
HAL Id: hal-02879023
https://hal.sorbonne-universite.fr/hal-02879023v1

Submitted on 23 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Reconfiguration of Maximal Independent
Sets

Keren Censor-Hillel, Mikaël Rabie

To cite this version:
Keren Censor-Hillel, Mikaël Rabie. Distributed Reconfiguration of Maximal Independent Sets. Jour-
nal of Computer and System Sciences, 2020, 112, pp.85-96. �10.1016/j.jcss.2020.03.003�. �hal-02879023�

https://hal.sorbonne-universite.fr/hal-02879023v1
https://hal.archives-ouvertes.fr

Distributed Reconfiguration of Maximal Independent Sets

Keren Censor-Hillela, Mikaël Rabieb

aDepartment of Computer Science, Technion, Israel
bAalto University, Finland & LIP6, Sorbonne Université, France

Abstract

We investigate a distributed maximal independent set reconfiguration problem, in which there are two
MIS for which every node is given its membership status, and the nodes need to communicate with their
neighbors to find a reconfiguration schedule from the first MIS to the second. We forbid two neighbors to
change their membership status at the same step. We provide efficient solutions when the intermediate
sets are only required to be independent and 4-dominating, which is almost always possible. Consequently,
our goal is to pin down the tradeoff between the possible length of the schedule and the number of
communication rounds. We prove that a constant length schedule can be found in O(MIS + R32) rounds.
For bounded degree graphs, this is O(log∗ n) rounds and we show that it is necessary. On the other
extreme, we show that with a constant number of rounds we can find a linear length schedule.

1. Introduction

Consider a distributed setting in which each node of a network receives an input from a higher-level
application which tells it whether it is selected or not, such that the set of selected nodes is a maximal
independent set (MIS), which we will denote by α. The reason that the application requires an MIS
is because it needs the set of selected nodes to dominate all nodes for the sake of, say, monitoring
the network, but without having violations of two neighbors being in the set, because they may cause
conflicting actions. Now, because of changes in the network traffic, the energy consumption, or any one
of various conditions that may change, the application needs to change the selected set of nodes. Once a
new input MIS, denoted by β, is given to the nodes by the application, the nodes need to reconfigure their
states to that set while never sacrificing the safety condition of independence. In fact, for compatibility
reasons, neighboring nodes cannot change their membership in the set at the same time, so a sequence of
changes is needed for converging into the new MIS. We call such a sequence a reconfiguration schedule.

The length of the schedule is clearly a measure that is required to be minimized. Hence, an extreme
solution would be to have all nodes declare themselves as unselected, and then the new set of nodes
declare that they are selected. However, this very fast approach suffers from loosing the domination
property throughout the reconfiguration schedule. Thus, the structure of the network must be taken into
account, but since the topology is unknown, finding a schedule that maintains a good covering at all
times necessitates that the nodes communicate. This brings another measure of complexity into question,
which is the number of communication rounds that are needed in order to find a short schedule. Our
goal in this work is to study the tradeoff between the possible length of the schedule and the number of
communication rounds needed for finding it.

Unfortunately, as we show, it is not always possible to find schedules where each set is an MIS. This
impossibility holds even if we relax the condition of domination and require only independent 3-dominating
sets. Even when 3-domination is possible, it may be extremely inefficient, as computing a reconfiguration
schedule requires full knowledge of the graph in some instances (Section 6).

Theorem 1. Requiring 3-domination for intermediate steps is costly:

1. There exists a class of inputs G = (V,E) with two MIS α and β such that there is no reconfiguration
schedule with 3-dominating intermediate steps.

2. There exists a class of inputs G = (V,E) with two MIS α and β such that any reconfiguration schedule
is of length Ω(n) and needs Θ(n) rounds to be found, if intermediate steps must be 3-dominating.

Preprint submitted to Elsevier March 27, 2020

However, we prove that independence and 4-domination can indeed be obtained. Our main result is
the following (Section 3), where the exact definition of a ruling set appears shortly.

Theorem 2. (informal) For any graph G = (V,E) of diameter greater than 3 and any input of two
MIS α, β, there exists a reconfiguration schedule of constant length 28, with independent 4-dominating
intermediate steps. Moreover, such a schedule can be found in O(MIS + R32) rounds, where MIS is the
complexity of finding an MIS on a worst-case graph and R32 is the complexity of finding a (3, 2)-ruling
set on a worst-case graph.

Obtaining the above theorem turns out to be an involved task. Our key ingredients are the following.
We prove that graphs with a not-too-small diameter always admit a schedule of reconfiguration steps
from a given maximal independent set to another. Moreover, full knowledge of the topology of the graph
is not necessary in order to be able to locally add an element to the set after having removed its neighbors
(to avoid dependence). Rather, only local manipulations are needed for doing so.

The currently known complexities that give O(MIS + R32) are discussed in the related work part.
Here, we draw attention to the fact that an immediate corollary of Theorem 2 is that for graphs of
bounded degree we can compute the constant length schedule within O(log∗ n) rounds. Further, we
show that this is a lower bound by reducing the problem of finding an MIS on a path to obtaining
a constant-length schedule for MIS reconfiguration. The following theorem actually holds even if one
requires only d-domination, for some constant d ≥ 4 (Section 6).

Theorem 3. For any fixed k ≥ 1, there exists a class of k-regular inputs G = (V,E) with two MIS α
and β such that any reconfiguration schedule of constant length with 4-domination needs Θ(log∗ n) rounds
to be found.

If one wants to optimize the communication cost of finding a schedule rather than its length, we show
that a (rather lengthy) schedule can be obtained within O(1) rounds (Section 4).

Theorem 4. (informal) For any graph G = (V,E) and any input of maximal independent sets α, β to
the MIS-reconfiguration problem, there exists a reconfiguration schedule of length Θ(f(n)), where f(n) is
the largest identifier among the nodes in the graph, which can be found in O(1) rounds.

The construction generalizes itself on graphs with a distance-k coloring of c colors, with k big enough.
It is possible, from this coloring, to compute a schedule of length O(c) after a constant number of
communication rounds. Hence, we can get other trade-off between the length of the schedule and
the number of rounds of communication. Let ∆ be the maximal degree of the graph. A distance-k
O(∆2k) coloring can be found in O(log∗ n) rounds [1], and a distance-k O(∆k) coloring can be found in

O(log∗ n+
√

∆k) rounds [2]. Hence, with the same respective communication complexities, we can find
schedules of lengths O(∆2k) and O(∆k).

Finally, as can be inferred from Theorem 2, 4-domination suffices for any graph with diameter greater
than 3. For graphs with small diameter, we give an exact characterization of the conditions that allow the
existence of a reconfiguration schedule (Section 5). This result implies that our algorithm from Theorem 2,
combined with a trivial algorithm that collects the entire graph when the diameter is a small constant,
produces an efficient reconfiguration schedule in all cases for which it exists.

1.1. Related work

Distributed Reconfiguration. Questions of distributed reconfiguration were actually not studied
before 2018. Then, Bonamy et al. [3] considered distributed reconfiguration of colorings, with the goal
of finding which length of schedule can be computed within a given number of communication rounds.
The problem being PSPACE complete in the general case, several subcases were explored. Since finding
looser restrictions for the transitions is important for making the problem local instead of having to solve
a global PSPACE hard problem, the addition of extra colors in the intermediate colorings was allowed.
This aided either having a solution, or finding one quickly.

