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Abstract

We present a new method to semianalytically calculate the radiation efficiency of electromagnetic waves emitted at
specific frequencies by electrostatic wave turbulence in solar wind and coronal plasmas with random density
fluctuations. This method is applied to the case of electromagnetic emission radiated at the fundamental plasma
frequency ωp by beam-driven Langmuir wave turbulence during Type III solar bursts. It is supposed that the main
radiation mechanism is the linear conversion of electrostatic to electromagnetic waves on the background plasma
density fluctuations, at constant frequency. The radiation efficiency (emissivity) of such a process is larger than that
obtained in the framework of models where the low frequency density fluctuations and the corresponding ion
sound waves are not external but produced by the electrostatic wave turbulence itself through nonlinear wave–
wave interactions. Results show that the radiation efficiency of Langmuir wave turbulence into electromagnetic
emissions at ωp is nearly constant asymptotically, with the electromagnetic energy density growing linearly with
time, and is proportional to the average level of density fluctuations. Comparisons with another analytical method
developed by the authors and with space observations are satisfactory.

Unified Astronomy Thesaurus concepts: Radio bursts (1339); Solar flares (1496); Solar physics (1476); Plasma
physics (2089); Solar wind (1534); Solar corona (1483); Space plasmas (1544); Solar radio emission (1522);
Plasma astrophysics (1261); Heliosphere (711); Radio sources (1358)

1. Introduction

Electromagnetic radiation associated with Type III solar
radio bursts has been observed for a long time both by ground-
based radio telescopes and on board spacecraft (e.g., Bougeret
et al. 1970; Lin 1974; Fitzenreiter et al. 1976; Gurnett &
Anderson 1977; Steinberg et al. 1984; Suzuki & Dulk 1985;
Lin et al. 1986; Reiner et al. 1992; Benz et al. 2007). It is
believed that these radio bursts’ emissions at the electron
plasma frequency ωp and its harmonic 2ωp are the result of a
chain of events in which electron flows accelerated during solar
flares are generated and emit Langmuir wave turbulence via
beam instability during their propagation in the coronal and
solar wind plasmas up to distances of 1 au from the Sun and
beyond (Zheleznyakov & Zaitsev 1970; Grognard 1975;
Goldman 1983; Mel’nik et al. 1999). In turn, the beam-driven
Langmuir waves release part of their energy to electromagnetic
radiation. Various mechanisms have been proposed to explain
such energy transfer from electrostatic waves to electro-
magnetic ones. Among the most important, it is worth
mentioning the processes of nonlinear wave interactions
(Ginzburg & Zheleznyakov 1958; Melrose 1980), including
the decay of Langmuir waves  into ion sound waves  and
transverse electromagnetic waves w p of frequency ωp

(  + w   p), or the fusion of  and  waves along
the channel +  w   p. Moreover, it is believed that
the electromagnetic emissions w2 p at 2ωp result from the
coalescence + ¢  w  2 p of two Langmuir waves  and ¢ ,
which are driven by the beam and produced by the electrostatic
decay  ¢ +  , respectively. Typically, these processes
were considered in the framework of the weak turbulence
theory. However, in some works, the electromagnetic radiation
at ωp was studied using the strong turbulence theory

(Papadopoulos et al. 1974), assuming that Langmuir wave
fields captured in collapsing cavitons and Langmuir solitons
can emit such waves (Galeev & Krasnoselʼskikh 1976;
Goldman et al. 1980); numerical simulations performed in
the strong turbulence regime confirmed the main features of
these emissions (Akimoto et al. 1988).
Using realistic Langmuir and ion sound waves’ spectra, the

theory of weak turbulence allowed for analytical calculations of
the rates of electromagnetic emissions generated at ωp by the
wave decay  + w   p (Edney & Robinson 1999). In
another work (Willes et al. 1996), a similar method was used to
analytically estimate the radiation rate corresponding to the
coalescence process + ¢  w  2 p. Moreover, numerical
simulations conducted in the framework of weak turbulence
(e.g., Kasaba et al. 2001; Li et al. 2009; Li & Cairns 2013;
Ratcliffe et al. 2014) reproduced part of the characteristic
features of the dynamics of the observed emission spectra.
Alternative approaches were based on linear conversion

