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Abstract
Some mixotrophic plants from temperate forests use the mycorrhizal fungi colonizing their roots as a carbon source to supple-
ment their photosynthesis. These fungi are alsomycorrhizal on surrounding trees, fromwhich they transfer carbon tomixotrophic
plants. These plants are thus reputed difficult to transplant, even when their protection requires it. Here, we take profit of a
successful ex situ pot cultivation over 1 to 3 years of the mixotrophic orchid Epipacis helleborine to investigate its mycorrhizal
and nutrition status. Firstly, compared with surrounding autotrophic plants, it did not display the higher N content and higher
isotopic (13C and 15N) abundance that normally feature mixotrophic orchids because they incorporate N-, 13C-, and 15N-rich
fungal biomass. Second, fungal barcoding by next-generation sequencing revealed that the proportion of ectomycorrhizal fungi
(expressed as percentage of the total number of either reads or operational taxonomic units) was unusually low compared with
E. helleborine growing in situ: instead, we found a high percentage of rhizoctonias, the usual mycorrhizal partners of autotrophic
orchids. Altogether, this supports autotrophic survival. Added to the recently published evidence that plastid genomes of
mixotrophic orchids have intact photosynthetic genes, this suggests that at least some of them have abilities for autotrophy.
This adds to the ecological plasticity of mixotrophic plants, and may allow some reversion to autotrophy in their evolution.
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Introduction

Some plants from temperate forests display a mixotrophic
nutrition that relies on both their photosynthates and resources
extracted from the mycorrhizal fungi colonizing their roots

(for reviews, see (Selosse and Roy 2009; Selosse et al. 2016;
Jacquemyn and Merckx 2019). These plants belong to the
orchid (e.g., from the Neottieae tribe) and Ericaceae families
and are also called partial mycoheterotrophs, because the het-
erotrophic nutrition using carbon from mycorrhizal fungi is
called mycoheterotrophy (Hynson et al. 2013). Such
mixotrophic plants rely on the ability of mycorrhizal fungi to
establish networks between plants of different species, due to
a low mycorrhizal specificity: the so-called mycorrhizal net-
works (Selosse et al. 2006; Simard et al. 2012) allow fungi to
gain nutrients on some plants and to deliver part of it to others.
Mixotrophic temperate plants rely on the network formed by
ectomycorrhizal fungi, which also associate with surrounding
trees (Selosse and Roy 2009).

Five lines of evidence demonstrated this mixotrophic sta-
tus. Firstly, the mixotrophic plants shifted from the usual my-
corrhizal fungi of their respective family (e.g., the rhizoctonias
in orchids; (Dearnaley et al. 2012)) to ectomycorrhizal taxa,
establishing mycorrhizal networks with nearby trees (Hynson
et al. 2013). Secondly, the (hitherto elusive) compounds pro-
vided by ectomycorrhizal fungi to mixotrophs is naturally
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enriched in 13C as compared with photosynthates, and the
biomass of mixotrophic plants is thus enriched in 13C com-
pared with that of autotrophic plants (Gebauer and Meyer
2003; Bidartondo et al. 2004; Julou et al. 2005; Hynson
et a l . 2013); note that the biomass acquired by
mycoheterotrophy is often also enriched in 15N).
Importantly, 13C abundance in mixotrophs can be used to
calculate the percentage of mycoheterotrophy in each organ
and season (Gebauer and Meyer 2003; Gonneau et al. 2014)
or in different light environments (Preiss et al. 2010; Gonneau
et al. 2014). Thirdly, beyond isotopic evidence of a raw C flow
from the fungus to the orchid, the survival of rare
achlorophyllous variants, in mixotrophic Neottieae orchids
at least, demonstrates a net flow in favor of the plant: these
achlorophyllous variants survive well (Selosse et al. 2004;
Julou et al. 2005; Lewis 2015; Shefferson et al. 2016), but
produce a limited fruit set (Salmia 1989; Roy et al. 2013;
Gonneau et al. 2014). Fourthly, green mixotrophic individuals
display a limited photosynthesis rate, even under the compen-
sation point (where photosynthesis equals respiration), due to
the shade of the tree canopy (Julou et al. 2005) or to limited
intrinsic photosynthetic abilities (Girlanda et al. 2006). Fifthly,
mixotrophs often contain more nitrogen (N) as compared with
autotrophic, non-N fixing plants, probably because (i) plant
respiration eliminates C and thus concentrates N from the
biomass received from fungi, as described in heterotrophs,
and/or (ii) the fungal biomass is likely already N-rich
(Abadie et al. 2006; Hynson et al. 2013).