Distributed Constructions. Our constructions sometimes make use of two fundamental subrou-
tines, which find an MIS or a (3, 2)-ruling set in a graph. An (x, y)-ruling set is a set S ⊆ V in which
every two nodes are at distance at least x, and every node that is not in S is within distance at most y

2

from S. Thus, an MIS is a (2, 1)-ruling set. Finding an MIS is one of the most fundamental problems in
distributed computing. The celebrated randomized O(log n)-round algorithms of Luby [4] and Alon et

al. [5] have been recently improved by Ghaffari to O(log ∆+2O(
√
log logn)) rounds, where ∆ is the maximal

degree in the network [6]. Deterministic solutions are the classic network-decomposition based algorithm

of Panconesi and Srinivasan that runs in 2O(
√
logn) rounds [7], and the O(∆ + log∗ n)-round algorithm of

Barenboim et al. [8]. The classic lower bound of Linial [9] shows that Ω(log∗ n) rounds are necessary,
Kuhn et al. gives a higher bound of Ω(log ∆/ log log ∆,

√
log n/ log log n) [10]. The latest results of

Balliu et al. [11] give the new best known lower bounds to find a MIS: There is no deterministic algorithm
in o(∆ + logn

log logn) nor randomized algorithm in o(∆ + log logn
log log logn). The Figure 1 in [11] summarizes all

the results on MIS. A (3, 2)-ruling set can be computed by computing an MIS over G2, and more general
ruling sets have been studied in [12, 13, 14, 15, 16].

Centralized Reconfiguration of Maximal Independent Sets. Reconfigurations problems on
graphs have been widely studied in the centralized setting during the last decade. An excellent survey on
reconfiguration problems can be found in [17]. In the centralized setting, the transition rules are different,
requiring that any intermediate set must be at least of a certain size. While having their own motivation
in that setting, these rules are not the ones that are needed in the distributed setting, as they do not give
covering guarantees (moreover, such properties would be costly to obtain in a distributed setting, due to
their global nature).

In more detail, three kinds of transitions have been studied for the independent set reconfiguration
problem. Token Addition and Removal [18], or TAR(k): at each transition, one vertex is removed from
or added to the current independent set, as long as there are at least k nodes in the independent set.
Token Jumping [19]: at each transition, one vertex is removed from the independent set and another one
is added in the set. Token Sliding [20]: at each transition, an edge containing a vertex of the independent
set is chosen. This vertex is removed from the set and its neighbor on the other side of that edge is added
to the set. The two first versions are actually equivalent when k corresponds to the size of the independent
sets minus 1. Reconfiguration problems are in PSPACE, and independent set reconfiguration problems
are in general PSPACE complete [20]. Studies over subclasses of graphs exist, and some polynomial
algorithm or hardness proofs are given. For example, planar graphs [20], perfect graphs [19], trees [21]
and bipartite graphs [22].

2. Preliminaries

We work in the classic LOCAL model of computation, in which n nodes in a synchronous network
exchange messages with their neighbors in each round of computation.

Let G = (V,E,U) denote a graph with an assigned subset U ⊆ V . An input to the MIS-reconfiguration
problem is a pair Ginput = (V,E, α), Goutput = (V,E, β), where α and β are the initial and final maximal
independent sets, respectively. We refer to a node v ∈ α as an α-node, and to a node v ∈ β as a β-node.
Notice that a node may be both an α-node and a β-node. We refer to node v ∈ V \ (α ∪ β) as an ε-node.
Throughout the proofs, we say that a node v is covered or 4-dominated by a node u if d(v, u) ≤ 4.

For a vertex v ∈ V , we denote by N(v) the set of neighbors of v (i.e., N(v) = {u ∈ V : (u, v) ∈ E}),
and given a set U ⊆ V we define NU (v) = U ∩N(v) for the subset of neighbors of v that are in U , and
we call this set the U -neighbors of v. For a subset U ⊆ Y ⊆ V and a node v ∈ Y , we denote by dY (v, U)
the distance of v from U in the subgraph induced by Y .

Definition 1 (Reconfiguration Schedules). For a given property P of G = (V,E,U), an (α, β, P)-
reconfiguration schedule (or simply a schedule) S of length ` is a sequence of subsets of V , S = (S0, . . . , S`),
such that the following hold:

1. S0 = α and S` = β,

2. for every 0 < i < `, the graph (V,E, Si) satisfies P , and

3. for every 0 < i ≤ `, Si ⊕ Si−1 is an independent set of (V,E), where ⊕ is the symmetric set
difference operator.

3

3. An MIS reconfiguration schedule of constant length

Our main theorem is the following.

Theorem 2. (formal) Let P be the property of (V,E,U) that says that U is a (2,4)-ruling set. For
any graph G = (V,E) of diameter greater than 3 and any input Ginput = (V,E, α), Goutput = (V,E, β) to
the MIS-reconfiguration problem, there exists an (α, β, P)-reconfiguration schedule of constant length 28.
Moreover, such a schedule can be found in O(MIS+ R32) rounds, where MIS is the complexity of finding an
MIS on a worst-case graph and R32 is the complexity of finding a (3, 2)-ruling set on a worst-case graph.

In particular, Theorem 2 immediately implies a highly efficient solution for bounded degree graphs.

Corollary 1. The constant length schedule of Theorem 2 can be found in O(log∗ n) rounds in graphs of
bounded degree.

We now describe the outline of the algorithm, as follows. Denote by W the set of connected components
of α ∪ β. Our main approach is to reconfigure the independent sets according to the components in W .
To this end, we first categorize each component in W according to its diameter and whether it is isolated
or not: We say that a component Vi ∈W is isolated if for every ε-node u in its neighborhood, Nα(u) and
Nβ(u) are contained in Vi.

Notice that within a constant number of rounds, all α and β-nodes can know whether they are in a
component of diameter 0, 1, 2, or at least 3. Moreover, if their diameter is smaller than 3, they can know
whether the component is isolated or not.

To avoid excessive notation, we will sometimes say that we update the component Vi in steps {j, j+ 1}.
This means that we remove α∩ Vi from the independent set in step j and we add β ∩ Vi to the set in step
j + 1. Formally, this means that Sj = Sj−1 \ (α ∩ Vi) and Sj+1 = Sj ∪ (β ∩ Vi). Since we will sometimes
update multiple components concurrently, we will have Sj = Sj−1 \ (α ∩ Zj) and Sj+1 = Sj ∪ (β ∩ Zj),
where Zj =

⋃
i∈Ij Vi, with Ij = {i : Vi is being updated in steps {j, j + 1}}.

The high-level description of our algorithm is as follows. First, for components in W of diameter 0,
we do not need to do anything, as such components are comprised only of nodes in α ∩ β. These nodes
remain in the independent set Si for the entire schedule, and we omit these components and all of their
ε-neighbors from the remaining discussion. Our algorithm then handles non-isolated components and
components of diameter ≥ 3, and finally handles the isolated components of diameter ≤ 2.

We begin by claiming that with an overhead of 2 rounds, we may assume that α and β are disjoint.
Indeed, if we never remove nodes in α∩ β from the independent set, we no longer need to take care about
α ∩ β nor its neighborhood.

Lemma 1. Let P be the property of (V,E,U) that says that U is a (2,4)-ruling set, and let G = (V,E, α)
and G = (V,E, β) be an input to the MIS-reconfiguration problem. Let Vα,β = α ∩ β and denote
V ′ = V \ (Vα,β ∪ N(Vα,β)), α′ = α \ Vα,β and β′ = β \ Vα,β. Let G′ = G[V ′]. If there exists an
(α′, β′, P)-reconfiguration schedule S′ of length ` for G′, then there exists an (α, β, P)-reconfiguration
schedule S of length ` for G.

Moreover, any distributed algorithm for finding S′ in T ′ rounds implies a distributed algorithm finding
S in T = T ′ + 2 rounds.

