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The ground state of the S = 1/2 kagome Heisenberg antiferromagnet is now recognized as a spin
liquid, but its precise nature remains unsettled, even if more and more clues point towards a gapless
spin liquid. We use high temperature series expansions (HTSE) to extrapolate the specific heat
cV (T ) and the magnetic susceptibility χ(T ) over the full temperature range, using an improved en-
tropy method with a self-determination of the ground state energy per site e0. Optimized algorithms
give the HTSE coefficients up to unprecedented orders (20 in 1/T ) and as exact functions of the mag-
netic field. Three extrapolations are presented for different low-T behaviors of cV : exponential (for
a gapped system), linear or quadratic (for two different types of gapless spin liquids). We study the
effects of various perturbations to the Heisenberg Hamiltonian: Ising anisotropy, Dzyaloshinskii-
Moriya interactions, second and third neighbor interactions, and randomly distributed magnetic
vacancies. We propose an experimental determination of χ(T = 0), which could be non zero, from
cV measurements under different magnetic fields.

PACS numbers: 02.60.Ed 05.70.-a 71.70.Gm 75.10.jm 75.40.Cx 02.70.Rr

I. INTRODUCTION

The physics of the spin S = 1/2 kagome lattice, with
first neighbor Heisenberg antiferromagnetic interactions1

(KHAF) has recently known two major progresses. One
is experimental, with the realization of high quality crys-
tals of Herbersmithite2, opening the possibility of pre-
cise measurements3,4; the other is numerical, with the
understanding of the bias tending to erroneously fa-
vor a gapped spin liquid (SL) ground state in DMRG
simulations5–7. A gapless SL ground state is now almost
a consensus, supported by recent precise measurements
of the low-T magnetic susceptibility4. However, there re-
main several types of bidimensional gapless SL, among
which the U(1) SL (with a ponctual Fermi surface) and
the Fermi SL (with a linear Fermi surface)8. They distin-
guish themselves notably by the low-T behavior of their
specific heat: a linear behavior, cV ∝ T , is a characteris-
tic of a Fermi SL, whereas a quadratic one, cV ∝ T 2, is an
indication of a U(1) SL (to compare to cV ∝ T 2e−∆/T for
a gapped phase, where ∆ is the gap). We label these dif-
ferent cases by an integer α = 1 or 2 in the gapless cases
(cV ∝ Tα) and α = 0 in the gapped case. Up to now, nei-
ther the experimental nor the theoretical works are able
to determine α for the KHAF, even if recent theoretical
and experimental results seem to indicate that α 6= 0.

But all these considerations pre-suppose that Her-
bertsmithite is effectively described by a KHAF on
perfect and independent kagome planes. In reality,
this model suffers from several perturbations: dilution,
Ising anisotropy, Dzyaloshinskii-Moriya (DM) interac-
tions, further neighbor interactions... Previous studies
show that their effects on the ideal Hamiltonian are mod-
erate: whatever the phase of the KHAF ground state,
it seems stable for small values of these perturbations.
However, they can quantitatively influence the finite tem-

perature thermodynamic measurements. Thus, we use in
this article high temperature series expansions (HTSE)
to explore the finite temperature effects of a magnetic
field h and of all the previously listed perturbations in
the three cases α = 0, 1 or 2. It illustrates the difficulty
to fit experimental data for many free parameters and
without knowing α. However, we extract from all these
results a way to determine the zero temperature magnetic
susceptibility χ0 from cV measurements under different
h, and we anticipate the synthesis of parent compounds
of Herbertsmithite with tunable perturbations to KHAF.

HTSE exactly calculates the Taylor coefficients of ther-
modynamic quantities in powers of the inverse tempera-
ture β = 1/T . From these coefficients, one can reliably
and easily reconstruct the quantities from infinite down
to moderate temperatures of the order of the interaction
strength, using either the raw series, Padé approximants
(PAs), or methods as differential Padé approximants, Eu-
ler transformation, . . . 9–12. When there is no singularity
down to T = 0 in the thermodynamic functions (i.e. no
phase transition, as notably in SL phases), it is possible
to extrapolate HTSE over the full range of temperature.
In this case, the entropy method combines HTSE with
an hypothesis on α to get thermodynamic quantities as
the specific heat per site cV or the magnetic suscepti-
bility per site χ13–15. This method, thereafter denoted
HTSE+s(e), is fully relevant to extract the Hamiltonian
parameters from experimental results16–19.