mechanisms (Field 1956) of Langmuir or z-mode waves to
electromagnetic radiation in plasmas with density gradients.
Various aspects of such processes were considered by several
authors (Melrose 1980; Cairns & Willes 2005; Yu & Kim
2013; Schleyer et al. 2014); in particular, it was shown that
such mechanisms may explain the radio emissions by Type III
solar bursts (Thejappa et al. 1993). The effectiveness of linear
conversion mechanisms was also investigated using numerical
methods (Cairns & Willes 2005; Kim et al. 2008).
On the other hand, it was found that the solar wind plasma is

characterized by a large variety of density fluctuations
(Celnikier et al. 1983; Kellogg & Horbury 2005). For example,
satellites’ measurements revealed that density fluctuations δn
around several percent of the average background plasma
density n0 exist in the solar wind, with length scales around a
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few hundreds of kilometers (Mugundhan et al. 2017; Chen
et al. 2018; Krupar et al. 2018). These fluctuations, even when
weak, affect the development of the electron beam instability
and of the intensity and the spectra of the emerging Langmuir
wave turbulence (Volokitin et al. 2013; Krafft et al.
2013, 2014, 2015, 2019; Krafft & Volokitin 2014, 2016b;
Voshchepynets et al. 2017). In particular, it was shown (Krafft
et al. 2015; Krafft & Volokitin 2016a) that the electrostatic
decay  ¢ +   is less efficient and more localized in space
and time in a plasma with density fluctuations than in a uniform
plasma. Thus, one can reasonably assume that under such
conditions other nonlinear wave processes such as the
coalescence + ¢  w  2 p or the decay  + w   p can
be weakened in a plasma with inhomogeneities.

Moreover one should note that, as the emissivity of
electrostatic wave turbulence into electromagnetic radiation is
proportional to the spectral electric field energy and density
fluctuation intensity ∣ ∣/dn nk 0

2, the linear mechanism of wave
conversion on external density inhomogeneities is more
efficient to generate electromagnetic radiation than the non-
linear wave–wave interaction processes proposed in the frame
of the weak turbulence theory. In the latter case the density
fluctuations are much weaker (at least by one order of
magnitude) because they are induced and depend on the wave
turbulence itself; then the corresponding radiation efficiency
has a nonlinear dependence on the Langmuir spectral energy,
explaining why the wave conversion mechanism leads to larger
emissivities (note that the turbulence parameters considered are
weak). Moreover, external density fluctuations cannot be
neglected in solar wind plasmas, so that a realistic theoretical
description cannot avoid taking into account interactions of
waves with such density structures. Finally, in the framework
of the weak turbulence model, not all small amplitude ion
sound waves forming the spectrum ∣ ∣/dn nk 0

2 can satisfy the
resonance conditions required to produce electromagnetic
waves through resonant wave–wave nonlinear interactions.

In view of this, the attention to the mechanism of linear
transformation of waves on density gradients has increased.
Moreover, in solar wind and coronal plasmas, the presence of
fluctuating density irregularities leads to the multiple appear-
ance of boundaries between plasma regions of different
densities where wave transformations such as refraction,
reflection, tunneling, and conversion phenomena occur. Then,
using an original approach and realistic wave and density
fluctuations’ spectra, some authors (Krasnoselskikh et al. 2019)
calculated the conversion efficiency of Langmuir waves and
obtained estimates in good agreement with the observations.
Recently, a new method of determination of the radiation
efficiency of electrostatic wave turbulence was proposed
(Volokitin & Krafft 2018), which is based on the direct
calculation of the electromagnetic fields emitted at large
distances by a plasma source with high-frequency electric
currents oscillating at the plasma frequency, determined using a
model of Langmuir wave turbulence in a plasma with external
background density fluctuations. The semianalytical calculation
of the radiation efficiency showed a satisfactory agreement with
space observations.