Proof. Let S′ = S′0, . . . , S
′
` be an (α′, β′, P)-reconfiguration schedule for G′. We define Si = S′i ∪ Vα,β for

all 0 ≤ i ≤ `, and show that S = S0, . . . , S` is an (α, β, P)-reconfiguration schedule for G. Condition (1)
of Definition 1 holds since S0 = S′0 ∪ Vα,β = α′ ∪ Vα,β = α and S` = S′` ∪ Vα,β = β′ ∪ Vα,β = β.

For condition (2), fix an index 0 ≤ i ≤ `. Notice that S′i is a (2, 4)-ruling set and hence it is independent.
Since Si \ S′i = Vα,β , and Vα,β is independent, we have that Si is also independent because no node that
is a neighbor of Vα,β is in V ′ and in particular no such node is in S′i. In addition, every node in V ′ is
4-dominated in S′i, and every node in V \ V ′ is dominated by Vα,β , which implies that Si is 4-dominating
and hence it is a (2, 4)-ruling set.

Finally, for each 0 ≤ i ≤ `, we have that Si ⊕ Si−1 = S′i ⊕ S′i−1 and hence it is an independent set of
(V,E).

To obtain S from S′ with an overhead of 2 rounds, a distributed algorithm can have each node in Vα,β
indicate this to its neighbors, and then each node in N(Vα,β) can indicate this to its neighbors. Then,
the algorithm obtains S′ over G′ and deduces S.

4

3.1. Components of diameter ≥ 3

We continue with the following lemma, which is useful for handling components in W whose diameter
is not too small. Roughly speaking, the way we handle components of sufficient diameter (at least 3) is
by finding a set of α-nodes that are not too close to each other to ensure that β-nodes can be added not
too far from them before we remove them from the independent set. This way, we can reconfigure the
rest of the component, and then this set of α-nodes and their neighbors. We present the following lemma
before the rest of the algorithm because we will need to use it, but notice that it is not the case that we
begin the algorithm by reconfiguring components of diameter ≥ 3.

Lemma 2. Let P be the property of (V,E,U) that says that U is a (2,4)-ruling set, and let G = (V,E, α)
and G = (V,E, β) be an input to the MIS-reconfiguration problem such that α ∩ β = ∅, the set Y = α ∪ β
is a single connected component of diameter at least 3, and each ε-node is connected to an α-node and to
a β-node. Then, there exists an (α, β, P)-reconfiguration schedule of length 8. Moreover, such a schedule
can be found in O(R32) rounds.

Proof. First, assume that the diameter of Y = α∪ β is either 3 or 4. Consider a shortest path of length 3
in Y , denoted by (v1, v2, v3, v4). Either v1 or v4 is in α, and is within distance 4 from all other nodes in
the component. We denote this node by v, and define S1 = {v}. We have that it 4-dominates the entire
component. In addition, it 4-dominates all ε-nodes, by the assumption of the lemma that all such nodes
are neighbors of β-nodes, because v actually 3-dominates all β-nodes in the component. We then denote
R = {u ∈ β | u 6∈ N(v)} and define S2 = {v} ∪R, and S3 = R, and finally S4 = R ∪N(v). In particular,
notice that, without loss of generality, if v = v1, then R contains at least the node v4, which 4-dominates
the entire component. Hence, it is easy to verify that this results in a valid (α, β, P)-reconfiguration
schedule, as we have v1 or v4 in each component, that 4-dominates the component.

For a diameter of Y that is at least 5, the high-level idea of the construction is as follows. Consider a
(3, 2)-ruling set R over the nodes in α, where we imagine an edge between two nodes in α if they are at
distance two in the subgraph induced by Y . We reconfigure all β-nodes that are at distance 5 from R in
G by removing their α-neighbors first, then by adding them. Then, we do the same for β-nodes that are
at distance 3 from R, and finally we repeat this one last time for the β-nodes in the direct neighborhood
of R. The choice of a (3, 2)-ruling set ensures that all α-nodes in R have a β-node at distance 3 that will
be reconfigured in the 4th step. However, while we trust β-nodes at distance 3 from R to cover α-nodes
at distance 2 from R while R itself is being reconfigured, we must be careful when handling α-nodes at
distance 2 from R that do not have a neighbor at distance 3. We overcome this caveat by taking care of
these nodes separately.

Formally, we define a virtual multigraph G̃ = (Ṽ , Ẽ) as follows. The set of virtual nodes Ṽ consists of
all α-nodes. If v and u in Ṽ have a common β-neighbor, we add an edge u, v to Ẽ. Let R be a (3, 2)-ruling
set in G̃. It is easy to see that in G, the set of nodes R is a (6, 5)-ruling set of Y . We denote R by R0 and
we define Ri for 3 ≤ i ≤ 5 as Ri = {v ∈ Y | the distance of v from R in the subgraph induced by Y is i}.
Then we define R1 = {v ∈ Y | dY (v,R) = 1 and dY (v,R3) = 2} ∪ {v ∈ Y | NY (v) ⊆ R}, which captures
all β-neighbors of R that either do not have other α-neighbors, or have other α-neighbors which in turn
have β-neighbors that are farther from R. We separate those from the set R−1 = NY (R0) \ R1. We
complete the partition by defining R2 = NY (R1) \R0 and R−2 = NY (R−1) \R0. Note that for even i,
Ri contains only α-nodes, and for odd i, Ri contains only β-nodes. We have that, for every −2 ≤ i ≤ 5,
NY (Ri) ⊆ Ri−1 ∪Ri+1 (with R−3 = R6 = ∅). By construction of R, we have that each node in R has a
node at distance 3 in R3, hence it has a node at distance 2 in R2 and a node at distance 1 in R1.

We define S0 = α and for i = 0, 1, 2, 3, we define S2i+1 = S2i \ R4−2i, S2(i+1) = S2i+1 ∪ R5−2i. We
claim that S0, . . . , S8 is an (α, β, P)-reconfiguration schedule.

First, S0 = α by definition, and because every β-node is within an odd distance of at most 5 from
R and every α-node is within an even distance of at most 4 from R, we have that S8 = β. This gives
condition (1) of Definition 1.

For condition (2), it is easy to see that Si ⊕ Si−1 is an independent set of (V,E) for every 1 ≤ i ≤ 8.
For an odd i this holds because to obtain Si we only remove α-nodes from Si−1, and no two such nodes
can be neighbors. For an even i this holds because to obtain Si we only add β-nodes to Si−1, and no two
such nodes can be neighbors.

It remains to show condition (3) of Definition 1. To show that Si is independent for i = 2, 4, 6, notice
that β-nodes in Rj (for j = −1, 1, 3, 5) are only added to the sequence after all α-nodes in Rk for k ≥ j−1

5

have been removed. By definition, S0 is also independent. Hence, for i = 1, 3, 5, 7, Si is independent
because it is a subset of Si−1.

Next, we need to show that Si is 4-dominating for every 1 ≤ i ≤ 7. Our focus will be for i = 1, 3, 5, 7,
and for i = 2, 4, 6 it then follows because Si contains Si−1. We first show it on Y , and will prove it for
ε-nodes afterward. For i = 1 this holds because all nodes in Rj for j ≤ 3 are in or have neighbors in
R−2 ∪R0 ∪R2. All nodes in Rj for j = 4, 5 are within distance 3 from R2. Similarly, S3 is 4-dominating
because nodes in Rj for j ≤ 4 are covered by R0, nodes in R5 are in the current independent set. For S5,
recall that for any node in R, there is a node at distance 3 from it in R3, that node being in the current
independent set since S4. Hence, R3 covers Rj for −1 ≤ j ≤ 5. R−2 is still included in S5. Finally, for
S7, R3 still covers Rj for −1 ≤ j ≤ 5. For each node in R−2, there is a node at distance 3 from it in R1

that has been added in S6 that covers it.
Now, let u be an ε-node that has a node a ∈ α and b ∈ β in its neighborhood. We show that a or b

are always 3-dominated throughout the sequence. In a step where b has no α-neighbor in the independent
set, it must be a step right before b gets added to the independent set. If b is in R5 or in R3 then
when this happens, it is 3-dominated by an α-node in R2 or R, respectively, and this node is still in the
independent set. If b ∈ R−1 then it is 2-dominated by nodes in R−2 and then R1 (with an overlap in S6,
the construction ensures that such node exist at distance at most 3 from b). Finally, If b ∈ R1 then either
there is a β-node in R3 that 2-dominates it, and this node is already in the independent set, or b is in
{v ∈ Y | NY (v) ⊆ R}. Only in the latter case, we must resort to the α-neighbor of u and check that it is
3-dominated by S5, as we removed R from S5 and b is added in S6.