Recently, a split use of the two (photosynthetic and
mycoheterotrophic) resources by mixotrophic Neottieae or-
chids was revealed, based on the variations of 13C abundance
in various organs and labeling of photosynthates in situ.
Photosynthates produced after leaf expansion are mostly used
for aerial parts, leaves, and fruits which are green before rip-
en ing (Roy e t a l . 2013 ; Be l l i no e t a l . 2014 ) .
Mycoheterotrophic resources are mostly used for under-
ground roots and rhizomes (Gonneau et al. 2014): see Fig. 5
therein), as well as for elaboration of starch reserves
(Lallemand et al. 2019a). This explains why achlorophyllous
variants produce fewer seeds (Roy et al. 2013), but have good
rhizome survival (Shefferson et al. 2016).

Mixotrophic orchids thus strongly depend on mycorrhizal
networks for survival, and these results in some difficulties in
transplantation attempts, as reported by Sadovsky (1965) for
mixotrophicNeottieae. This puts constraints on protection and
transplantations to save populations menaced by changes in
land use. Yet, there are seldom examples of successful trans-
plantation: for example, Delforge (2016, 2017) reports that
two Epipactis helleborine individuals (Neottieae tribe) sur-
vived transplantation to a forest edge environment the first
year and even flowered. While one individual then disap-
peared, the other one persisted over 6 years at least
(Delforge 2016, 2017). Furthermore, some commercial

nurseries sell mixotrophic Epipactis spp. grown in pots, such
asE. helleborine, although every timewe accessed these prod-
ucts (n = 2) they turned out to belong to E. palustris, a related
but autotrophic species (Lallemand et al. 2018). The Epipactis
helleborine orchid species usually harbors a dominance of
ectomycorrhizal fungi in its roots (Bidartondo et al. 2004;
Ogura-Tsujita and Yukawa 2008; Těšitelová et al. 2012;
Jacquemyn et al. 2016; Jacquemyn and Merckx 2019) and,
from many isotopic data, largely relies on mycoheterotrophy
for its rhizome survival and growth of young shoots (Gebauer
and Meyer 2003; Gonneau et al. 2014; Schiebold et al. 2017;
Lallemand et al. 2019a); Xing et al. 2019), so that successful
transplantation and pot culture appear unexpected.

Here, we used a common garden growth experiment to
investigate the stability of the phenotype of various morpho-
logically distinct subspecies of E. helleborine after transplan-
tation (see Delforge 2016, for a review of these subspecies; the
taxonomic outcome of this experiment will be reported
elsewhere). Transplanted E. helleborine were successfully
grown in pots placed in a common garden, where the absence
of a mycorrhizal network prompted the questions of (1) their
mycorrhizal associates after transplantation, and (2) their level
of autotrophy. Using, respectively, metabarcoding methods to
identify the fungal community in roots and isotopic and N
abundance to characterize the autotrophy level, we evidence
here autotrophic survival of the mixotrophic E. helleborine.

Material and methods

E. helleborine culture ex situ

The investigated plants were harvested with 2 L of undis-
turbed soil surrounding each plant, in 2013 or 2015
(Table 1). Their forests of origin were mixed but dominated
by Fagus sylvatica, with a dense canopy as is typical for the
ecology of this species in Central Europe (Těšitelová et al.
2012). The plants belonged to three different subspecies of
E. helleborine (see Table 1 and Delforge 2016, for a review
of these subspecies and their debated taxonomic status). After
cutting two long roots, the plants were individually placed in
square pots (18 × 18 cm, height 20 cm; Fig. 1) filled with the
soil collected at the same time as the orchids. After potting,
orchids were deposited at a propagation bed of the Botanical
Garden of the University of Ulm on a 5-cm layer of sand in
order to prevent waterlogging. Pots were moved weekly to
limit the ability of local soil fungi to establish permanent links
with the plants (indeed, some ectomycorrhizal trees grow at a
distance > 5 m in the garden). They were watered daily and
put below a large grid covered with an aluminum top in order
to provide shadier conditions (distance to the top of highest
orchids was 75 cm). Despite shading, plants grew in a lumi-
nous conditions based on Ellenberg’s indicator value (7.0 ±
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0.63; mean ± confidence interval) calculated on the basis of
the plants spontaneously growing at the same place and in the
same conditions (Brassica napus, Sinapis arvensis,
Echinacea purpurea, E. pallida, Heracleum sphondylium,
Lythrum salicaria, Agrimonia eupatoria, Campanula
trachelium, C. persicifolia, C. medium, Taraxacum officinale,
Leontodon autumnalis, Malva sylvestris, M. moschata,
Verbascum densiflorum , V. phlomoides , Geranium
sanguineum, Plantago major). Ellenberg’s indicator value
represents the preference of individual species, based on em-
pirical field observations in Central Europe, ranging from 1
(deep shade) to 9 (full sunlight; Ellenberg et al. 1991).