In this paper we present another new semianalytical method
of calculation of the efficiency of electromagnetic wave
radiation at the frequency ωp from a plasma with Langmuir
wave turbulence and random density fluctuations. As in a
previous work (Volokitin & Krafft 2018), it is assumed that the

main mechanism responsible for the generation of electro-
magnetic waves is the linear conversion of electrostatic waves
on the external density fluctuations. Unlike the theory of weak
turbulence for a homogeneous plasma, the assumption of weak
correlations between the waves is not necessary and, since the
electromagnetic emissions do not arise from three-waves’
resonant interactions but result from the transformations of
Langmuir waves on the density fluctuations, we do not need to
take into account exact resonance conditions between the
waves.

2. Electromagnetic Wave Radiation by a Turbulent Plasma
with Random Density Fluctuations

In a previous paper (Volokitin & Krafft 2018) we calculated
the radiation efficiency at far distances of a plasma source with
external random density fluctuations and Langmuir wave
turbulence emitting electromagnetic waves. The two-dimen-
sional high-frequency current oscillating at the plasma
frequency ωp within the source was calculated owing to the
Zakharov equations. Then, by solving an inhomogeneous
Klein–Gordon equation involving this current and derived from
the Maxwell equations with the help of Green functions, and by
using a modified theory of retarded potentials, the electro-
magnetic energy density emitted at ωp and the corresponding
radiation efficiency were determined as a function of the
average level of density fluctuations ( )dD = á ñN n n0

2 1 2, the
ratio c/vT (vT is the plasma thermal velocity), and the position
of the observer with respect to the source. This method
provided radiation efficiencies that were in good agreement
with satellite observations of Type III radio bursts’ emissions.
Hereafter we present a new and more effective semianaly-

tical method aimed at calculating the radiation efficiency of
electrostatic wave turbulence. Let us consider a solar wind
plasma source involving Langmuir turbulence and external
density fluctuations of average level ΔN;0.01–0.06, char-
acterized by wavelengths of several hundreds of electron
Debye lengths λD. These waves scatter on the random density
inhomogeneities and can be linearly converted into electro-
magnetic waves at a constant frequency close to ωp.
Indeed, due to the presence of external density fluctuations, the

dominant process responsible for the radiation of electromagnetic
waves w p at the frequency ωp is the linear conversion of
Langmuir waves  on the inhomogeneities (Denisov 1957;
Stix 1965; Cairns & Willes 2005; Kim et al. 2008; Schleyer et al.
2014), and not the nonlinear wave–wave resonant interactions

  w   p involving ion sound waves  corresponding to
induced and weak ion density perturbations. The transformation
of Langmuir waves on the external density fluctuations produce
an electronic current of the first order whose rotational part is
responsible for the radiation of electromagnetic waves as a result
of refraction phenomena occurring when the electrostatic waves
interact with the density fluctuations. The dynamics of this current
can be calculated by solving the Zakharov equations on a 2D map
representing the inhomogeneous solar wind plasma. All phenom-
ena of reflection, refraction, and tunneling of waves are taken into
account in the simulations. The initial levels of the Langmuir
waves’ and fluctuations’ spectra are chosen according to realistic
conditions; their profiles take into account possible anisotropies
and the expected wavevector ranges, inferred from results
obtained during one-dimensional studies performed by the authors
(Volokitin et al. 2013; Krafft et al. 2013, 2014, 2015, 2019; Krafft
& Volokitin 2014, 2016b; Voshchepynets et al. 2017). The
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rotational part of the calculated electronic current generates the
induced electromagnetic wave fields as a result of the conversion,
at constant frequency, of the electrostatic wave turbulence. The
produced waves are then leaving the volume with density
fluctuations where they are generated and propagate freely and
without loss through the surrounding homogeneous plasma. The
model allows us to calculate the emissivity of this first-order wave
conversion process owing to numerical simulations confirmed by
analytical estimates, as shown below.