Let i be such that a ∈ Ri. We need to make sure that a is 3-dominated at the step in which we
reconfigure R1. At this step, all of the β-nodes in R3, R5 are in the independent set, and hence their
α-neighbors in R2, R4 are covered by nodes in distance 1, and nodes in R0 are covered by nodes in distance
3. For α-nodes in R−2 they are still in the independent set at this step, and hence are 3-dominated.

This completes the correctness proof. For the round complexity, notice that simulating the (3, 2)-ruling
set over G̃ can be done in G with a constant overhead.

3.2. Non-isolated components

We first observe that components of diameter ≤ 2 are such that there is a complete bipartite graph
between their α-nodes and β-nodes. Let u be an ε-node that is a neighbor of several components. Let
Wu be the set of all components that are its neighbors, so that in particular, Vi, Vj ∈Wu. For each pair
of distinct components Vi, Vj ∈Wu, if there is an α node in Nα(u)∩ Vi and a β node in Nβ(u)∩ Vj , then
we say that Vj is (u, α)-covered and that Vi is (u, β)-covered (note that this definition allows a single
component to satisfy both conditions). As u is an ε-node, there must exist a component Vu,α ∈Wu that
is (u, β)-covered and a component Vu,β ∈Wu that is (u, α)-covered.

We say that a component Vi ∈ W is α-covered (β-covered) if there is an ε-node u for which Vi is
(u, α)-covered ((u, β)-covered). A component that is both α-covered and β-covered is αβ-covered.

The key insight is that a (u, α)-covered component of diameter ≤ 2 is covered (dominated at distance
4) by some α-node of the component Vu,β (and similarly with the β-node of Vu,α). Moreover, any ε-node
that is connected to an α-node (a β-node) in that component is covered by Vu,β (or Vu,α). This implies
that an ε-node that is connected to two components that are updated in different steps is always covered
by the component that is currently not being updated. However, during the reconfiguration schedule,
we need to be careful about ε-nodes that are connected to a single component, and ε-nodes that are
connected to two components that are updated at the same time.

We denote by Cαβ the set of αβ-covered components of diameter ≤ 2, and by Cα and Cβ the sets
of α-covered and β-covered components of diameter ≤ 2 that are not in Cαβ , respectively. Define the

component graph G̃ = (W, Ẽ), where there is an edge between Vi, Vj ∈ W iff there exists an ε-node u

such that Vi is (u, α)-covered and Vj is (u, β)-covered, or vice-versa. Notice that in G̃, the sets Cα and
Cβ are two disjoint independent sets.

We are finally ready to formally provide the algorithm for handling all components that are either
non-isolated or have diameter ≥ 3.

Lemma 3. Let P be the property of (V,E,U) that says that U is a (2,4)-ruling set, and let G = (V,E, α)
and G = (V,E, β) be an input to the MIS-reconfiguration problem such that α ∩ β = ∅, and all connected
components of α ∪ β are either non-isolated or have diameter at least 3. Then, there exists an (α, β, P)-
reconfiguration schedule of length 18. Moreover, such a schedule can be found in O(MIS + R32) rounds.

6

Proof. Our reconfiguration schedule works according to the following parts.

1. Update components of diameter ≤ 2 in Cα.
Let M be an MIS over all nodes in Cαβ .

2. Update components of diameter ≤ 2 that are α-covered by a component in M .

3. Reconfigure components of diameter ≥ 3 using the schedule given by Lemma 2.

4. Update components in M .

5. Update components of diameter ≤ 2 in Cαβ that were not previously updated.

6. Update components of diameter ≤ 2 in Cβ that were not previously updated.

First, it is easy to see that the schedule has length 18. The part that reconfigures components of
diameter ≥ 3 requires 8 steps, by Lemma 2. Each of the other 5 parts takes exactly 2 steps as described
in the definition of updating components (removing α-nodes and then adding β-nodes), which sums to 18
reconfiguration steps in the schedule.

It remains to prove correctness. First, condition (1) of Definition 1 trivially holds, as the schedule
reconfigures all nodes. Moreover, by Lemma 2 and by the definition of updating a component, it is also
immediate that we do not reconfigure two neighbors in a single step, thus the schedule satisfies condition
(3) of Definition 1. For condition (2), Lemma 2 and the definition of updating a component also guarantee
that each Si is an independent set. The remainder of the proof shows that each Si in the schedule is also
4-dominating.

By the order of the reconfiguration steps in the schedule, each component that is being updated is
covered by a component that is not concurrently being updated. This also holds for ε-nodes that are
connected to a component that is not currently being updated. The main condition that must be verified
is that ε-nodes remain covered even if all of their neighboring components are being concurrently updated
in a certain part of the schedule.

Part 1 guarantees that S1, S2 are 4-dominating because for each component that is being updated, the
α-node covering it is a member of S1, S2 and it also covers the required ε-nodes that are neighbors of the
updated component, as explained earlier. For part 2, let u be an ε-node that is connected to two of the
components that are being updated and is not connected to any component that is not being updated.
One of the components must be connected to u via an α-node. Let Vi be such a component, let u1 be the
α-node connected to u, and let v be the α-node from a component of M that covers Vi. The distance
between v and u1 is 3: v is a distance 2 to a β-node of Vi and, because Vi is of diameter ≤ 2, within Vi
all β-nodes are connected to all α-nodes. Hence, u is at distance 4 from v.

For part 3, the 4-domination within the components that are being reconfigured is given by Lemma 2.
Notice that any ε-node connected to a component of diameter ≥ 3 is connected either to connected
components of diameter ≥ 3 through both an α and a β-node, or to a component that is not being
updated in those steps. In the first case it is covered by Lemma 2, and in the second it is covered by the
component not being concurrently updated.

For part 4, notice that all components that are β-covering components of M have been updated in
steps 2 or 3. Hence, as each component of M is in Cαβ , there is a β-node in the current set S12 that
covers it. As M is independent, we do not have ε-node between two components that are being updated.
For part 5, the ε-nodes between two components that are being updated are covered by an argument that
is symmetric to the one used for part 2. Finally, for part 6, for each component that is being updated
it holds that the β-node covering it is in a component that has already been updated and hence it is
already in S16.

Finally, we note that apart from a constant overhead in communication, the number of rounds required
for computing the above schedule is proportional to that of finding the MIS M plus solving the diameter
≥ 3 components, which completes in O(MIS + R32) rounds, where MIS is the complexity of finding an
MIS on a worst-case graph and and R32 is the complexity of finding a (3, 2)-ruling set on a worst-case
graph, as claimed.