Survival rate after transplantation in the garden was ca. 60%,
but surviving plants flowered in all years after sampling (veg-
etative and reproductive descriptions will be reported in a
separate paper investigating the three different subspecies of
E. helleborine).

Stable isotope analyses

We sampled about 1 g (fresh weight) of leaves from each
E. helleborine individual in July 2016, 3 years after their
transplantation to pot culture (Table 1). We also added for
these analyses mycorrhizal roots of the four individuals sam-
pled for fungal barcoding (see below and Table 1; two root
pieces per individual). As a reference for autotrophic plants,
we used weeds growing in the same pots, i.e., an unidentified
Arabidopsis species, Plantago major, and Taraxacum sp. The
two latter species form arbuscular mycorrhizas while the first
one is not mycorrhizal but harbors various root endophytes as
do other Brassicaceae (Almario et al. 2017). Six replicates
from independent plants were sampled for each species. To
minimize environmental variations influencing 13C abun-
dance, all leaf samples were collected at a similar light level
and at a similar distance from the pot soil, i.e., under the grid
covered with aluminum. Samples were ground in 2-mL
Eppendorf tubes in a ball mill MM200 (Retsch Gmbh,
Haan, Germany) and analyzed for total N concentration, as
well as 13C/12C and 15N/14N ratios using an elemental analyz-
er (EA) coupled to a ThermoFinnigan DeltaV Advantage
Continuous-Flow Isotope-ratio mass spectrometer, and
expressed as δ-values (Hynson et al. 2013). Isotope values
were calibrated using internal calibrated standards (EDTA
and ammonium oxalate). The standard deviations of the rep-
licated standard samples were 0.024‰ for 13C and 0.199‰
for 15N. Statistical analyses were performed using R environ-
ment for statistical computing (R Core Team 2015). Analysis
of variance (ANOVA) was used to evaluate differences in
mean δ13C, δ15N, and % N among species from a given site

Table 1 Origin and sampling of
the E. helleborine individuals
from the Botanical Garden of the
University of Ulm investigated in
this study (sampling in 2016)

Transplantation to
the Botanical Garden Ulm

Sub-species Sampled
individuals*

Forest of origin Geocodes

June 2015 E. helleborine type 0/1 Ulm 48° 24′ 05″ N

09° 55′ 05″ E

July 2013 E. helleborine minor 5/1 Königsbronn 48° 44′ 10″ N

10° 05′ 31″ E

July 2013 E. helleborine type 5/1 Königsbronn 48° 44′ 10″ N

10° 05′ 31″ E

July 2013 E. helleborine moratoria 5/1 Ulm 48° 24′ 05″ N

09° 55′ 05″ E

*Number of individuals sampled for leaf isotopic abundances/number of individuals sacrificed for fungal
barcoding of root fungi and mycorrhiza isotopic abundances

Fig. 1 Pot cultures of E. helleborine individuals investigated in this study
(E. helleborine sampled in 2015 near Ulm, pictured July 2017)
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(function aov {stats}). The alpha type I error threshold was set
at 0.05.