We get in this article HTSE coefficients up to an order
notably larger than previously14, in the presence of all
the above interactions and with an exact dependency in
h. Moreover, we present here the extrapolations on the
KHAF supposing a gapless spin liquid, with a special
emphasis on χ and cV (see also ref.20 on cV ), which can be
measured experimentally4. These extrapolations require
input parameters: α, the ground state energy per site e0
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and χ0. Often, α is known, as for Néel or gapped ground
state. Except for ferromagnetic states, e0(h) and χ0 =
−d2e0/dh

2 are usually unknown. We present here a new
method of self-determination of e0 that overcome this
obstacle. In Sec. II, we present the results of raw series.
We then discuss the extrapolation method and present
the results on the perfect KHAF in Sec. III. Sec. IV is
devoted to the study of several perturbations, followed by
the effects of a magnetic field h. Concluding remarks are
in the last section. Supplemental material21 gives details
on HTSE+s(e) and furnish more figures illustrating the
effect of the perturbations.

II. RAW HTSE COEFFICIENTS WITH EXACT
DEPENDENCY IN h

We first focus on the raw series of the thermody-
namic limit of the logarithm of the partition function
limN→∞

lnZ
N in powers of β with, as first main result of

this article, their obtention as exact functions of h.
The KHAF Hamiltonian H consists in spins S = 1/2

on a kagome lattice, in presence of an arbitrary magnetic
field h (times a factor gµB , set to 1 in the following),
with antiferromagnetic interactions on all pairs of nearest
neighbors:

H0 = J1

∑
〈i,j〉

Si · Sj , H = H0 − hSz, (1)

where Sz =
∑
i S

z
i is the total spin along the z direction

and Si the spin operator on site i. J1 is set to unity in
the following. The partition function is:

Z = Tr e−βH =

∞∑
n=0

(−β)n

n!
Tr(Hn). (2)

After keeping the part of the traces Tr(Hn) originating
from connected clusters with n links on the lattice, it
gives us the following HTSE in powers of β, where coef-
ficients are finite order polynomials of h2:

lim
N→∞

lnZ

N
= ln 2 +

∞∑
n=1

n/2∑
k=0

Qn,kh
2k

βn. (3)

The first coefficients Qn,0 and Qn,1 are related to the
HTSE of respectively cV and χ at h = 0, and are the only
ones that were calculated up to now13,14,20: the effects
of a finite h were unaccessible (some further terms were
calculated for other models13,22, without being exploited
or still strongly limiting the possible values of h).

Beside the now exact treatment of h, we get access to
unprecedented orders despite the exponential complexity
of the calculations. Qn,k are determined for n up to 20,
against 17 previously14. Fig. 1 shows that the raw HTSE
diverges below T=1, while the PAs converge down to 0.5
allowing to describe the main peak of cV .
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FIG. 1. Results from HTSE+s(e) at order 20 in β for h = 0
on the KHAF. (a) Specific heat cV ; Gapped (α = 0, black
lines) and gapless ground states (α = 1, red lines, and 2, blue
lines) are considered and e0 is fixed to -0.4372, -0.4384 and
-0.4395 respectively. Dashed cyan lines are the raw HTSE
of orders 13 through 20. Dashed magenta lines are the PAs
d = 6 through 14 of HTSE at order 20. (b) Same as in (a)
for the magnetic susceptibility χ. Several scenario for the χ0

value are presented.

III. EXTRAPOLATION OVER THE FULL
TEMPERATURE RANGE

In the thermodynamic limit, canonical and micro-
canonical ensembles are equivalent. It implies that the
information contained in Z(T, h) is the same as in the en-
tropy per spin s(e, h), with e the energy per spin. At fixed
h, s and e are monotonous functions of T , going from
e0(h) and s0 = 0 at T = 0, to e∞ = 0 and s∞ = ln(2S+1)
at T = ∞. These constraints near e0(h) are equivalent
to the two sum rules on cV , but more easily imposed on
s(e, h)13. Moreover, the behavior of s(e, h) for e→ e0(h)
can be infered from the (known or supposed) low energy
properties of the model. Thus, we work in the micro-
canonical ensemble13,14,20. From the HTSE, Eq. (3), we
deduce the series expansion of s(e, h) around e∞ and ex-
trapolate this function over the full interval [e0(h), e∞].
To remove the singularity of s at e0, we introduce an aux-
iliary function Gα(s(e, h)). Then, PAs of this function of
e are used to reconstruct s21.