7

3.3. Isolated Components

What remains now is to handle components that are isolated and have diameter at most 2. When we
address these components, we will also address all of their ε-neighbors. Hence, from this point onwards
we will slightly abuse our terminology, and when we refer to such a component we refer to its nodes along
with their ε-neighbors as the component. This means that now the components that we address might
have a diameter that is increased by 1, and thus their diameter can be also 3. Note that the diameter
cannot be increased by two as all α-nodes are connected to all β-nodes, and each ε-node is connected to
an α-node and to a β-node of this component, otherwise the component would not be isolated.

By definition of isolated components, the neighborhood of an ε-nodes within such a component, besides
containing vertices of the component itself, is only composed of other ε-nodes. Moreover, there is at least
one additional ε-node in this neighborhood, as we consider graphs of diameter at least 4. We distinguish
two kinds of isolated components, according to whether their diameter is at most 2, or whether it is 3.

For a component Vi of diameter ≤ 2, suppose u is an ε-node that is a neighbor of Vi. This node u has
an α-node and a β-node in its neighborhood, that both cover the entire component. Therefore, to update
such components, it suffices to make sure that a non-ε neighbor of u is in the current independent set
during the two reconfiguration steps. By considering connected two of those components that cover each
other, we can take an MIS M over those. The schedule of length 4 is: update M , and then update the
other components.

Assume now that Vi is a component of diameter 3. It holds that there exists an ε-node u, an α-node
a and a β-node b such that (u, a) 6∈ E and (u, b) 6∈ E (otherwise the diameter would be 2). Here is an
informal description of a schedule of 6-steps for this component.

1. Remove Nα(u). The node a stays in the independent set and covers the entire component.

2. Add u in the set.

3. Remove the remaining α-nodes of the component. The node u covers everything.

4. Add b to the set. Note that b covers the component.

5. Remove u.

6. Add the remaining β-nodes of the component.

A caveat is encountered in case there are two such components, V1 and V2, whose selected ε-nodes, u1
and u2, are connected. In such case we cannot do the above 6-step schedule in parallel without violating
independence. However, observe that if a single of those two ε-nodes is added to the set, it actually
covers the second component as well, as it has a diameter of 3. As a consequence, taking an MIS over
those ε-nodes gives us a selection of nodes that cover all the considered components. Hence, consider the
schedule above as being for component V1 and denote u = u1, then we can add the following to steps 3
and 4 above:

3. Remove the remaining α-nodes of V1 and all α-nodes of V2. The node u covers everything.

4. Add b and the β-nodes of V2 to the set. Note that V2 is updated and b covers V1.

We now formalize the above intuition in order to prove the following.

Lemma 4. Let P be the property of (V,E,U) that says that U is a (2,4)-ruling set, and let G = (V,E, α)
and G = (V,E, β) be an input to the MIS-reconfiguration problem such that α ∩ β = ∅, and all connected
components of α∪β are isolated and have diameter at most 2. Then, there exists an (α, β, P)-reconfiguration
schedule of length 10. Moreover, such a schedule can be found in O(MIS) rounds.

Proof. We say that two isolated components of diameter ≤ 2 are connected if two of their ε-nodes are
connected. Our reconfiguration schedule works according to the following parts.

1. Let M be an MIS over isolated components of diameter ≤ 2.

(a) Update the components in M .

(b) Update the other components of diameter ≤ 2.

8

2. For each component Vi of diameter 3, we select an ε-node ui, an α-nodes ai and a β-node bi as
described above. That is, (ui, ai) 6∈ E and (ui, bi) 6∈ E. Let M ′ be an MIS over the nodes {ui}i∈I .
Note that if ui is not in M ′, it has a neighbor uj that is in M ′, and uj covers Vi. Let Sk be the
current set of the schedule (we will have that k = 4).

(a) Sk+1 = Sk \
⋃
ui∈M ′ Nα(ui). This removes all α-neighbors of the MIS nodes.

(b) Sk+2 = Sk+1 ∪M ′. This adds all the MIS nodes.

(c) Sk+3 = Sk+2 \ (α ∩ (
⋃
Vi)). This removes all the α-nodes of all the Vi.

(d) Sk+4 = Sk+3 ∪ (
⋃
i:ui∈M ′ bi

⋃
j:uj 6∈M ′(β ∩ Vj)).

That is, for each ui ∈M ′, add bi. For each uj 6∈M ′, add β-nodes of Vj .

(e) Sk+5 = Sk+4 \M ′. This removes M ′.

(f) Sk+6 = Sk+5 ∪ (β ∩ (
⋃
Vi)). This adds the remaining β-nodes.

For the length of the schedule, notice that parts 1a and 1b require two steps each, by the definition of
updating a component. Part 2 requires 6 steps, summing to 10 steps in total.

For correctness, condition (1) of Definition 1 trivially holds, as the schedule reconfigures all nodes.
Moreover, by the definition of updating a component, and by inspection of part 2, it is also immediate
that we do not reconfigure two neighbors in a single step, thus the schedule satisfies condition (3) of
Definition 1. For condition (2), the definition of updating a component and inspection of part 2 also
guarantee that each Si is an independent set. The remainder of the proof shows that each Si in the
schedule is also 4-dominating.

For parts 1a and 1b, note that having an MIS over the components promises that whenever a
component gets updated it has a neighboring component that stays untouched.

For part 2, the arguments are the following. The sets S6, S8, S10 are supersets of S5, S7, S9, respectively,
and therefore we only need to show domination for the latter. In S5 we have that all the nodes ai
dominate the components, as they are not connected to the removed nodes ui. In S7 we have that the
nodes in M ′ cover everything. Finally, in S9 we have that the nodes bi cover all the components.

For the number of communication rounds, it is easy to see that the schedule can be found in O(MIS)
rounds, where MIS is the complexity of finding an MIS on a worst-case graph, as needed.

3.4. Completing the proof

We can now wrap-up all the ingredients and prove Theorem 2.

Proof of Theorem 2. We describe the full (α, β, P)-reconfiguration schedule S. First, each node v in
Vα,β = α ∩ β sends a message to its neighbors in N(v) and outputs that it is in Si for all 0 ≤ i ≤ 28.
Each node that received such a message, sends a message to its neighbors and outputs that it is not in Si
for all 0 ≤ i ≤ 28. By Lemma 1, this is consistent with any reconfiguration schedule for the rest of the
nodes. The nodes that produced an output terminate and any edges incident to them are removed from
the graph.

Next, all nodes collect their 4-hop neighborhood to decide whether they are in a component of diameter
≥ 3 or not, and if not then whether they are in an isolated component.

The components of diameter ≥ 3 and the non-isolated components compute the reconfiguration
schedule of 18 steps, as given in Lemma 3, which we denote by S′0, . . . , S

′
18. The isolated components of

diameter ≤ 3 compute the reconfiguration schedule of 10 steps, as given in Lemma 4, which we denote by
S′′0 , . . . , S

′′
10.

Formally, the (α, β, P)-reconfiguration schedule is now Si = S′′0 ∪ S′i ∪ Vα,β for 0 ≤ i ≤ 18 and
Si = S′′i−18 ∪ S′18 ∪ Vα,β for 18 ≤ i ≤ 28. It is computed within O(MIS + R32) rounds.

4. MIS reconfiguration in a constant number of rounds

Theorem 4. (formal) Let P be the property of (V,E,U) that says that U is a (2,4)-ruling set. For
any graph G = (V,E) and any input Ginput = (V,E, α), Goutput = (V,E, β) to the MIS-reconfiguration
problem, there exists an (α, β, P)-reconfiguration schedule of length Θ(f(n)), where f(n) is the largest
identifier among the nodes in the graph, which can be found in O(1) rounds.

9

To prove this, we first prove the following lemma, stating that we can always reconfigure locally an
independent set to add elements from β without losing any element in α ∩ β.