Identification of E. helleborine root fungi

For metabarcoding of root fungi by next-generation sequenc-
ing (NGS), roots of four plants (see Table 1; i.e., two plants
from each site of origin) were harvested in 2016, i.e., 1 or
3 years after transplantation to pot culture (Table 1). This
sampling was intended to limit damage in the common garden
growth experiment. Roots were screened for mycorrhizal col-
onization, and 4 independent colonized root pieces were sub-
mitted to DNA extraction for the subsequent assessment of
fungal communities as in Schneider-Maunoury et al. (2018,
2019). We amplified the ITS2 region by using the two general
primer pairs ITS3/ITS4-OF and ITS86-F/ITS4, as such a
choice of primers covers a large fungal set, including orchid
mycorrhizal fungi (Waud et al. 2014; Jacquemyn et al. 2016),
but not necessarily arbuscular mycorrhizal ones, known to be
underrepresented in orchids. The four pooled amplicon librar-
ies, generated in a PCR reaction (see Schneider-Maunoury
et al. (2018) for detailed parameters), were sequenced with
an Ion Torrent sequencer (Life Technologies, Carlsbad,
USA). In brief, the downstream analyses included at first a
R-OTU (Reference Operational Taxonomic Unit) database
generation utilizing the full-length amplicons only, i.e., reads
containing both the ITS86-F and ITS4 primers, in both types
of amplicons (the primer pair ITS86-F/ITS4 resides within the
stretch amplified by the ITS3/ITS4-OF pair), allowing a 25%
error rate for primer recognition and a minimum required
length of 200 bp. Trimmed sequences were clustered into R-
OTUs with SWARM (Mahé et al. 2014), followed by removal
of singletons, as well as chimera removal with UCHIME
(Edgar et al. 2011) against the UNITE database (Kõljalg
et al. 2013). Next, reads from the original amplicon sets were
extracted and trimmed if they contained the ITS86F and ITS4
primers, and assigned to R-OTUs using BLASTN (Altschul
et al. 1990) with a 97% similarity threshold. Assigning a tax-
onomy to each R-OTU was finally accomplished by compar-
ing the representative sequences of each R-OTU to the
UNITE reference database using BLASTN with a 90% simi-
larity threshold. The above-described steps were carried out
using selected scripts from the QIIME package v1.9.1
(Caporaso et al. 2010), as well as home-made scripts.
Representative sequences for each mycorrhizal OTU found
in this study were submitted to GenBank under accession
numbers MN459665-MN459894. OTUs were manually
screened for possible orchid mycorrhizal families based on
Dearnaley et al. (2012) and information of previously detected
mycorrhizal fungi from the roots, germinating seeds and
protocorms of various Epipactis species (Bidartondo et al.
2004; Selosse et al. 2004; Ogura-Tsujita and Yukawa 2008;
Těšitelová et al. 2012; Jacquemyn et al. 2016; Jacquemyn and

Merckx 2019); we also included al l potent ia l ly
ectomycorrhizal fungi according to (Tedersoo et al. 2010;
2013). Analysis was restricted to these taxa.We tested the null
hypothesis of no difference in the proportions of rhizoctonia
and non-rhizoctonia fungi sequences and OTUs number
among four groups represented by data from the present study,
these from Těšitelová et al. (2012) and these from Jacquemyn
et al. (2016 and 2019), i.e., whenever format of published data
allowed respective comparisons: for this, we performed the
chi-square test with Yate’s correction followed by a pairwise
proportional test with the Bonferroni correction. Proportions
instead of raw sequences and OTU number data were applied
in the calculation to normalize results between the studies.

Results

Stable isotope analyses

The leaf isotopic abundance in 13C and 15N of the three sub-
species of E. helleborine (Fig. 2a) did not differ significantly
from those of the reference autotrophic Arabidopsis sp.,
Plantago major, and Taraxacum sp. growing in the same pots
and conditions, whatever the sub-species (see statistics in
caption of Fig. 2a). Mycorrhizal roots displayed the same
13C abundance as leaves (Fig. 2b). The average total N content
of E. helleborine was lower than that of the reference autotro-
phic species, significantly for Arabidopsis sp. and Plantago
major (Fig. 3). Thus, neither N content nor isotopic abun-
dances indicated any contribution of N-rich, 13C/15N-enriched
biomass originating from ectomycorrhizal fungi in the aerial
and root biomass of pot-cultivated E. helleborine individuals.

