we generated N = 1, 000 independent samples for 10,000 Gaussian bivariate distributions

with a uniformly distributed correlation coefficient ρ in [−1, 1]. The real mutual information

(RI) of Gaussian bivariate distributions can be computed directly [1], as RI(X; Y) = −log(1 −
ρ2)/2. For each pair (X, Y), we estimated the mutual information with the proposed optimum

bivariate discretization as well as the Maximal Information Coefficient [22] using the minepy
package [36] (A) The information-maximizing partition proposed in the present paper

behaves as expected: the number of bins on each variable is roughly similar and scales mono-

tonically with the strength of the interaction between variables. This implies that additional

bins are only introduced when their associated complexity cost is justified by a larger gain in

mutual information. Conversely, when the information between X and Y approaches zero,

both variables are partitioned into fewer and fewer bins until a single bin is selected for each

variable, when they are inferred to be independent, given the available data. (B) The partition

chosen to estimate the Maximal Information Coefficient is very different, regardless of the

interaction strength, as it systematically corresponds to an unbalanced distribution of bins

between the two variables, with one variable usually partitioned into the maximum number of

bins(set by default to floor(N0.6/2) = 31) while the other is discretized into two levels only. This

result is not unexpected, however, as the Maximal Information Coefficient [22] is defined by

maximizing the mutual information of the discretized variables over the grid, Ið½X�
Dx

; ½Y�
Dy
Þ,

normalized by the minimum of log Δx and log Δy. Indeed, maximizing the normalized mutual

information is done by partitioning as few samples as possible into the maximum number of

bins in one dimension (as sketched in Fig 1), while simultaneously minimizing the number of

bins, and thus log Δi, in the other dimension. See further discussion in [37].

(EPS)

S3 Fig. Interaction-dependent optimum discretization. Optimum bivariate partitions

obtained from N = 1, 000 samples of two different joint distributions P(X, Y) sharing the same

sampling of X taken from a uniform distribution on [0, 0.3], but with different dependences

for Y. (A) Y is defined as log(X) + �1, and (B) Y is defined as X5 + �2, where �1 and �2 are

Gaussian noise terms chosen so that the mutual informations of both examples are
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comparable,I(X;Y)’ 0.75. This example shows that the optimum partition for X depends on

its specific relation with Y and needs to be discretized with finer partitions in (A) at low X val-

ues for which Y’ logX varies the most and in (B) at higher X values for Y’ X5.

(EPS)

S4 Fig. Mutual information estimation for Gaussian bivariate distributions. 100 bivariate

normal distributions were sampled for varying sample sizes, increasing from top to bottom,

and correlation coefficients ρ ranging from 0.01 to 0.9. The mutual information was estimated

with the proposed optimum discretization scheme and the KSG estimator with different

parameters k. The mean squared error (center graphs) was calculated thanks to the analytical

result of the mutual information of the bivariate Gaussian: I(X; Y) = −log(1 − ρ2)/2. The stan-

dard deviation of each estimator over the 100 replications was also plotted against the correla-

tion coefficient (right).

(EPS)

S5 Fig. Mutual information estimation of mixed variables. Experiment set-ups and analyti-

cal values for the mutual information were taken fom [7] and 50 runs were performed for each

sample size N. Our proposed approach is compared to a naive equal-frequency discretization

with N1/3 bins, a kernel and a noisy KSG estimator as implemented in JIDT [38], as well as the

recent KSG extensions for estimating the mutual informmation between a categorical and a

continuous variable (mixed KSG Ross [6]), and between mixed-type variables (mixed KSG

Gao [7]). For all nearest-neighbour based approaches, the number of nearest neighbours was

set to k = 5. From left to right, top to bottom, the simulations are devised after experiment I,

experiment II, experiment IV with p = 0 and experiment IV with p = 0.15, from [7].

(EPS)

S6 Fig. Conditional mutual information estimation for multivariate Gaussian distribu-

tions. Four-dimensional normal distributions P(X, Y, Z1, Z2) were sampled for N = 100 to 5,

000 samples 100 times for each correlation coefficient ρ = ρXY, chosen between 0.05 and 0.95.

The other pairwise correlation coefficients were fixed as rXZ1
¼ rXZ2

¼ rYZ1
¼ rYZ2

¼ l ¼ 0:7

and rZ1Z2
¼ 0:9. The conditional mutual information I(X; Y |Z1, Z2) was then estimated using

the proposed optimum partitioning scheme as well aswith kNN conditional information esti-

mates as in S4 Fig. ρ values closed to zero, mimick “V-structures” as they correspond to pair-

wise independence but conditional dependence; by constrast r ¼ 2l
2
=ð1þ rZ1Z2

Þ ’ 0:5158

corresponds to conditional independence, while ρ> 0.5158 impliesthat X and Y share more

information than the indirect flow through Z1 and Z2. The analytical value of the conditional

mutual information is derived as follows; given the 4 × 4 covariance matrix S and its four 2 × 2

partitions Sij, we first compute the conditional covariance matrix �S ¼ S11 � S12S
� 1

22
S21 where

S� 1

22
is the generalized inverse of S22. The partial correlation between X and Y is obtained as

rXY�Z1Z2
¼ �S12=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�S11 �

�S22

p
, and the analytical conditional mutual information for a multivari-

ate normal distribution is given by IðX;YjZ1;Z2Þ ¼ � logð1 � r2
XY�Z1Z2

Þ=2.