Lemma 5. Let P be the property of (V,E,U) that says that U is a (2,4)-ruling set. For any graph
G = (V,E) of diameter greater than 5, two MIS α and β and v ∈ β \ α, there exists an MIS γ such that

1. (α ∩ β) ⊂ γ and v ∈ γ, and

2. there exists an (α, γ, P)-reconfiguration schedule of length 6. Moreover, for finding the reconfiguration
schedule the nodes only need to know the topology of their 5-hop neighborhood and therefore can be
found in O(1) rounds.

Proof. Note that because the diameter is greater than 5, there are always nodes at distance 3 from any
node. Our schedule will always be an alternation of removing nodes, and adding independent nodes to the
set, which ensures property (2) of the definition. Each time we want to reconfigure a node v to be added
to the independent set, we first remove its neighbors in Nα(u), which ensures the independence part of
the property (2). To be able to do so, we always ensure that neighbors at distance 2 from v are covered
(4-dominated), as those include the neighbors of Nα(v), which permits to satisfy the covering property of
(2). For an independent set X, we define GC(X) as the greedily completion of X to be an MIS. Note
that if the longest distance between two nodes that are added is constant, this can be done in a constant
number of steps. Note that we will give priority to β-nodes and then α-nodes during the completion.

First, consider the case where there exists an α-node u at distance 2 from v. Notice that u covers all the
nodes at distance 2 from v. We can remove Nα(v) from the independent set, then add v to it, and finally
complete the current independent set greedily to be maximal. Formally, we define γ = GC({v}∪α\Nα(v))
and we have S0 = α, S1 = S0 \Nα(v), S2 = S3 = S4 = S5 = S6 = γ.

From now on, we consider the case that only β-nodes and ε-nodes are at distance 2 from v. We
differentiate several cases depending on the neighborhood of nodes at distance 2 from v:

1. There exists a node u at distance 2 from v such that N(u) ∩Nα(v) = ∅:
Let u1 be a node in N(v)∩N(u). Then u1 is an ε-node, as it cannot be an α-node by the assumption,
nor a β-node (as v is a β-node). The node u1 must have a neighbor in Nα(v), as the nodes in
Nα(u1) cannot be in distance 2 from v. That α-node covers u and the nodes at distance 2 from u.
Hence, we can remove all nodes in Nα(u): S1 = α \Nα(u). We can then add u to the independent
set: S2 = S1 ∪ {u}. Now, u covers Nα(v) and its neighborhood, so we can remove those nodes from
the independent set: S3 = S2 \Nα(v). Next, v can be added to the independent set and then u and
its neighbors are covered by v: S4 = S3 ∪ {v}. Hence, we can then remove u from the independent
set, and finally add Nα(u) back to the independent set: S5 = S4 \ {u}, S6 = γ = GC(S5 ∪Nα(u)).

2. There exists a node u at distance 2 from v such that Nα(v) ⊆ N(u) and u has a neighbor u3 that
is at distance 3 from v:

Notice that u3 covers all nodes in Nα(v) and their neighbors. Symmetrically, all nodes in Nα(v)
cover u3 and its neighbors at distance 2. First we remove all nodes in Nα(u3) and then add u3 to the
independent set (we do nothing if u3 itself is in α): S1 = α\Nα(u3), S2 = S1∪{u3}. We then remove
Nα(v) from the independent set, and then add v: S3 = S2 \Nα(v), S4 = S3 ∪ {u}. Finally, we can
put u3 and its neighborhood back in their initial states: S5 = S4 \ {u}, S6 = γ = GC(S5 ∪Nα(u)).

3. There exists a node u at distance 2 from v that has no neighbor at distance 3 from v, and there
exists a node a in Nα(v) that is not in the neighborhood of u:

We can remove Nα(u), as a covers those nodes and their neighborhood, and we can then add u:
S1 = α \ Nα(u), S2 = S1 ∪ {u}. Now, we can remove what remains of Nα(v), and then add v:
S3 = S2 \Nα(v), S4 = S3 ∪ {v}. Finally, we remove u: S5 = S4 \ {u}, S6 = γ = GC(S5).

4. Now we are in a situation where all nodes at distance 2 from v that have no neighbor at distance 3
from v have Nα(v) in their neighborhood. Let’s call U2 the set of nodes at distance 2 from v with a
neighbor at distance 3 from v. For each u ∈ U2, we call u3 one of its neighbor which is at distance
3 from v. We know that u has at least one node in Nα(v) in its neighborhood, and we will call it
au. The node au covers u3 and its neighborhood at distance 2. We can remove Nα(u3) and add u3
for all u ∈ U2: S1 = α \

⋃
u∈U2

Nα(u3), S2 = S1

⋃
u∈U2

{u3}.

10

We need now to prove that each vertex in Nα(v) and its neighborhood is covered by some u3. It is
true for Nα(v) as each u3 is at distance 3 from v. It is also true for v. It remains to show this for
the nodes at distance 2 from v. For those who have a neighbor at distance 3, they are in U2 and
have by construction a u3 in their direct neighborhood. For the others, these nodes have Nα(v) in
their neighborhood, otherwise we would be in case 3. Hence, they are at distance at most 4 from
any u3.

We can remove Nα(v) from the independent set, and we can then add v: S3 = S2 \ Nα(v),
S4 = S3∪{u}. We then remove all the u3 nodes and put back their neighborhood: S5 = S4\

⋃
u∈U2

{u3},

S6 = γ = GC

(
S5

⋃
u∈U2

Nα(u3)

)
.

Note that in this process, the only nodes actually removed from the independent set are those in
Nα(v), are we have put back all the other ones. As v ∈ β, it means that Nα(v) ∩ β = ∅. Hence, we did
not remove any node from α ∩ β.

Lemma 5, means that for any element v in β, we can add v to the current MIS in a constant number
of steps without losing any element of β already in the MIS. It allows us to prove Theorem 4 as follows.

Proof of Theorem 4. Nodes use their identifiers to know when to start their own reconfiguration. A
node with identifier k uses slots [6k + 1, 6(k + 1)] for its schedule. Since a node only needs to know its
5-hop neighborhood, this completes in O(1) rounds.

If the identifiers are guaranteed to be {1, . . . , n} then Theorem 4 gives that a constant number of
rounds is sufficient for a linear length schedule. However, we can do even better by using coloring
algorithms, as stated in the following corollary. The key here is that we can parallelise the reconfiguration
of nodes, as long as their process does not interfere. By the proof of Theorem 4, this is ensured when any
pair of those nodes are at distance at least 10 to each other.

Corollary 2. Let P be the property of (V,E,U) that says that U is a (2,4)-ruling set. For any graph
G = (V,E) and any input Ginput = (V,E, α), Goutput = (V,E, β) to the MIS-reconfiguration problem, if
the nodes are given a k-coloring of G10, then there exists an (α, β, P)-reconfiguration schedule of length
O(k), which can be found in O(1) rounds.

5. A complete characterization for the existence of a reconfiguration schedule with 4-
domination

The following gives an exact characterization of inputs for which there exists a reconfiguration schedule
with 4-domination. In what follows, we say that two sets of nodes U1 and U2 are fully connected if every
node in U1 is a neighbor of every node in U2. If U1 contains only a single node, then we simply say that
this node is fully connected to U2.

Theorem 5. Let P be the property of (V,E,U) that says that U is a (2,4)-ruling set. For any input
Ginput = (V,E, α), Goutput = (V,E, β) to the MIS-reconfiguration problem, there does not exists an
(α, β, P)-reconfiguration schedule if and only if:

1. The sets α and β are fully connected.

2. Let εα (resp. εβ) be the set of ε-nodes that are fully connected to α (resp. β). Then all the ε-nodes
are in εα ∪ εβ.

3. Let G′ = (V ′ = εα ∪ εβ , E′ = EV ′), where EV ′ is the complementary of E restricted to vertices of
V ′. Then there is no path from εα \ εβ to εβ \ εα in G′.