Identification of E. helleborine root fungi

The quality-filtered pyrosequencing data set comprised 584
OTUs represented by 613,118 sequences. After analysis,
88.9% of the total number of sequences (544,929 se-
quences, 454 OTUs) could be assigned to Ascomycota
and Basidiomycota, and a relatively large representation
of Glomeromycota (arbuscular mycorrhizal fungi; 11,646
sequences, 63 OTUs, 10.7% of all fungal OTUs) were re-
covered. Putatively orchid mycorrhizal according to
Dearnaley et al. (2012) and/or ectomycorrhizal taxa covered
167 OTUs (402,272 sequences, 65.6%). Among these, we
found the usual fungal associates of autotrophic orchids, the
so-called rhizoctonias: from the three rhizoctonia families,
Ceratobasidiaceae were ubiquitous and highly abundant
(198,383 sequences, 49.3% of all sequences in this catego-
ry; in all, 49 OTUs; Fig. 4); Serendipitaceae (1 OTU) oc-
curred in 3 plants (but reached high abundance in only one
of these) ; no Tulasnel laceae was found. Several
ectomycorrhizal clades potentially mycorrhizal on
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E. helleborine were recorded. Helotiales (76,164 se-
quences, 18.9%) and Herpotrichellaceae (33,708 se-
quences, 8.4%) were ubiquitous, although with different
abundances from one plant to another, while other taxa oc-
curred on some plants only (Fig. 4a), namely Tuberaceae
(Tuber anniae, 14,380 sequences, 3.6%, from 2 plants),
Pyronemataceae (67,960 sequences, 16.9%, from 4 plants),
Sebacinaceae, Inocybe and Cortinarius (for these three
taxa: 64 sequences, 0.01%, from 3 plants; Fig. 4). The indi-
viduals transplanted to pot more recently (1 year of
cultivation; column 1 in Fig. 4a) revealed more abundant
ectomycorrhizal fungi than the ones cultivated for 3 years
(columns 2–4; respectively 70.65% of all sequences versus
48.18% on average): Pyronemataceae dominated in its fun-
gal community (12 OTUs and 24,681 sequences).

On average, the proportion of rhizoctonias found in this
study was significantly higher than that of other available
studies (Table 2) calculated as sequence proportions (χ2

(0.05,3) = 161.07; p < 0.0001) or as OTU proportions (χ2

(0.05,2) = 39.37 p < 0.001).

Discussion

We observed 1- to 3-year survival in pots for E. helleborine,
with normal development and flowering (Fig. 1;
developmental traits will be reported later in a comparative
study of E. helleborine subspecies) that correlates with (i) an
unusually high abundance of rhizoctonias and (ii) isotopic and
N signatures that do not differ from nearby autotrophic plants.
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Different letters in brackets after
the plant names indicate different
content according to a Tukey
honest significant difference test
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Although this short-term experiment may reflect survival rath-
er than a sustainable niche (i.e., we do not assess average life
expectancy), we discuss these observations in terms of mycor-
rhizal interaction and physiology of E. helleborine, in the gen-
eral framework of evolution and biological conservation of
mixotrophic plants.

Mycorrhizal fungi are dominated by rhizoctonias

Pot-cultivated E. helleborine revealed a community of root
mycorrhizal fungi (including some endophytes sensu Wilson
1995, i.e., fungi colonizing the roots loosely without forming
true mycorrhizas) qualitatively (= taxonomically) close to that
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Relative abundance of each
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Table 2 Percentage of rhizoctonias versus non-rhizoctonia
ectomycorrhizal taxa including species whose exact status, endophytic
o r ec tomyco r rh i z a l , i s deba t ed , such as He lo t i a l e s o r

Herpotrichiellaceae. The value is calculated as percentage of reads (in
italics) or as percentage of OTUs (bold, in brackets), which was not
calculable for the work by Jacquemyn et al. (2016)

Study: Current study Xing et al., 2019 Jacquemyn et al. 2016 Těšitelová et al. 2012

Growth conditions: Pot culture In natura In natura In natura

Barcoding method: NGS NGS NGS Sanger (cloning)

Rhizoctonia taxa 50.87%
[29.9%]

3.30%
[10.6%]

0.03% 0%
[0%]

Non-rhizoctonia ecto-mycorrhizal taxa 49.13%
[49.1%]

96.70%
[89.4]

99.97% 100%
[100%]

Statistics* a
[a]

b
[b]

b b
[b]

*Columnwith different letters differ significantly according to the chi-square test with Yate’s correction (χ2 (0.05,3) = 161.07, p < 0.0001 for percentage
of reads, χ2 (0.05,3) = 39.37, p < 0.001 for percentage of OTUs), followed by pairwise proportional test with the Bonferroni correction
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reported from natural sites, but with striking quantitative dif-
ferences. The finding of Glomeromycota, which normally
form arbuscular mycorrhizae and are poorly targeted by the
primers we used, was unexpected (but see e.g. Abadie et al.
2006): although their interaction with orchid roots is unex-
pected and unclear, we cannot exclude an asymptomatic col-
onization resulting from culture in the company of some
arbuscular mycorrhizal weeds such as Taraxacum and
Plantago spp. (a non-mycorrhizal colonization described in
non-arbuscular mycorrhizal; Cosme et al. 2018).

