J. D. Evans, C. J. Sumby, and C. J. Doonan, Post-synthetic metalation of metal-organic frameworks, Chem. Soc. Rev, vol.43, p.5933, 2014.

Z. Liang, C. Qu, D. Xia, R. Zou, and Q. Xu, Atomically Dispersed Metal Sites in MOF-based Materials for Electrocatalytic and Photocatalytic Energy Conversion, Angew. Chem. Int. Ed, vol.57, pp.9604-9633, 2018.

Y. Luo, L. Dong, J. Liu, S. Li, and Y. Lan, From Molecular Metal Complex to Metal-Organic Framework: the CO2 Reduction Photocatalysts with Clear and Tunable Structure, Coord. Chem. Rev, vol.390, pp.86-126, 2019.

C. Wang, Z. Xie, K. E. Dekrafft, and W. Lin, Doping Metal-Organic Frameworks for Water Oxidation, Carbon Dioxide Reduction, and Organic Photocatalysis, J. Am. Chem. Soc, vol.133, pp.13445-13454, 2011.

K. M. Choi, D. Kim, B. Rungtaweevoranit, C. A. Trickett, J. T. Barmanbek et al., Plasmon-Enhanced Photocatalytic CO2 Conversion within Metal?Organic Frameworks under Visible Light, J. Am. Chem. Soc, vol.139, pp.356-362, 2017.

T. Kajiwara, M. Fujii, M. Tsujimoto, K. Kobayashi, M. Higuchi et al., Photochemical Reduction of Low Concentrations of CO2 in a Porous Coordination Polymer with a Ruthenium(II)-CO Complex, Angew. Chem. Int. Ed, vol.55, pp.2697-2700, 2016.

W. Liao, J. Zhang, Z. Wang, S. Yin, M. Pan et al., Post-synthetic exchange (PSE) of UiO-67 frameworks with Ru/Rh half-sandwich units for visible-light-driven H2 evolution and CO2 reduction, J. Mater Chem. A, vol.6, pp.11337-1345, 2018.

M. B. Chambers, X. Wang, N. Elgrishi, C. H. Hendon, A. Walsh et al., Photocatalytic Carbon Dioxide Reduction with Rhodium-based Catalysts in Solution and Heterogenized within Metal-Organic Frameworks, ChemSusChem, vol.8, pp.603-608, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01149254

H. Fei, M. D. Sampson, Y. Lee, C. P. Kubiak, and S. M. Cohen, Photocatalytic CO2 Reduction to Formate Using a Mn(I) Molecular Catalyst in a Robust Metal?Organic Framework, Inorg. Chem, vol.54, pp.6821-6828, 2015.

Y. Lee, S. Kim, H. Fei, J. K. Kang, and S. M. Cohen, Photocatalytic CO2 reduction using visible light by metal-monocatecholato species in a metal-organic framework, Chem. Commun, vol.51, pp.16549-16552, 2015.

X. Wang, F. M. Wisser, J. Canivet, and M. Fontecave, Mellot-Draznieks, C. Immobilization of a Full Photosystem in the Large-Pore

, Metal-Organic Framework for CO2 reduction, ChemSusChem, vol.11, pp.3315-3322, 2018.

W. Salomon, C. Roch-marchal, P. Mialane, P. Rouschmeyer, C. Serre et al., Immobilization of polyoxometalates in the Zr-based metal organic framework UiO-67, Chem. Commun, vol.51, pp.2972-2975, 2015.

. Wang,

G. Yang, Recent Advances in Polyoxometalate-Catalyzed Reactions, Chem. Rev, vol.115, pp.4893-4962, 2015.

W. Salomon, G. Paille, M. Gomez-mingot, P. Mialane, J. Marrot et al., Effect of Cations on the Structure and Electrocatalytic Response of Polyoxometalate-Based Coordination Polymers, Cryst. Growth Des, vol.17, pp.1600-1609, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01494047

Y. Cao, Q. Chen, C. Shen, and L. He, Polyoxometalate-Based Catalysts for CO2 Conversion, Molecules, p.2069, 2019.

S. Xie, L. Dong, S. Li, Y. Lan, and Z. Su, Hetero-metallic active sites coupled with strongly reductive polyoxometalate for selective photocatalytic CO2-to-CH4 conversion in water, Chem. Sci, vol.10, p.185, 2019.

X. Lin, J. Liu, L. Zhang, L. Dong, Z. Xin et al., Hydrophobic Polyoxometalate-Based Metal-Organic Framework for Efficient CO2 Photoconversion, ACS Appl. Mater. Interfaces, p.25790, 2019.

Q. Huang, J. Liu, L. Feng, Q. Wang, W. Guan et al., Multielectron transportation of polyoxometalate-grafted metalloporphyrin coordination frameworks for selective CO2-to-CH4 photoconversion, Natl.Sci. Rev, vol.7, p.53, 2020.