The equation describing the electromagnetic waves’
dynamics can be obtained from the Maxwell equations

( )
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⎝
⎜⎜

⎞
⎠
⎟⎟

w
d

p
d¶
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where δB is the wave’s magnetic field perturbation. The high-
frequency electronic current δ j produced by the scattering of
Langmuir waves on the external density fluctuations is
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where δn is the slowly varying electron density perturbation and ve

is the fast velocity oscillation (at ωp) of the electron population;
e<0 and me are the electron charge and mass. The Langmuir
wave’s potential perturbation is given by ( ˜ )dj j= w-eRe i tp ,
where j̃ is the slowly varying potential envelope. Note that δ j is a
first-order term as the density fluctuations δn are given at the
initial state and not induced during the system’s dynamics. Then
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where n0 is the background plasma density and
( ) ( ) d d d= w-n ne nRe Re ;i ts ωs=ωp is the ion acoustic

frequency. Assuming that ( ˜ )d = w-B BeRe i tk , where wk;ωp

is the frequency of the electromagnetic wave and B̃ is the
slowly varying envelope of its magnetic field, we find that
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where we used that ∣ ˜ ∣ ∣ ˜ ∣ w¶ ¶ ¶ ¶B Bt tk
2 2 . Equation (4) can

be written in the wavevector space as
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with ˜ ˜ ·= åB B e ;k k
k ri k is the wavevector and r the position.

Note that the right-hand side term of Equation (5), proportional
to the current density in the plasma source, is calculated by
solving at each time moment the 2D Zakharov equations
(Volokitin & Krafft 2018). The homogeneous equation
corresponding to Equation (5)can be solved exactly as follows
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A particular solution of Equation (5) is obtained in the form
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Combining the solutions(6)–(7), we obtain the Fourier
component of the magnetic field envelope at time t
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For sufficiently large ∣ ∣k above a threshold ∣ ∣*k , the
function ( )w ¢kic texp 2 p

2 2 oscillates quickly. Therefore, the
main contribution to the integral in Equation (8) is due to
the long-wavelength part (with ∣ ∣ ∣ ∣< *k k ) of the term

( )j̃ ´d

k

n

n0
. As the simulations performed to calculate δn

and j̃ from the 2D Zakharov equations show, this term slowly
changes with time, so that it can be extracted from the integral.
On the other hand, we note that, for ∣ ∣ ∣ ∣*k k , the oscillation
rates qk of the plasmon phases qk turn out to be important
and comparable with wkc 2 ;p

2 2
* therefore, we distinguish

the phases explicitly from the amplitudes by setting below
˜ ( ) ˜ ( ) ( )j j= qt e0k k

i tk . Moreover, one can write that
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where k1 and k2 are the wavevectors corresponding to the
Fourier components of the density perturbations and the
Langmuir wave potential, respectively. Then we get from
Equation (8) that
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We took into account the dispersion relation of the transverse
electromagnetic wave in a homogeneous plasma, i.e., w =k

t

( ) ( )w w w+ +k kc c1 2p p p
2 2 2 1 2 2 2 2 , so that wkc 2 p

2 2

w w w w w- - -k k k k
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t l s
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with k v3 2T2

2 2

kc2 2; w wk
s

p1
is the ion sound frequency; as mentioned

above, the main contribution to the electromagnetic emission at
w wk

t
p in the summationå = +k k k1 2

comes from the domain of
small wavevectors satisfying  wk c2 p

2 2 2. Note that since we
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are not considering here parametric resonant interactions
between waves, but their transformations on density fluctua-
tions, we do not need to fulfill exactly the three-waves’
resonance condition w w w= +k k k

t l s
2 1

. Let us mention that
Equation (10) can be compared with the expressions providing
the growth rate of the energy density of an electromagnetic
wave ( )w k,k

t produced by the fusion +    of a
Langmuir wave ( )w k,k

l
22

and an ion sound wave ( )w k,k
s

11
,

in the frame of the weak turbulence theory (Melrose 1987;
Edney & Robinson 1999).