On the one hand, the main taxa found here were also re-
ported in situ for E. helleborine (see Bidartondo et al. 2004;
Ogura-Tsujita and Yukawa 2008; Těšitelová et al. 2012;
Jacquemyn et al. 2016; 2019). This includes rhizoctonias,
which occur in many autotrophic orchids (Dearnaley et al.
2012): Ceratobasidiaceae that abound here are also reported
in natura in E. helleborine. Ectomycorrhizal ascomycetes
with possible endophytic abilities are also reported in natura
in E. helleborine: taxa with this dual ecology include Tuber
spp . (Schne ide r -Maunoury e t a l . 2018 , 2019) ,
Pyronemataceae (Hansen et al. 2013), Helotiales (Wang
et al. 2006), and Herpotrichellaceae (such as Exophiala,
which include the so-called dark septate endophytes;
Jumpponen 2001). Ectomycorrhizal basidiomycota, finally,
are usually much more diverse in natura than the few taxa
found in this study (e.g., Těšitelová et al. 2012; Jacquemyn
et al. 2016; 2019).

On the other hand, not only the diversity but also the abun-
dance of ectomycorrhizal and/or endophytic taxa (asco- or
basidiomycetes) is very low in pot-cultivated E. helleborine.
A comparison with samplings in natura, barcoded by NGS or
cloning, clearly supports this (Table 2). Of course, differences
in methods and choice of primers for NGS may affect this
comparison: however, our unpublished data set on
E. helleborine from four forests sites in Europe (M.-A.
Selosse, E. Delannoy & J. Minasiewicz, unpubl; 15 individ-
uals barcoded with exactly the same methods of analysis as in
this study) revealed 99.1% of ectomycorrhizal/endophytic
fungal sequences (difference with the current data significant,
χ2 (0.05,1) = 64.9, p < 0.05), representing 93.27% of the rel-
ative number of OTUs (χ2 (0.05,1) = 16.4, p < 0.001). Thus,
the abundance of rhizoctonias, especially Ceratobasidiaceae,
is unusually high in pot cultures (Table 2). Unfortunately, the
composition of the root mycorrhizal community of the
E. helleborine populations of origin (Table 1) at the time of
sampling, which may predispose to this composition, remains
unknown.

The finding of few potentially ectomycorrhizal taxa is un-
expected in these pots where C-providing plant hosts are lack-
ing. Indeed, mixotrophic orchids are unlikely to give them
carbon, and instead even exploit them (see discussion below).
We do not believe that contamination explains our data, but
we consider three non-exclusive possibilities. Firstly,

ectomycorrhizal taxa may be surviving here, perhaps declin-
ing over time: indeed, they are more numerous in the plants
transplanted 1 year before (especially Pyronemataceae), but a
firm conclusion cannot be drawn from this single plant.
Secondly, ectomycorrhizal taxa may colonize the pot from
the soil, since some ectomycorrhizal trees exist at some dis-
tance in the surroundings: however, we did not see any direct
contact of pots with the soil, which was limited by (i) a layer of
sand and (ii) weekly moving of the pots. Yet, we cannot ex-
clude colonization by transient contacts reaching the orchid
roots. Thirdly, there is increasing evidence that several
ectomycorrhizal fungi, beyond the ascomycetous taxa men-
tioned above, also have endophytic abilities, i.e., colonize the
roots of non-ectomycorrhizal plants in a loose way (for indi-
rect evidence and a review on this, see Schneider-Maunoury
et al. 2018, 2019; Selosse et al. 2018). This especially applies
to the genus Tuber (Gryndler et al. 2014; Schneider-
Maunoury et al. 2018, 2019), although this is not demonstrat-
ed for Tuber anniae, the North American species recently
found to occur also in Europe (Wang et al. 2013) that was
detected here. This is also demonstrated for Sebacinaceae
(Selosse et al. 2009; Weiß et al. 2016), and remains pending
for other ectomycorrhizal basidiomycetes (including Inocybe:
Schneider-Maunoury et al. 2018). In this explanation,
ectomycorrhizal mycelia may survive in pots by colonizing
endophytically the roots of co-occurring weeds (Figs. 1 and 3)
and/or E. helleborine.

Isotopic and N signatures of autotrophy

Whatever the reason for their presence, these root fungi did
not provide detectable contribution to the biomass of the or-
chid since isotopic 13C and 15N abundances as well as total N
content were similar to those of surrounding autotrophic ref-
erences. Avery small flow, which would not entail significant
deviations in isotopic abundances, may of course occur, but
the N content, lower than that of autotrophic references, ar-
gues against this. This lack of apparent mycoheterotrophy is in
good agreement with the paucity of ectomycorrhizal fungi in
roots and the lack of nutritional resources for the few detected,
because links to surrounding ectomycorrhizal hosts are regu-
larly disturbed.