This HTSE+s(e) procedure requires the knowledge
of e0(h). We define e00 = e0(h = 0). As no nu-
merical method is currently able to give it to the re-
quired precision, we browse a range of values and se-
lect the one that gives the most coinciding results for
h = 021. This leads to values near the ones infered from
DMRG (e00 = −0.4386(5))23–25 and exact diagonaliza-
tion (e00 = −0.4387039 for a 48 site cluster)25,26.

For small h 6= 0, the energy is given by

e0(h) ' e00 −
1

2
χ0h

2, (4)

as thermodynamic relations imply that χ0 = χ(T =

0, h = 0) = −d
2e0(h)
dh2 . While χ0 is 0 in gapped systems,

as the ground state remains unchanged for infinitesimal
h, we a priori have χ0 6= 0 for gapless systems. To give an
idea of the χ0 value, we can look at the classical model27,



3

J1 J2 J3 J3h

FIG. 2. First (J1), second (J2) and third (J3 and J3h)
neighbor interactions on the kagome lattice.

which is gapless: χ0 = S/6. A recent ED study28 uses
the energy in different spin sectors and for different lattice
sizes to get a possibly finite χ0, which is also compatible
with sine-square deformation results29. We choose here
to consider χ0 as an input parameter and to deduce e0(h)
from e00 and χ0. Another possibility is to self-determine
e0(h) and to extract χ0 from it, but this is not conclusive.
Indeed, our procedure (see Sec. II.E of21) allows a deter-
mination of e0(h) with some uncertainties and χ0, being
related to the second derivative of e0(h), suffers for even
much larger uncertainties; therefore, we find that almost
any reasonable value of χ0 is compatible with our results.

We note s′ and s′′ the derivatives of s with respect to
e at constant h. We recall that β = s′. The specific heat
per site cV and magnetization per site m are:

cV = −s
′2

s′′
, m =

1

s′
∂s

∂h

∣∣∣∣
e

. (5)

We emphasize that m is now obtained directly from
s(e, h), simplifying the procedure used in14. We deduce
from m the experimentally measured magnetic suscepti-
bility per site χ = m/h.

At the end of the day, for a given spin model, we ex-
trapolate χ(T ) and cV (T ) at all temperatures from the
HTSE, with, as supplementary input, the values of e0,
χ0, and α. Fig. 1 shows cV and χ for the unperturbed
Hamiltonian of Eq. (1). The assumption on α has no
influence for T > 0.3: HTSE strongly constrain the func-
tions in this domain of temperature. Notably, the high
temperature peak of cV near T = 0.7 is well determined,
which is not the case for the small temperature secondary
peak (T ' 0.03). The existence of such a peak or shoul-
der, sign of a large amount of low energy states, is still
highly debated as it is very sensible to eventual finite size
effects30,31.

At this point, it is important to emphasize a particu-
larity of the KHAF. In most of simpler models, we are
not able to get convincing results if we arbitrarily chose
α or e0, in the sense where we do not get several mingled
PAs for Gα(e, h): only physically correct hypothesis give
a collection of coincinding PAs. In this respect, KHAF
is very special as any hypothesis on α leads to valuable
extrapolations: no α can be discarded by this way.
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FIG. 3. HTSE+s(e) results on the KHAF: specific heat cV
and magnetic susceptibility χ for different (a) vacancy rates p,
(b) DM interactions Dz and (c) Ising anisotropy δz. Results
for α = 1 (linear low T cV ) and for χ0 = 0.05 are shown. The
results for α = 0 or 2 and for other χ0 are in21.

IV. RESULTS FOR THE MODIFIED KHAF

We now add different terms to H0, whose effects will
be studied successively below:

H = H0 − h
∑
i

Szi +
∑
〈i,j〉

(
Dz · (Si ∧ Sj)z + δzS

z
i S

z
j

)
(6)

+J2

∑
〈i,j〉2

Si · Sj + J3

∑
〈i,j〉3

Si · Sj + J3h

∑
〈i,j〉3h

Si · Sj ,

where Dz is the z component of the DM vector, δz the
Ising anisotropy, J2, J3 and J3h the second and third
nearest-neighbor terms (see Fig. 2). The Qn,k of Eq. (3)
are now polynomials of order n in the rate of vacancies
p, Dz, δz, J2 and J3h. The HTSE order depends on the
complexity of the Hamiltonian: order 20 is obtained for
the KHAF with impurities, 18 with the Ising anisotropy,
16 with DM interactions, 15 with second and third neigh-
bor exchanges.