By raising Equation (8) squared and neglecting the terms
proportional to the initial wave magnetic field ( )B 0k , whose
amplitude is around the noise level (note that these terms
vanish also after the average performed below), we get
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where we took into account that the potential’s amplitude
varies much more slowly than its phase. The wavevectors of
the electromagnetic waves satisfying ∣ ∣ ∣ ∣k k1,2 , the spatial
synchronism condition = -k k k1 2 can be written as
 -k k1 2, so that Equation (11) can be presented in the

following form
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where the superscript “
*
” denotes the complex conjugate.

Assuming the absence of correlations between the density
fluctuations, let us average on the phases
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Let us now show that asymptotically the following relation is
fulfilled
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where the dimensionless function ( )z k k,1 is estimated below.
If it is possible to neglect the variations of the plasmons’ phases
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in Equation (14), i.e., if ∣ ∣ ( ) /q wkc t2k p

2 2
1 for

sufficiently large ∣ ∣ ∣ ∣> *k k , then Ik does not depend on k1

and is asymptotically proportional to the Dirac function ( )d k .2

Indeed, summing Equation (13) on k, its right-hand side term
becomes of the form
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where ( )kF 2 is a continuous function. It follows that,
asymptotically, the electromagnetic wave energy density

∣ ( ) ∣å B tk k
2 (13) increases linearly with time within a narrow

region of wavevectors near k;0, whereas the size of this
region, where electromagnetic waves are generated, decreases
with time. This compression stops when the size reaches a
value for which the phase ( )q tk1

begins to exceed ( )wkc t2 p
2 2 .

Therefore we consider below the case of small k2 for which
( ) ∣ ( ) ∣/ w qkc t t2 kp

2 2
1 , i.e., when the phases ( )q tk1

turn out to
be decisive for the calculation of Ik.
The time dependence of the plasmons’ phases is random by

nature and determined by their distribution in the inhomoge-
neous plasma. However, averaging over the random phase
variations allows us to state certain conclusions if we assume
that q q= tk k1 1 and that the rates qk1 are randomly distributed.
Then we can write that
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Assuming that the rates qk1 are uniformly distributed, we get

( )

( ) ( )
⎛
⎝⎜

⎞
⎠⎟











ò

ò

q

q

q
q

q
q

q

á ñ =
D

=-
D

q

q

q

q

I
d

t
d

4 sin 2

4
sin 2

1
. 17

k
k

k

k

k

k
k

k

min

max 2

2

min

max 2

k

k

k

k

1

1 1

1

1

1

1
1

1
1

1

It follows that the electromagnetic wave energy density
∣ ( ) ∣å B tk k

2 depends linearly on the time t. Indeed, for large t,
the phase interval over which the integration in Equation (17) is
performed is large, so that the integral ( ) ( )ò q qdsin 2 1k k

2
1 1

depends very weakly on the boundaries of the variation range
  q q qD = -max mink k k1 1 1. Finally we can conclude that, in

the general case, ( )z k k,1 is a function that decreases sharply
for ∣ ∣ ∣ ∣> *k k and mainly depends on qD k1 for ∣ ∣ ∣ ∣<k k* .
Unfortunately, at this stage, it is only possible to estimate the order
of magnitude of ∣ ∣*k and qD k1. Since both quantities are due to
the presence of density fluctuations, the dispersion of electro-
magnetic waves allows us to write that w µ Dkc N2 p

2 2
* and

q wD µ DN.k p1

In conclusion, this analysis allows us to state that, at
asymptotic times, the energy density ∣ ( ) ∣å B tk k

2 of the
electromagnetic waves generated by a stationary Langmuir
wave turbulence via linear transformation mechanisms on
density inhomogeneities increases linearly with time. In actual
conditions, when the electromagnetic waves have the ability to
freely leave the turbulent source, we can speak of a quasi-
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constant rate of conversion of Langmuir waves’ energy into an
electromagnetic one. So, we assume that all the energy
transformed in a given volume leaves it and propagates
without loss outside the source through the external uniform
plasma. Then the electromagnetic power radiated is determined
by