J. Ettedgui, Y. Diskin-posner, L. Weiner, and R. Neumann, Photoreduction of Carbon Dioxide to Carbon Monoxide with Hydrogen Catalyzed by a Rhenium(I) Phenanthroline-Polyoxometalate Hybrid Complex, J Am. Chem. Soc, vol.133, pp.188-190, 2011.

C. Ci, J. J. Carbo, R. Neumann, C. De-graaf, and J. Poblet, Photoreduction Mechanism of CO2 to CO Catalyzed by a Rhenium(I)-Polyoxometalate Hybrid Compound, ACS Catal, vol.6, pp.6422-6428, 2016.

E. Haviv, L. J. Shimon, and R. Neumann, Photochemical Reduction of CO2 with Visible Light Using a Polyoxometalate as Photoreductant, Chem. Eur. J, vol.23, pp.92-95, 2017.

W. Guo, H. Lv, Z. Chen, K. P. Sullivan, S. M. Lauinger et al., Self-assembly of polyoxometalates, Pt nanoparticles and metal-organic frameworks into a hybrid material for synergistic hydrogen evolution, J. Mater. Chem. A, vol.4, pp.5952-5957, 2016.

S. Liu, Z. Zhang, X. Li, H. Jia, M. Ren et al., Ti-Substituted Keggin-Type Polyoxotungstate as Proton and Electron Reservoir Encaged into Metal-Organic Framework for Carbon Dioxide Photoreduction, Adv. Mat, vol.5, p.1801062, 2018.

S. Sartipi, M. J. Valero-romero, E. Rozhko, Z. Que, H. A. Stil et al., Dynamic Release-Immobilization of a Homogeneous Rhodium Hydroformylation Catalyst by a Polyoxometalate Metal-Organic Framework Composite ChemCatChem, vol.7, pp.3243-3247, 2015.

M. C. Lawrence, C. Schneider, and M. J. Katz, Determining the structural stability of UiO-67 with respect to time: a solid-state NMR investigation, Chem Commun, vol.52, pp.4971-4974, 2016.

M. Samaniyan, M. Mirzaei, R. Khajavian, H. Eshtiagh-hosseini, and . C. Streb, Heterogeneous Catalysis by Polyoxometalates in Metal?Organic Frameworks, ACS Catal, vol.9, pp.10174-10191, 2019.

D. Du, J. Qin, S. Li, Z. Su, and Y. Lan, Recent advances in porous polyoxometalate based metal-organic framework materials, Chem. Soc. Rev, p.4615, 2014.

C. T. Buru, P. Li, B. L. Mehdi, A. Dohnalkova, A. E. Platero-prats et al., Adsorption of a Catalytically Accessible Polyoxometalate in a Mesoporous Channel-type Metal?Organic Framework, Chem. Mater, vol.29, pp.5174-5181, 2017.

C. T. Buru, A. E. Platero-prats, M. G. Chica, M. G. Kanatzidis, K. W. Chapman et al., Thermally induced migration of a polyoxometalate within a metal-organic framework and its catalytic effects, J. Mater. Chem. A, vol.6, pp.7389-7394, 2018.

T. Egami and S. J. Billinge, Underneath the Bragg Peaks: Structural Analysis of Complex Materials, 2012.

K. W. Chapman, P. J. Chupas, and C. J. Kepert, Selective Recovery of Dynamic Guest Structure in a Nanoporous Prussian Blue through in Situ X-Ray Diffraction: A Differential Pair Distribution Function Analysis, J. Am. Chem. Soc, vol.127, pp.11232-11233, 2005.

A. E. Platero-prats, Z. Li, L. C. Gallington, A. W. Peters, J. T. Hupp et al., Addressing the Characterisation Challenge to Understand Catalysis in MOFs: The Case of Nanoscale Cu Supported in NU-1000, vol.201, pp.337-350, 2017.

D. F. Sava-gallis, K. W. Chapman, M. A. Rodriguez, J. A. Greathouse, M. V. Parkes et al., Selective O2 Sorption at Ambient Temperatures via Node Distortions in Sc-MIL-100, Chem. Mater, vol.28, pp.3327-3336, 2016.

S. Rangwani, A. J. Howarth, M. R. Destefano, C. D. Malliakas, A. E. Platero-prats et al., Adsorptive Removal of Sb(V) from Water Using a Mesoporous Zr-Based Metal-Organic Framework, Polyhedron, vol.151, pp.338-343, 2018.

D. F. Sava, M. A. Rodriguez, K. W. Chapman, P. J. Chupas, J. A. Greathouse et al., Capture of Volatile Iodine, a Gaseous Fission Product, by Zeolitic Imidazolate Framework-8, J. Am. Chem. Soc, vol.133, pp.12398-12401, 2011.

T. D. Bennett, T. K. Todorova, E. F. Baxter, D. G. Reid, C. Gervais et al., Mellot-Draznieks, C. Connecting Defects and Amorphization in UiO-66 and MIL-140 Metal-Organic Frameworks: A Combined Experimental and Computational Study, Phys. Chem. Chem. Phys, vol.18, pp.2192-2201, 2016.