Fig. 3 shows the influence on cV and χ of some of these
perturbations and of a dilution rate, for h = 0 and with
the hypothesis that α = 1. To get χ, we need a supple-
mentary hypothesis on χ0, chosen to be 0.05 for this fig-
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FIG. 4. Ground state energies e0 for different impurity rates
p, DM interaction strength Dz and Ising anisotropy δz, for
α = 1. The results differ at X = 0 (pure KHAF) due to the
different HTSE orders used for the various types of perturba-
tions X.

ure (results for other values are in21). Note that at inter-
mediate temperatures, our results are consistent with Nu-
merical Linked Cluster (NLC) results32,33. Fig.4 shows
how the ground state energy, e0, extracted from the most
coinciding HTSE+s(e) extrapolations21, evolves with the
considered perturbations.

Impurities. The rate of vacancies (magnetic Cu re-
placed by non magnetic Zn atoms) in the kagome lat-
tice of Herbertsmithite is experimentally estimated to
be less than 5%4. We suppose here that interactions
between remaining spins are unchanged. The extracted
e0(p) has a minimum around p = 10% (Fig. 4). For clas-
sical spins, a low p does not modify the energy per mag-
netic site34 (even if it lowers the energy per lattice site)
and this minima cannot be reproduced. But for quantum
1/2−spins35–37, it can be qualitatively understood as the
minimal energies Et on a triangle and Eb on a bond are
the same (−3/4), whereas classically, Et < Eb (−3S2/2
against −S2). A rough approximation of the energy per
spin on the lattice is

2(1− p)2

3
Et + 2(1− p)pEb

and reproduces the minimum at p ' 10% if Et ' 4Eb/3,
which seems reasonable.

At finite temperature, we find that impurities soften
the separation of the two peaks in cV , strengthen χ and
shift it to higher temperatures (Fig. 3(a)). Another type
of defects is present in Herbertsmithite but not treated
here: interlayer magnetic atoms (Zn replaced by Cu
atoms) at a rate of 15% of occupation4,38. They will
enforce the tridimensional character of the compound.

Dzyaloshinskii-Moriya interaction. This interac-
tion originates from the spin-orbit coupling39,40 and is
often considered, in Herbertsmithite, as the main devi-
ation from the KHAF, together with impurities36. The
out of plane component Dz is supposed to be dominant
and is the only one considered here. The combined ef-
fect of the in and out of plane D has been studied by

NLC32,33. The sum in the Hamiltonian (6) is over ori-
ented links, all pointing in the same arbitrary direction
when we turn around the lattice hexagons. In Herbert-
smithite, Dz ' 0.04 J1

41. Order is supposed to appear for
Dz ' 0.08 J1

42–44, even if smaller values (Dz ' 0.01 J1)
have recently been proposed45. We find thatDz enhances
the main cV peak and has a weak effect on χ (Fig. 3(b)).
As expected, e0(Dz) behaves quadratically (Fig 4).

Ising anisotropy. The Ising anisotropy δz interpo-
lates between the ferromagnetic Ising model (δz = −∞),
the XY model (δz = −1) and the antiferromagnetic
Ising model (δz = ∞), staying in the same spin liquid
phase for δz > −146. Moreover, an exactly solvable point
δz = −3/2 was recently discovered and analyzed47. For
small δz, e0(δz) is linear (Fig 4). This can be qualitatively
understood by considering that most of the energy contri-
bution in the ground state comes from the concentration
c of singlet bonds, whose energy is −(3+δz)/4. With this
naive picture, we get e0(δz) = e0(δz = 0)(1+δz/3), whose
slope is in agreement with the one fitted from HTSE data
0.146(1) ∼ −0.44/3 (Fig. 4). Similarly, the susceptibility
of such singlets decreases when δz increases and recip-
rocally, which is the behavior seen in Fig. 3(c). On the
contrary, cV is almost insensitive to δz.