(EPS)

S7 Fig. Pairwise dependence and conditional independence between X and Y sharing a

common cause Z. This example illustrates the (conditional) correlation patterns emerging

from the presence of a confounding variable, as depicted by the causal diagram X Z! Y. Z
is generated with a uniform law U(0, 1) for N = 1, 000 observations and X, Y are both defined

as 2Z + � with independent normal noise � � N ð0; 0:2Þ. (A) optimum discretization maximiz-

ing I0NðX;YÞ with a strong pairwise correlation, and (B) optimum discretization which maxi-

mizes the conditional mutual information with finite size correction, I0NðX;YjZÞ. In the latter
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case, the optimum discretization scheme results in a single bin on both variables as the flow

information between X and Y is blocked by conditioning on the common cause Z.

(EPS)

S8 Fig. Pairwise dependence and conditional independence between non Gaussian X and Y
sharing a common categorical cause. Another confounding example, X Z! Y, taken

from [25] with a uniform categorical Z with three levels, X and Y being continuous, for N = 1,

000 observations. With Zi the binary variable corresponding to the i-th dummy variable of Z,

we defined X = −Z1+ Z2+ 0.2�X which is centered around either −1 if Z = 1, 0 if Z = 3 or 1 if

Z = 2; and Y = Z1 + Z2 + 0.2�Y, � � N ð0; 1Þ which is centered around either 0 if Z = 3 or 1 if

Z = 1 or Z = 2. As for continuous common cause in S7 Fig, there is (A) some non-zero mutual

information between X and Y corresponding to an optimum discretization, while (B) condi-

tional mutual information vanishes when conditioning on the categorial common cause, Z,

with the partitions of both X and Y variables consisting in a single bin.

(EPS)

S9 Fig. Pairwise independence and conditional dependence with a v-structure. Example of

two independent variables X, Y both causing a third variable Z as: X! Z Y. N = 1, 000

observations are drawn for X;Y � N ð0; 1Þ and Z = X + Y. (A) The two variables X and Y
being independent, no multi-bin discretization can be found to yield an information estimate

that is greater than the corresponding complexity cost. However, (B) conditioning on the

common effect Z ‘activates’ the v-structure path generating a spurious relationship between X
and Y. This is reflected in the fact that the induced interaction between X and Y requires a mul-

tiple bin optimum discretization to estimate IN(X; Y|Z) = 1.188 (with I0NðX;YjZÞ ¼ 0:745).

(EPS)

S10 Fig. Example of dataset generated for mixed-type, non-linear, non-Gaussian bench-

marking with 69 continuous and 31 categorical variables. Each plot represents the observed

density or histogram (N = 1, 000) of the continuous or categorical variable Xi, constructed by

structural equation models given its parents’ distributions (see Supporting Information).

(EPS)

S11 Fig. Skeleton assessment of benchmark networks for mixed-type, non-linear, non-

Gaussian datasets. Skeleton Precision, Recall and F-scores obtained for benchmark random

networks with 100 nodes and average degree 3 reconstructed from N = 100–5,000 samples (see

histogram example Fig. S11). Performances obtained with our parameter-free information-

theoretic approach MIIC (magenta) are compared to the results obtained with the best param-

eterization (maximizing the skeleton F-score) of CausalMGM [24] (blue) and MXM [25]

(green). See Supporting Information.

(EPS)

S12 Fig. CPDAG assessment of benchmark networks for mixed-type, non-linear, non-

Gaussian datasets. CPDAG Precision, Recall and F-scores obtained for benchmark random

networks with 100 nodes and average degree 3 reconstructed from N = 100–5,000 samples (see

histogram example S11 Fig). Performances obtained with our parameter-free information-the-

oretic approach MIIC (magenta) are compared to the results obtained with the best parameter-

ization (maximizing the CPDAG F-score) of CausalMGM [24] (blue) and MXM [25] (green).

See Supporting Information.

(EPS)
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S13 Fig. Example of dataset used for continuous, non-linear, non-Gaussian benchmarking

with 100 continuous variables.

(EPS)

S14 Fig. Skeleton assessment of benchmark networks for continuous, non-linear, non-

Gaussian datasets. Skeleton Precision, Recall and F-scores obtained for benchmark random

networks with 100 nodes and average degree 3 reconstructed from N = 100 − 10, 000 samples

(see histogram example Fig. S14). Results obtained with our parameter-free information-theo-

retic approach MIIC are compared for optimum non-uniform bin sizes and for equal fre-

quency bin sizes (with N1/3 bins) as well as to the best results obtained with alternative

continuous data methods: PC with Gaussian conditional independence test, rankPC and

rankFCI from the pcalg package [27], kPC with theHelbert-Schmidt Independence Crite-

rion [39, 40] and CAM [26] algorithms, after optimizing their respective parameter (α) for

each sample size N. See Supporting Information.

(EPS)

S15 Fig. CPDAG assessment of benchmark networks for continuous, non-linear, non-

Gaussian datasets. CPDAG Precision, Recall and F-scores obtained for benchmark random

networks with 100 nodes and average degree 3 reconstructed from N = 100 − 10, 000 samples

(same simulation settings as in Fig. S15).

(EPS)
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17. Kontkanen P, Myllymäki P. A linear-time algorithm for computing the multinomial stochastic complexity.

Inf Process Lett. 2007; 103(6):227–233. https://doi.org/10.1016/j.ipl.2007.04.003

18. Szpankowski W. Average case analysis of algorithms on sequences.: John Wiley & Sons; 2001.
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