Mixotrophy in Neottiae (the orchid tribe encompassing
Epipactis) may thus display some plasticity. The ratio of aerial
biomass acquired by photosynthesis and mycoheterotrophy is
reported to vary with the light level in mixotrophs: increasing
light positively correlates with higher contribution of photo-
synthesis and, thus, a lower 13C content (Preiss et al. 2010;
Gonneau et al. 2014). Indeed, the site of pot cultivation is
rather sunny, as shown by a relatively high Ellenberg’s indi-
cator value for light (value of 7 for a maximum of 9), and there
is no competition for diffuse light with similarly high plants. A
similar situation is sometimes reported for E. helleborine in
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full light, in open fields quite far away from nearest
ectomycorrhizal trees (e.g., Rydlo 2008). We may have here
an extreme of the continuum frommycohetero- to autotrophy,
leading to undetectable mycoheterotrophy because of light
level and lack of fungal resources. The possibility of autotro-
phic survival in E. helleborine is also congruent with the re-
cent report that its plastid genome retains a full set of photo-
synthetic genes without any evidence of selective relaxation
(Lallemand et al. 2019b) and has intact photosynthetic abili-
ties. Moreover, the phylogenetically related mixotrophic
Limodorum abortivum displayed some photosynthetic com-
pensation (higher chlorophyll content and possibly higher
photosynthetic activity) after experimental eradication of its
fungal partners in situ (Bellino et al. 2014). Here, the lack of
fungal resources in pots may have entailed a similar
compensation.

In this framework, the observation of similar 13C abun-
dance in mycorrhizas and leaves is very relevant. As exempli-
fied in the related mixotrophic Cephalanthera damasonium
(Lallemand et al. 2019a), 13C-enrichment of mycorrhizal fun-
gi and derived plant starch normally induce higher 13C abun-
dance in mycorrhizas than in leaves. In pot-cultivated
E. helleborine, the two organs displayed similar abundances,
which can be explained if (i) the underground carbon is pho-
tosynthetic in origin and (ii) there is little biomass of
ectomycorrhizal fungi, either as hyphae or delivered to the
root cells. Alternatively, but less likely, we cannot exclude that
root fungi provide resources from a different nutrition, e.g.,
saprotrophic or endophytic, which would not entail isotopic
differences as compared with photosynthetic resources (see
below). Finally, this autotrophic signature for underground
parts is somewhat unexpected in the current model of nutrition
in mixotrophic Neottieae, where photosynthates are mostly
used for aboveground parts (Bellino et al. 2014; Gonneau
et al. 2014) and migrate poorly underground (Lallemand
et al. 2019a). Yet, a small flow to underground parts exists
in labeling experiments (Lallemand et al. 2019a) and we spec-
ulate that, in pots, the absence (or limited presence) of fungi
entails a stronger sink that directs more plant C to roots than
when nutrients flow from the mycorrhizal network. This may
also mean that autotrophic life in E. helleborine requires quite
high light levels, as in this study.

Autotrophic survival in E. helleborine in evolution
of mixotrophy

Pot-cultivated E. helleborine displays three features that con-
trast with those of mixotrophy (as described in Section 1): (i)
rhizoctonias, not ectomycorrhizal fungi, dominate in their
roots and since an endophytic, non-ectomycorrhizal niche
can be proposed for the few existing ones, there is likely no
mycorrhizal network with surrounding plants; (ii) neither 13C
nor 15N abundances offer significant evidence for gain from

the few available ectomycorrhizal fungi; (iii) their N content is
not higher than that of surrounding autotrophs. This supports
autotrophy in these specific conditions, for a species otherwise
reported as mixotrophic in its natural environments.

There is currently an open question on autotrophy in
rhizoctonia-associated orchids: their slight isotopic difference
with surrounding autotrophs (Selosse and Martos 2014) as
well as their 2H abundance (Gebauer et al. 2016; Schiebold
et al. 2018) suggests that they recover some fungal biomass.
Yet, the net flow, i.e., when also considering the potential
reverse flow from orchid to fungus, is unknown. One ex situ
experiment involving Ceratobasidiaceae reveals a net flow in
favor of the fungus (Cameron et al. 2008), and no
achlorophyllous variants of rhizoctonia-associated orchid sur-
vive in nature. Thus, the question of the net contribution of
rhizoctonias remains open (see discussion in Lallemand et al.
2017) and, to facilitate reading, we provisionally consider be-
low rhizoctonia-associated orchids as “autotrophic.” Pot-
cultivated E. helleborine displays all the features of such or-
chids; even the presence of a few ectomycorrhizal fungi in the
roots is reported from rhizoctonia-associated orchids (e.g.,
Jacquemyn et al. 2017). Our observations have consequences
for plant protection and for the evolution of mixotrophy.