Second and third neighbors interactions. J2, J3

and J3h are known to lift the classical degeneracy of the
KHAF toward the

√
3×
√

3 long range order for J2 < 0
and J3 > 0, towards the q = 0 order for J2 > 0, J3 < 0
and J3h < 0 and towards the cuboc1 order for J3h >
044,48. For quantum spins 1/2, small changes in these
parameters have seemingly low influence and preserve the
spin liquid phase for |J2|, |J3h| ≤ 0.249–52. The J3 case
is less studied. These terms add new links to the KHAF
model, therefore HTSE are limited to order 15. J2 and
J3 have stronger effects than J3h on cV (T ) and χ(T ).
Results are displayed and discussed in21 for completeness.

Magnetic field. We now consider the effect of a mag-
netic field h, that is a special perturbation as it is easily
tunable experimentally, contrarily to the previous ones.
Up to now, HTSE coefficients were only computed at the
lowest order in h but are here exact. In a gapless system,
the ground state magnetization continuously increases up
to a critical field hc, above which the phase changes, ei-
ther towards the fully magnetized state, or towards an
intermediate phase. For classical spins27, hc = 2S at T =
0, giving rise to the finite T 1

3 -magnetization plateau, but

quantum studies53 find a lowest 1
9 -magnetization plateau

for hc ' 0.6S. Thus, we focus on h . 0.2. However, for
Herbersmithite where J ' 180K, h ∼ 0.1 is a hardly
achieved field for experimentalists. On Fig. 5, the differ-
ence (cV (T, h) − cV (T, h = 0))/h2 appears to be weakly
dependent on h, but roughly proportional to the differ-
ence χ0 − 0.15. This is an interesting effect, that could
be used to get an hint on the χ0 value as the phonons
contributions, known to spoil the cV measurements, are
a priori suppressed in this difference.
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FIG. 5. Variation of the specific heat cV (T ) using various
values of χ0. Shown are (cV (T, h) − cV (T, h = 0))/h2 for
α = 1 and several values of h: 0.2 (full lines), 0.15 (dotted
lines) 0.1 (dahed-dotted lines) and 0.05 (dashed lines). By
construction, the integral of each curve is 0. For χ0 = 0.15,
the curve is almost flat. For χ0 < 0.15, there is an increase
of cV (T ) at T . 0.03 and a decrease for 0.03 & T & 0.3, and
the opposite for χ0 > 0.15.

V. CONCLUSION

In this paper, the HTSE coefficients of antiferromag-
netic 1/2-spins on the kagome lattice have been exactly
obtained as polynomials of various Hamiltonian parame-
ters, with at least three more terms than previously. The
entropy method (HTSE+s(e)) has been applied to these
models. Two types of gapless spin liquids (linear and
quadratic low T specific heat) have been considered and
several values of χ0 have been explored. We have stud-
ied the effect on cV and χ of various perturbations of the
KHAF: magnetic field, impurities, DM interaction, Ising
anisotropy, further neighbor couplings. The ground state

energies have been extracted with a procedure based on
the number of coinciding PAs detailed the supplemen-
tal material21, leading to coherent results down to small
temperatures.

The variations of cV (T ) and χ(T ) are sensible to
Hamiltonian perturbations below T ∼ J1/10. For Her-
bertsmithite, this is precisely in this range of temperature
that the experimentalists get more and more precise data,
therefore HTSE+s(e) is a powerful tool to determine the
values of the Hamiltonian parameters from them, as al-
ready demonstrated for other models. We notably en-
lightened a way to probe χ0 using cV measurements at
finite T under a magnetic field. In a near future, we ex-
pect that measurements under pressure of kagome com-
pounds will tune some other Hamiltonian parameters,
and that the impurity rate will be controlled.

We have here treated in great details the controversial
case of the KHAF, but our extrapolation technic can as
well treat any statistical model if the HTSE coefficients
are known. Our code calculating the HTSE coefficients
works for spin models on any lattice, for any interac-
tion preserving the total magnetization along z and for
S = 1/2. What has been chosen as perturbative parame-
ters in this paper can be set to any arbitrary value as the
HTSE coefficients are exact polynomials of them. How-
ever, the convergence properties of the series are affected
by possible phase transitions.
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Kagomé Antiferromagnet,” Phys. Rev. Lett. 88, 057204
(2002).
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