∣ ( ) ∣å p
kw= = =

B
P

d

dt
W

d

dt

t
W

4
,

k

k
p Lrad EM

2

where ∣ ∣ / p= å BW 4k kEM
2 is the electromagnetic wave

energy density and ∣ ( ) ∣ /j p= å kW t 4k kL
2 is the Langmuir

wave energy density in the volume Vrad of the emitting source.
The dimensionless quantity κ is the ratio of the energy of
electromagnetic waves radiated from a given volume of plasma
during the period w-

p
1 to the energy of Langmuir waves in the

same volume. The following expression can be obtained from
the theoretical analysis presented above

∣ ( ) ∣ ∣ ( ) ∣ ∣ ( ) ∣

∣ ˜ ∣ ( )
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where ϑ is the angle between the plasmon wavevector k1 and
the small electromagnetic wavevector k. In the case of quasi-
isotropic wave spectra we can write that Jsin 1 2,2 so that
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where ∣ ∣ ∣ ∣j=E kk k
2

1
2

1 1
. As the term ( )z= å w

k kS ,k
kc

8 1
p

2 2

2 in

Equation (19) is not sufficiently defined at this stage, we
have to turn to numerical simulations. Nevertheless, using
the estimates ∣ ∣ / w ~ D*kc N2 p

2 2 2 , q wD ~ DNk p1 and

( ) z w q~ Dk k, p k1 1, and omitting possible numerical factors,

we can write that ~ å k kS .k
2 2
* Thus, one can expect a weak

dependence of Son ΔN, or even no dependence, as confirmed
by the numerical simulations. In this case, the scaling k µ DN
follows from Equation (19) with

∣ ∣
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where S can be interpreted as a fraction of phase volume in the
k-space corresponding to the fraction of plasmons with
wavevectors k1 transformed on density fluctuations into
electromagnetic waves of close wavevectors. Note that, in
Equation (20), only the factor S contains a possible dependence
on the speed of light c; from a formal point of view, one can
expect that S 0 if  ¥c . Indeed, the radiation intensity of
a localized current source decreases with increasing ratio of the
emitted wavelength (proportional to c) to the size of the source,
and tends to zero when  ¥c . This remains true in the case of
linear transformations of electrostatic waves into electro-
magnetic ones when they scatter on inhomogeneities of
finite size.

Let us now compare the analytical results obtained above
with those provided by the numerical simulations performed on

the basis of a 2D modeling of Langmuir wave turbulence in a
plasma with density inhomogeneities (see the description in
Volokitin & Krafft 2018), which allows us to determine the
distribution of the high-frequency electronic currents in a given
plasma source region. Next, solving Equation (5) numerically
or, equivalently, calculating the wave magnetic field using
Equation (8), we can find the time evolution of the
electromagnetic waves’ amplitudes according to the numerical
scheme described in the Appendix where, in particular, the
necessary restriction on the discretization time step is indicated.
It was shown that numerical results are stable under this
condition.
The main conclusions provided by the simulations are

consistent with those derived analytically above, namely, the
linear growth with time, at the asymptotic stage, of the
electromagnetic energy density emitted by the turbulent plasma
volume. Therefore, it is possible to determine, using the
simulation results, the rate of the ratio of the electromagnetic
wave energy to the energy of electrostatic Langmuir waves,
that is, the radiation efficiency defined according to

∣ ( ) ∣
∣ ( ) ∣

( )
⎛
⎝⎜

⎞
⎠⎟k

w j
=

å
å

B

k
d

dt

t

t
. 21k k

k kp

2

2

We used the same notation κ for the value obtained
theoretically in Equation (20) and for the definition of the
radiation efficiency presented in Equation (21), as in both cases
the physical meaning is the same.
The variations of κ as a function of the two characteristic

parameters c/vT and ΔN have been studied (vT is the plasma
thermal velocity). They were obtained by using Equation (21)
with fields computed by the numerical simulations. Note that
all variables below are normalized according to w t tp ,
l r rD , and /p n T E E4 e0 , where Te is the electron

temperature of the background plasma. All analyses illustrated
hereafter by figures were performed within time intervals where
wave spectra were quasi-stationary.
Figure 1 shows the electromagnetic wave spectra at asymptotic

times, for threevalues of the ratio c/vT and a fixed average level
of density fluctuations ΔN. One can see that, as it should be, the
size of the k-space where electromagnetic waves are generated
does not depend on the time step Δt (compare the upper and the
bottom panels) and is proportional to ( )-c vT

