P. Huber, Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media, Journal of Physics-Condensed Matter, vol.27, issue.10, p.103102, 2015.

F. Tian, J. Lyu, J. Shi, F. Tan, and M. Yang, A polymeric microfluidic device integrated with nanoporous alumina membranes for simultaneous detection of multiple foodborne pathogens, Sensors and Actuators B: Chemical, vol.225, pp.312-318, 2016.

C. T. Sousa, D. C. Leitao, M. P. Proenca, J. Ventura, A. M. Pereira et al., Nanoporous alumina as templates for multifunctional applications, Applied Physics Reviews, vol.1, issue.3, p.31102, 2014.

H. Masuda and K. Fukuda, Ordered metal nanohole arrays made by a twostep replication of honeycomb structures of anodic alumina, Science, vol.268, pp.1466-1468, 1995.

W. Lee, R. Ji, U. Gosele, and K. Nielsch, Fast fabrication of long-range ordered porous alumina membranes by hard anodization, Nat Mater, vol.5, issue.9, pp.741-747, 2006.

W. Lee and S. J. Park, Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures, Chemical Reviews, vol.114, issue.15, pp.7487-7556, 2014.

S. Ono, M. Saito, and H. Asoh, Self-ordering of anodic porous alumina formed in organic acid electrolytes, Electrochimica Acta, vol.51, issue.5, pp.827-833, 2005.

O. Nishinaga, T. Kikuchi, S. Natsui, and R. O. Suzuki, Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing, Scientific Reports, vol.3, p.2748, 2013.

J. Martin, C. V. Manzano, O. Caballero-calero, and M. Martin-gonzalez, High-aspect-ratio and highly ordered 15-nm porous alumina templates, Acs Applied Materials and Interfaces, vol.5, issue.1, pp.72-79, 2013.

C. Cheng, K. Ng, and A. Ngan, Quantitative characterization of acid concentration and temperature dependent self-ordering conditions of anodic porous alumina, AIP Advances, vol.1, issue.4, p.42113, 2011.

W. Chen, J. Wu, and X. Xia, Porous anodic alumina with continuously manipulated pore/cell size, ACS Nano, vol.2, issue.5, pp.959-965, 2008.

W. J. Stepniowski, D. Forbot, M. Norek, M. Michalska-domanska, and A. Król, The impact of viscosity of the electrolyte on the formation of nanoporous anodic aluminum oxide, Electrochimica Acta, vol.133, pp.57-64, 2014.

X. Qin, J. Zhang, X. Meng, L. Wang, C. Deng et al., Effect of ethanol on the fabrication of porous anodic alumina in sulfuric acid, Surface and Coatings Technology, vol.254, pp.398-401, 2014.

M. Salerno, N. Patra, R. Losso, and R. Cingolani, Increased growth rate of anodic porous alumina by use of ionic liquid as electrolyte additive, Materials Letters, vol.63, issue.21, pp.1826-1829, 2009.

G. Dorsey, The characterization of anodic aluminas iii. barrier layer composition and structure, Journal of The Electrochemical Society, vol.113, issue.3, pp.284-286, 1966.

P. H. Lu, H. Strutzberg, S. Wenham, and A. Lennon, Hydrogen incorporation during aluminium anodisation on silicon wafer surfaces, Electrochimica Acta, vol.133, pp.153-160, 2014.

T. P. Hoar and N. F. Mott, A mechanism for the formation of porous anodic oxide films on aluminium, Journal of Physics and Chemistry of Solids, vol.9, issue.2, pp.97-99, 1959.

I. Farnan, R. Dupree, A. J. Forty, Y. S. Jeong, G. E. Thompson et al., Structural information about amorphous anodic alumina from 27al mas nmr, Philosophical Magazine Letters, vol.59, issue.4, pp.189-195, 1989.

N. Jouault, A. Chennevière, A. Christoulaki, E. Dubois, and L. Porcar, Polyelectrolytes chain conformation under confinement: electrostatic effects studied by zero average contrast method, 2016.

A. Christoulaki, A. Chenneviere, I. Grillo, L. Porcar, E. Dubois et al., A novel methodology to study nanoporous alumina by smallangle neutron scattering, Journal of Applied Crystallography, vol.52, issue.4, pp.745-754, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02277533

S. Förster, A. Timmann, M. Konrad, C. Schellbach, A. Meyer et al.,

P. Funari, R. Mulvaney, and . Knott, Scattering curves of ordered mesoscopic materials, The Journal of Physical Chemistry B, vol.109, issue.4, pp.1347-1360, 2005.

S. J. Hurst, E. K. Payne, L. Qin, and C. A. Mirkin, Multisegmented onedimensional nanorods prepared by hard-template synthetic methods, Angewandte Chemie International Edition, vol.45, issue.17, pp.2672-2692, 2006.

S. Chu, K. Wada, S. Inoue, M. Isogai, and A. Yasumori, Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high?field anodization, Advanced Materials, vol.17, issue.17, pp.2115-2119, 2005.

I. Mínguez-bacho, S. Rodríguez-lópez, A. Climent, D. Fichou, M. Vázquez et al., Influence of sulfur incorporation into nanoporous anodic alumina on the volume expansion and self-ordering degree, The Journal of Physical Chemistry C, vol.119, issue.49, pp.27392-27400, 2015.

J. E. Houser and K. R. Hebert, The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films, Nat Mater, vol.8, issue.5, pp.415-420, 2009.

W. P. Jencks and K. Salvesen, Equilibrium deuterium isotope effects on the ionization of thiol acids, Journal of the American Chemical Society, vol.93, issue.18, pp.4433-4436, 1971.

Z. Su, M. Bühl, and W. Zhou, Dissociation of water during formation of anodic aluminum oxide, Journal of the American Chemical Society, vol.131, issue.24, pp.8697-8702, 2009.

J. J. Katz, Chemical and biological studies with deuterium, American Scientist, vol.48, issue.4, pp.544-580, 1960.

S. Cai, T. Bai, H. Chen, W. Fang, Z. Xu et al., Heavy water enables high-voltage aqueous electrochemistry via the deuterium isotope effect, The Journal of Physical Chemistry Letters, vol.11, issue.1, pp.303-310, 2020.

M. Mata-zamora and J. Saniger, Thermal evolution of porous anodic aluminas: a comparative study, Revista mexicana de física, vol.51, issue.5, 2005.

J. O'sullivan, J. Hockey, and G. Wood, Infra-red spectroscopic study of anodic alumina films, Transactions of the Faraday Society, vol.65, pp.535-541, 1969.

X. Carrier, E. Marceau, J. Lambert, and M. Che, Transformations of ?alumina in aqueous suspensions: 1. alumina chemical weathering studied as a function of ph, Journal of Colloid and Interface Science, vol.308, issue.2, pp.429-437, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00133775