Proof. If there is no schedule then Conditions (1), (2), and (3) hold: Let G = (V,E, α) and
G = (V,E, β) be such that there is no (α, β, P)-reconfiguration schedule. First, since Theorem 2 produces
a schedule when the diameter is greater than 3, we know that the diameter of G is bounded by 3.
This implies the powerful property that it is sufficient for a single node to be part of the set, for any
intermediate independent set, because such a node clearly 4-dominates the rest of the graph.

11

Since there is no reconfiguration schedule, for any sequence of independent sets that are 4-dominating,
there is a node in β that is not added to the set. But we can say something stronger, which is that for
any node v ∈ β, no schedule adds v to the independent set. The reason is that if there is a schedule that
adds v ∈ β, then since it 4-dominates the entire graph, in the next step in the sequence we could remove
all other nodes from the set, and complete it in the next step with all other β-nodes, which contradicts
that assumption that there is no reconfiguration schedule.

Now, let v ∈ β, and consider the categories in the proof of Lemma 5, which shows how to add every
node in β to the independent set. Since the proof produces a schedule if there exists any node at distance
3 from v or a node in α at distance 2, this implies that v is fully connected to α. Since this holds for any
v ∈ β, we have that α and β are fully connected, proving Condition (1).

Suppose that there exists an ε-node e that is not connected to some a ∈ α and some b ∈ β. Then
S1 = {a}, S2 = {a, e}, S3 = {e}, S4 = {e, b}, S5{b} and S6 = β is an (α, β, P)-reconfiguration schedule,
proving Condition (2).

By contradiction, we prove Condition (3). Suppose that there exists T = (e0, e1, . . . , ek) such that
e0 ∈ εβ \ εα, ek ∈ εα \ εβ and ∀i < k, (ei, ei+1) 6∈ E. The crux here is that we can have both ei and ei+1

in an intermediate set. This means that every two steps, we can add an element ei of the path T , after
removing ei−2. Note that, as e0 ∈ εβ \ εα (resp. ek ∈ εα \ εβ), there exists a ∈ α (resp. b ∈ β) such that e0
and a (resp. ek and b) are not connected. More formally, we have the following (α, β, P)-reconfiguration
schedule: S1 = {a}, S2 = {a, e0}, ∀i < k, S2i+3 = {ei}, S2i+4 = {ei, ei+1}, S2k+3 = {ek}, S2k+4 = {ek, b},
S2k+5{b} and S2k+6 = β.

If Conditions (1), (2), and (3) hold then there is no schedule: Let G = (V,E, α) and
G = (V,E, β) be such that Conditions (1), (2), and (3) hold. Suppose that there exists an (α, β, P)-
reconfiguration schedule (Si)i≤N of length N . For any 0 ≤ i ≤ N − 1, if Si contains nodes from α, then
the only nodes that can be added in Si+1 are nodes in εβ \ εα (the other nodes are fully connected to α,
by Conditions (1) and (2)). Similarly, for any 0 ≤ i ≤ N − 1, if Si+1 has a node in β, then Si has only
nodes from εα \ εβ .

Let i1 = max{i | Si ∩ α 6= ∅} and i2 = min{i | i > i2 and Si ∩ β 6= ∅}. Since α and β are disjoint,
because both sets are independent and fully connected to each other, it holds that i1 and i2 are well
defined, and that i1 < i2.

Now, Si1+1 only contains nodes in εβ \ εα, as Si1 ∩ Si1+1 must be independent. Similarly, Si2−1 only
contains nodes in εα \ εβ . By definition of i1 and i2, for all i1 < i < i2, it holds that Si ∈ V ′. In adidtion,
for all i1 < i < i2, each node in Si+1 is connected to each node in Si in G′, as those nodes must form an
independent set in G. Hence, by induction, the nodes in

⋃
i1<i<i2

Si form a connected component in G′.

But this contradicts Condition (3).

6. Impossibility results for MIS reconfiguration

We show here two types of impossibility results. One is the necessity of 4-domination in the sense that
3-domination cannot be obtained, and the other is the necessity of Ω(log∗ n) rounds with 4-domination,
even on bounded degree graphs where it matches the complexity we provide in Corollary 1.

Impossibility of MIS reconfiguration with 3-domination

Theorem 1. Requiring 3-domination for intermediate steps is costly:

1. There exists a class of inputs G = (V,E) with two MIS α and β such that there is no reconfiguration
schedule with 3-dominating intermediate steps.

2. There exists a class of inputs G = (V,E) with two MIS α and β such that any reconfiguration schedule
is of length Ω(n) and needs Θ(n) rounds to be found, if intermediate steps must be 3-dominating.

Proof. For (1), Figure 1 (top) is an example. Consider the first β-node (grey) we try to reconfigure. This
requires that all of its α-neighbors (white) are removed from the set. But then the α-neighbor (white)
above this β-node is not 3-dominated by any α-node. For (2), Figure 1 (bottom) is an example. According
to the previous argument, here we have that the top left β-node (grey) must be reconfigured first. This is
possible by first removing its α-neighbors, and then we can reconfigure the rest of the β-nodes one after

12

Figure 1: White nodes are α-nodes, and grey nodes are β-nodes. For the graph on the top, there is no schedule
with 3-dominating sets. For the graph on the bottom, any schedule with 3-dominating sets must be of linear
length and requires a linear number of rounds to be found.

the other following the path by first removing each one’s α-neighbors. This is a linear schedule which
clearly requires a linear number of rounds to deduce. No shorter reconfiguration schedule is possible, by
the argument for the previous item.

An Ω(log∗ n) lower bound for MIS reconfiguration with 4-domination

Theorem 3. For any fixed k ≥ 1, there exists a class of k-regular inputs G = (V,E) with two MIS α
and β such that any reconfiguration schedule of constant length with 4-domination needs Θ(log∗ n) rounds
to be found.

Figure 2: White nodes are α-nodes, grey nodes are β-nodes, and black nodes are ε-nodes. Here, Ω(log∗ n) rounds
are needed with 4-domination.

Proof. Figure 2 is an example for k = 3. For k ≥ 4, replace the pairs of white-grey nodes by a clique
of size k − 1 containing one white and one grey node. It is not possible to add at the same time three
consecutive white nodes in the independent set, as this violates the domination.

Now, suppose we have an algorithm that finds a constant reconfiguration schedule in o(log∗ n) rounds.
We prove that it permits computing an MIS on a path in o(log∗ n) rounds, which would be a contradiction
to Linial’s celebrated lower bound [9]. Given the input path, we create a virtual graph where each node
is replaced by two ε-nodes connected to a clique of size k − 1 containing an α-node, a β-node and k − 3
ε-nodes (we transform the path into an instance of our counter-example). We compute a constant schedule
of length K in o(log∗ n) rounds. Each initial node chooses the first time its β-node joined the independent
set as its color in a K-coloring. The coloring is not necessarily proper, but it has the property that
three consecutive nodes cannot have the same color. Also, as we have K colors, there must be a local
minimum within distance 2K from any node, which implies that within O(K) = O(1) rounds we can
obtain an MIS out of this coloring. This gives an MIS algorithm on paths in o(log∗ n) rounds, which is a
contradiction.

Corollary 3. For any fixed k and d, there exists a class of k-regular inputs G = (V,E) with two MIS α
and β such that any reconfiguration schedule of constant length with d-domination needs Θ(log∗ n) rounds
to be found.

Proof. The proof is the same as above with the same graph. The only difference is that, instead of not
accepting 3 consecutive nodes to be added the same time, we now have

⌊
2d+1

3

⌋
nodes.