In terms of plant protection, ex situ conservation and trans-
plantation is thus possible. The successful E. helleborine
transplantation by Delforge, (2016, 2017), which this author
explains by a reconnection to the mycorrhizal network, may
have been helped by autotrophic survival, at least transiently.
We show here that absence of mycorrhizal network may even
not impair survival, at least transiently. The failed transplan-
tations by Sadovsky (1965) may be due to two factors. Firstly,
not all plants, and even not all populations, may have a phys-
iological status allowing transplantation, as shown by the 60%
survival in our study (see Section 2): more on the physiology
and autotrophy level of the population of origin could help,
but this was overlooked in this study, which was initially de-
signed as a taxonomic study. Secondly, not all receiving sites
may be suitable, e.g., in terms of light (see above): sunnier
sites may be targeted to enhance photosynthesis, although a
negative trade-off is possible with desiccation in the absence
of an artificial cover, as in our garden. We are far from
predicting the factors allowing transplantation of mixotrophs,
and more data on transplantation of various mixotrophic spe-
cies (which often stay in the “gray literature”) are required to
help save threatened populations.

In terms of evolution, one should remember that similar
mycorrhizal, nitrogen, and isotopic features occur in closely
related Epipactis species, such as E. palustris (Lallemand
et al. 2018) and E. gigantea (Schiebold et al. 2017), which
associate with Ceratobasidiaceae (Bidartondo et al. 2004;
Jacquemyn et al. 2016, 2017). These Epipactis species belong
to rhizoctonia-associated, putatively autotrophic orchids, and
thus, an autotrophy-to-mixotrophy transition (or vice-versa)
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occurred in the evolution of the genus Epipactis. In the frame-
work of Neottieae evolution as a whole, it is still unclear in
which direction this transition occurred, and a reversion from
mixo- to autotrophy is also possible (Lallemand et al. 2019b,
c). Autotrophic survival in E. helleborine, combining the in-
tact plastid genomes of mixotrophic orchids (retaining all pho-
tosynthetic genes; (Feng et al. 2016; Lallemand et al. 2019b),
makes a reversion possible, even if the physiology of
mixotrophs is deeply rooted in their dependence on two car-
bon sources, as mentioned above (Gonneau et al. 2014;
Lallemand et al. 2019a).

Our findings add to the reported plasticity of mixotrophs:
they are known to survive the disappearance of chlorophyll
(achlorophyllous variants; e.g., Julou et al. 2005; Gonneau
et al. 2014) and to adapt to light level (Preiss et al. 2010;
Gonneau et al. 2014); they now turn out to display nearly
autotrophic survival in some environments. Such nutritional
plasticity is a major attribute for successional species, such as
Epipactis species, which colonize early-stage forests with var-
iable access to light and ectomycorrhizal networks. The my-
corrhizal interaction with rhizoctonias in autotrophic orchids
versus ectomycorrhizal fungi in mixotrophs recently turned
out to be a continuum rather than an alternative (Jacquemyn
et al. 2017, and references therein); autotrophic versus
mixotrophic nutrition also turns out to be a continuum, even
within a given species. A quite similar statement was made in
the mixotrophicPyrola japonica under different light environ-
ments (Matsuda et al. 2012), in the Ericaceae family where
mixotrophs are considered transplantable (Figura et al. 2019).
Thus, autotrophic survival of mixotrophs may be sought in
various phylogenetic backgrounds, even beyond orchids.

Conclusion

Some mixotrophic E. helleborine can be cultivated in pots,
where they behave as autotrophs. Many other mixotrophic
orchids may have a high trophic plasticity that was overlooked
till now. They display reduced mycorrhizal colonization by
the fungi that usually link them to surrounding trees, and from
which they indirectly extract part of their carbon resources in
forest (mixotrophy). Instead, they associate with rhizoctonia
taxa that normally colonize autotrophy orchids. This further
suggests that mixotrophy is ecologically, if not evolutionarily,
plastic.
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