1, so that its area
scales as ( )-c vT

2. This result is in accordance with the scaling
laws presented below in Figure 3. Note also that, at the asymptotic
stage, the size of the k-space region where the electromagnetic
waves’ amplitudes grow does not change with time (not shown
here), which confirms the conclusions obtained above when
analyzing analytically Ik (Equations (14)–(17)).
Figure 2 shows the growth with time of the electromagnetic

wave energy density ∣ ( ) ∣å B tk k
2 calculated at the asymptotic

stage by the numerical simulations; the corresponding linear
interpolations describe the time dependence predicted by the
analytical calculations well (Equations (14)–(17)). The values
of the radiation efficiency κ are proportional to the time
derivatives of ∣ ( ) ∣å B tk k

2 (21), i.e., to the slopes of the
interpolation lines. Note that, due to the statistical oscillations
which are natural to the processes considered, the time
variations of the derivatives (not shown here) are noticeable
compared to the linear approximations. Therefore, in order to
avoid such numerical uncertainties during the calculation of κ,
averaging on time was carried out, corresponding to the
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substitution in Equation (21) of the time derivatives by the
slopes of the linear approximations.

The upper panels of Figure 3 show the results of such
calculations and present the dependence of the radiation
efficiency κ as a function of the ratio c/vT and the level of
density fluctuations ΔN, respectively. A clear dependence of κ

on these parameters can be observed, even if its calculated
values are more or less scattered. The radiation efficiency is
shown to vary linearly with ΔN, as expected from the above
analytical developments; moreover, the scaling law

( )k µ -c vT
2 obtained is in good agreement with the results

provided by Figure 1 and with the above remarks concerning
the behavior of S (20) with increasing c.
These results can be compared with those obtained using the

numerical simulations and another analytical method presented
earlier by the authors (Volokitin & Krafft 2018), which is based
on the theory of the retarded potentials. The corresponding
radiation efficiency κr is shown in the bottom panels of
Figure 3, as a function of c/vT and ΔN. One can see that,
despite some numerical uncertainties inherent to both
approaches (compare upper and bottom panels), the values of
the radiation efficienciesκ and κr provided by the two
semianalytical methods are in reasonable agreement. Moreover
it is worth noting that the scaling lawsκ ∝ ΔN and

( )k µ -c vT
2 are obtained using both approaches.

3. Conclusion

The electromagnetic radiation at the plasma frequency ωp

generated by a plasma source with electrostatic wave
turbulence and density fluctuations is studied theoretically
and numerically. It is assumed that the main mechanism of
radiation of the electromagnetic emissions is the linear
transformation of Langmuir waves on the density inhomogene-
ities. This process is likely the most effective if the average
level of density fluctuations ΔN is of the order of 1% of the
background plasma density or higher, what is the case for the

Figure 1. Electromagnetic wave spectra at asymptotic times (around t;9800): isocontours of the square spectral wave magnetic field ∣ ( ) ∣B tk
2, for c/vT=50, 70,

and 100; ΔN=0.027; kx and ky are the normalized wavevectors’ components along and across the ambient magnetic field direction, respectively. The time steps used
for the fields’ calculations (see the Appendix) are Δt=8 (upper panels) and Δt=2 (bottom panels).

Figure 2. Growth with time, at the asymptotic stage, of the electromagnetic
wave energy density ∣ ( ) ∣å B tk k

2 calculated by the numerical simulations
(dashed and dotted lines) superposed to their linear interpolations (solid lines).
Three values of c/vT are considered : 50, 70, and 100; ΔN=0.027. All
variables are normalized.
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solar wind and coronal plasma regions where Type III
solarradio bursts manifest.