13

7. Discussion and Open Questions

This paper defines relevant constraints for finding a reconfiguration schedule of maximal independent
sets in a distributed setting. For constant-length schedules in bounded-degree graphs we completely settle
the required complexity, as we provide an algorithm completing in Θ(log∗ n) communication rounds, and
prove that no lower complexity exists. A main open question that remains is: Can a better complexity be
found for general graphs?

Our definition only uses addition and removal of elements to the intermediate independent sets. We
propose the following question: Can an efficient distributed reconfiguration schedule be found if the
system allows that intermediate steps are 3-dominating and the transitions used can be any combination
of addition, removal and Token Sliding?

Finally, we used as a hypothesis that the given independent sets are maximal. Our algorithm still
works when the sets are not maximal, as it suffices to complete those. For example, if we are given
(2,4)-ruling sets (which is equivalent to the 4-domination condition of P), the problem is solved. An
interesting question could be to generalize for other (a, b)-ruling sets. What relation between a and b is
needed to ensure that a schedule exists, and that it can be found efficiently with a distributed algorithm?

Acknowledgements: The authors thank Alkida Balliu, Michal Dory, Seri Khoury, Dennis Olivetti, and
Jukka Suomela for helpful discussions.
This project has received funding from the European Union’s Horizon 2020 Research And Innovation
Programe under grant agreement no. 755839 and it was supported in part by the Academy of Finland,
Grant 285721.

References

[1] N. Linial, Distributive graph algorithms global solutions from local data, in: Proceedings of the
28th Annual Symposium on Foundations of Computer Science, SFCS ’87, IEEE Computer Society,
Washington, DC, USA, 1987, pp. 331–335. doi:10.1109/SFCS.1987.20.
URL https://doi.org/10.1109/SFCS.1987.20

[2] L. Barenboim, M. Elkin, U. Goldenberg, Locally-iterative distributed (∆+ 1): -coloring below
szegedy-vishwanathan barrier, and applications to self-stabilization and to restricted-bandwidth
models, in: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, PODC
2018, Egham, United Kingdom, July 23-27, 2018, 2018, pp. 437–446. doi:10.1145/3212734.3212769.
URL http://doi.acm.org/10.1145/3212734.3212769

[3] M. Bonamy, P. Ouvrard, M. Rabie, J. Suomela, J. Uitto, Distributed Recoloring, in: U. Schmid,
J. Widder (Eds.), 32nd International Symposium on Distributed Computing (DISC 2018), Vol. 121
of Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany, 2018, pp. 12:1–12:17. doi:10.4230/LIPIcs.DISC.2018.12.
URL http://drops.dagstuhl.de/opus/volltexte/2018/9801

[4] M. Luby, A simple parallel algorithm for the maximal independent set problem, SIAM J. Comput.
15 (4) (1986) 1036–1053. doi:10.1137/0215074.
URL https://doi.org/10.1137/0215074

[5] N. Alon, L. Babai, A. Itai, A fast and simple randomized parallel algorithm for the maximal
independent set problem, J. Algorithms 7 (4) (1986) 567–583. doi:10.1016/0196-6774(86)90019-2.
URL https://doi.org/10.1016/0196-6774(86)90019-2

[6] M. Ghaffari, An improved distributed algorithm for maximal independent set, in: Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington,
VA, USA, January 10-12, 2016, 2016, pp. 270–277. doi:10.1137/1.9781611974331.ch20.
URL https://doi.org/10.1137/1.9781611974331.ch20

[7] A. Panconesi, A. Srinivasan, On the complexity of distributed network decomposition, J. Algorithms
20 (2) (1996) 356–374. doi:10.1006/jagm.1996.0017.
URL https://doi.org/10.1006/jagm.1996.0017

14

[8] L. Barenboim, M. Elkin, F. Kuhn, Distributed (delta+1)-coloring in linear (in delta) time, SIAM J.
Comput. 43 (1) (2014) 72–95. doi:10.1137/12088848X.
URL https://doi.org/10.1137/12088848X

[9] N. Linial, Locality in distributed graph algorithms, SIAM J. Comput. 21 (1) (1992) 193–201.
doi:10.1137/0221015.
URL https://doi.org/10.1137/0221015

[10] F. Kuhn, T. Moscibroda, R. Wattenhofer, Local computation: Lower and upper bounds, J. ACM
63 (2) (2016) 17:1–17:44. doi:10.1145/2742012.
URL http://doi.acm.org/10.1145/2742012

[11] A. Balliu, S. Brandt, J. Hirvonen, D. Olivetti, M. Rabie, J. Suomela, Lower bounds for maximal
matchings and maximal independent sets, arXiv preprint arXiv:1901.02441 (2019).

[12] B. Awerbuch, A. V. Goldberg, M. Luby, S. A. Plotkin, Network decomposition and locality in
distributed computation, in: 30th Annual Symposium on Foundations of Computer Science, Re-
search Triangle Park, North Carolina, USA, 30 October - 1 November 1989, 1989, pp. 364–369.
doi:10.1109/SFCS.1989.63504.
URL https://doi.org/10.1109/SFCS.1989.63504

[13] J. Schneider, M. Elkin, R. Wattenhofer, Symmetry breaking depending on the chromatic number or
the neighborhood growth, Theor. Comput. Sci. 509 (2013) 40–50. doi:10.1016/j.tcs.2012.09.004.
URL https://doi.org/10.1016/j.tcs.2012.09.004

[14] S. Pai, G. Pandurangan, S. V. Pemmaraju, T. Riaz, P. Robinson, Symmetry breaking in the congest
model: Time- and message-efficient algorithms for ruling sets, in: 31st International Symposium on
Distributed Computing, DISC 2017, October 16-20, 2017, Vienna, Austria, 2017, pp. 38:1–38:16.
doi:10.4230/LIPIcs.DISC.2017.38.
URL https://doi.org/10.4230/LIPIcs.DISC.2017.38

[15] F. Kuhn, Y. Maus, S. Weidner, Deterministic distributed ruling sets of line graphs, CoRR
abs/1805.07209 (2018). arXiv:1805.07209.
URL http://arxiv.org/abs/1805.07209

[16] K. Kothapalli, S. V. Pemmaraju, Super-fast 3-ruling sets, in: IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2012, December
15-17, 2012, Hyderabad, India, 2012, pp. 136–147. doi:10.4230/LIPIcs.FSTTCS.2012.136.
URL https://doi.org/10.4230/LIPIcs.FSTTCS.2012.136

[17] J. van den Heuvel, The complexity of change, Surveys in Combinatorics 409 (2013) (2013) 127–160.

[18] T. Ito, E. D. Demaine, N. J. Harvey, C. H. Papadimitriou, M. Sideri, R. Uehara, Y. Uno, On the
complexity of reconfiguration problems, Theoretical Computer Science 412 (12-14) (2011) 1054–1065.

[19] M. Kamiński, P. Medvedev, M. Milanič, Complexity of independent set reconfigurability problems,
Theoretical computer science 439 (2012) 9–15.

[20] R. A. Hearn, E. D. Demaine, Pspace-completeness of sliding-block puzzles and other problems
through the nondeterministic constraint logic model of computation, arXiv preprint cs/0205005
(2002).

[21] E. D. Demaine, M. L. Demaine, E. Fox-Epstein, D. A. Hoang, T. Ito, H. Ono, Y. Otachi, R. Uehara,
T. Yamada, Linear-time algorithm for sliding tokens on trees, Theoretical Computer Science 600
(2015) 132–142.

[22] D. Lokshtanov, A. E. Mouawad, The complexity of independent set reconfiguration on bipartite
graphs, in: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SIAM, 2018, pp. 185–195.

15