S. Øien, D. Wragg, H. Reinsch, S. Svelle, S. Bordiga et al., Detailed Structure Analysis of Atomic Positions and Defects in Zirconium Metal-Organic Frameworks, Cryst. Growth Des, vol.14, p.5370, 2014.

A. Kremenovic, A. Spasojevic-de-bire, R. Dimitrijevic, P. Sciau, U. B. Mioc et al., Keggin's ion structural modification and expansion of dodecatungstophosphoric acid hexahydrate induced by temperature treatment: In situ X-ray powder diffraction and raman investigations, Solid State Ionics, vol.132, pp.39-53, 2000.

N. Elgrishi, M. B. Chambers, X. Wang, and M. Fontecave, Molecular Polypyridine-Based Metal Complexes as Catalysts for the reduction of CO2, Chem. Soc. Rev, vol.46, pp.761-796, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01446119

H. Takeda, C. Cometto, O. Ishitani, and M. Robert, Electrons,Photons, Protons and Earth-Abundant Metal Complexes for Molecular Catalysis of CO2 Reduction, ACS Catal, vol.7, pp.70-88, 2017.

T. K. Todorova, T. N. Huan, X. Wang, H. Agarwala, and M. Fontecave, Controlling Hydrogen Evolution during Photoreduction of CO2 to Formic Acid Using, Cp*)Cl] + Catalysts: A Structure-Activity Study Inorg. Chem, vol.58, pp.6893-6903, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02181707

X. Lopez, C. Bo, and J. M. Poblet, Electronic properties of polyoxometalates: electron and proton affinity of mixed-addenda Keggin and Wells-Dawson anions, J. Am. Chem. Soc, vol.124, pp.12574-12582, 2002.

L. Zhai and . Haolong-li, Polyoxometalate-Polymer Hybrid Materials as Proton Exchange Membranes for Fuel Cell Applications Molecules, vol.24, pp.3425-3445, 2019.

D. I. Kolokolov, M. S. Kazantsev, M. V. Luzgin, H. Jobic, and . A. Stepanov, Direct 2 H NMR Observation of the Proton Mobility of the Acidic Sites of Anhydrous 12-Tungstophosphoric Acid, ChemPhysChem, vol.14, pp.1783-1786, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00861145

Y. W. Liu, X. Yang, J. Miao, Q. Tang, S. M. Liu et al., Polyoxometalate-functionalized metal-organic frameworks with improved water retention and uniform proton-conducting pathways in three orthogonal directions, Chem. Commun, vol.50, pp.10023-10026, 2014.

X. Y. Lai, Y. W. Liu, G. C. Yang, S. M. Liu, Z. Shi et al., Controllable proton-conducting pathways via situating polyoxometalates in targeting pores of a metal-organic framework, J. Mater. Chem. A, vol.5, pp.9611-9617, 2017.

X. Meng, H. Wang, S. Song, and H. Zhang, Proton-conducting crystalline porous materials, Chem. Soc. Rev, vol.46, pp.464-480, 2017.

H. P. Ma, B. L. Liu, B. Li, L. M. Zhang, Y. G. Li et al., Cationic Covalent Organic Frameworks: a Simple Platform of Anionic Exchange for Porosity Tuning and Proton Conduction, J. Am. Chem. Soc, vol.138, pp.5897-5903, 2016.

G. Paille, M. Gomez-mingot, C. Roch-marchal, M. Haouas, Y. Benseghir et al., Mellot-Draznieks, C. Thin Films of Noble Metal-Free POM@MOF for Photocatalytic Water Oxidation, ACS Appl. Mater. Interfaces, pp.47837-47845, 2019.

P. Souchay, Ions Minéraux Condensés, 1969.

J. Maple, U. Dinur, and A. T. Hagler, Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces Proc, Nat. Acad. Sci. U.S.A, vol.85, p.5350, 1988.

G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci, vol.6, pp.15-50, 1996.

G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, vol.54, pp.11169-11186, 1996.

P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B, vol.50, pp.17953-17979, 1994.

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, vol.59, pp.1758-1775, 1999.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.

S. Grimme, S. Antony, J. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys, p.154104, 2010.

P. Juhás, T. Davis, C. L. Farrow, and S. J. Billinge, PDFgetX3: A Rapid and Highly Automatable Program for Processing Powder Diffraction Data into Total Scattering Pair Distribution Functions, J. Appl. Crystallogr, vol.46, pp.560-566, 2013.

R. B. Neder and T. Proffen, Diffuse Scattering and Defect Structure Simulations: A Cook Book Using the Program DISCUS; International Union of Crystallography Texts on Crystallography, 2008.

T. Proffen and R. B. Neder, DISCUS, a Program for Diffuse Scattering and Defect Structure Simulations -Update, J. Appl. Crystallogr, vol.32, pp.838-839, 1999.

C. Farrow, P. Juhas, J. W. Liu, D. Bryndin, E. Bo?in et al., Computer Programs for Studying Nanostructure in Crystals, J. Phys. Condens. Matter, vol.19, p.335219, 2007.