We present a new method to calculate analytically the
radiation efficiency of electromagnetic waves emitted at some
specific frequencies by electrostatic wave turbulence in a
plasma with random density fluctuations. This method, which
complements another one proposed recently by the authors
(Volokitin & Krafft 2018) is more convenient to use and more
robust. Moreover it is shown that, despite significant
differences between both approaches, the two methods lead
to close values of the radiation efficiencies and provide similar
scaling laws as a function of the average level of density
fluctuations ΔN and the velocity ratio c/vT.

More precisely, a simple analytical expression is obtained
(Equation (20)) that allows us to determine the efficiency of the
electromagnetic radiation from a turbulent and inhomogeneous
plasma, if the density fluctuations’ and the Langmuir waves’
spectra are available. In particular, it shows that the radiation
efficiency depends mainly on the integral characteristics of the
spectra, is weakly sensitive to detail features and is proportional
to the average level of density fluctuations ΔN.

When deriving Equation (20), a number of assumptions were
made that appear to be sufficiently substantiated. Nevertheless,
our theoretical results were verified using numerical simula-
tions based on a 2D modeling of Langmuir wave turbulence in

a plasma with quasi-randomdensity inhomogeneities, that
confirmed our assumptions.

This work was granted access to the HPC resources of
IDRIS under the allocation 2013-i2013057017 made by
GENCI. This work has been done within the LABEX Plas@par
project, and received financial state aid managed by the Agence
Nationale de la Recherche, as part of the programme
“Investissements d’avenir” under the reference ANR-11-
IDEX-0004-02. This work was supported by the Programme
National PNST of CNRS/INSU cofunded by CNES and CEA.

Appendix

Let us present the numerical scheme used to calculate the
wave radiation intensity emitted at time t from the 2D turbulent
inhomogeneous plasma source. Starting from Equation (8) that
provides the magnetic field’s Fourier component ˜ ( )B tk , one
can obtain after one time step Δt=t that

˜ ( ) ˜ ( )

˜ ( )

⎛
⎝⎜

⎞
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Figure 3. (Upper panels) Variations of the radiation efficiency κ calculated using the numerical simulations and Equation (21), as a function of the velocity ratio c/vT
(for threevalues of ΔN=0.009, 0.018, and 0.027, left) and the average level of density fluctuations ΔN (for three values of c/vT=50, 70, and 90, right). The axes’
scales are logarithmic. (Bottom panels) Variations of the radiation efficiency κr calculated using the numerical simulations and a method based on the theory of the
retarded potentials (Volokitin & Krafft 2018), as a function of the velocity ratio c/vT (for threevalues of ΔN=0.009, 0.018, and 0.027, left) and the average level of
density fluctuations ΔN (for three values of c/vT=50, 75, and 100, right). The axes’ scales are logarithmic.
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where we defined t = ¢ -t t. Then, expressing the term
proportional to the electronic current as follows
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The calculation of the integrals in Equation (A2) leads to the
rather simple expression
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where w= ka c 2 .p
2 2 Note that in our case, because the

electromagnetic emissions come from a very small region of
the k-space, we do not need to take into account the
correlations between the density fluctuations δn/n0 and the
potential’s envelope j̃, contrary to what is done in the frame of
the weak turbulence theory. A similar formula can be obtained
using Equation (5) and finite-difference methods
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which is valid if ( )wD = D ka t c t2 4 1p
2 2 and if

( ( ) ˜ ) ( )d j ´n n tk0 varies negligibly during the small time
interval Δt. Then, for ( ) w Dkc t4 1,p

2 2 we get the simple
approximate formula
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Note that –w D =t 2 10p in the above study.
Using Equations (A3) or (A4) and knowing the values of

S(t) (A1) at any time owing to the 2D simulations based on the
Zakharov equations (see Volokitin & Krafft 2018 for more
details), we can calculate numerically ∣ ( ) ∣B tk

2 as well as the

electromagnetic wave energy density WEM and the radiation
efficiency κ.
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