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Negativity of the Wigner function is seen as a crucial resource for reaching a quantum computational ad-
vantage with continuous variable systems. However, these systems, while they allow for the deterministic gen-
eration of large entangle states, require an extra element such as photon subtraction to obtain such negativity.
Photon subtraction is known to affect modes beyond the one where the photon is subtracted, an effect which is
governed by the correlations of the state. In this manuscript, we build upon this effect to remotely prepare states
with Wigner-negativity. More specifically, we show that photon subtraction can induce Wigner-negativity in a
correlated mode if and only if that correlated mode can perform Einstein-Podolsky-Rosen steering in the mode
of subtraction.

The development of a quantum internet [1, 2] is an impor-
tant goal in the pursuit of quantum technologies. The key idea
of such a quantum network, be it for communication or for
distributed computation, is to connect a large number of nodes
via quantum entanglement [3, 4]. A platform that is particu-
larly promising for such applications is continuous-variable
quantum optics, where large entangled graph states can be de-
terministically produced [5–9]. Even though this allows us to
produce intricate quantum networks, the resulting Gaussian
quantum states still have a positive Wigner function.

Negativity of the Wigner function [10] has been identified
as a necessary ingredient for implementing processes that can-
not be simulated efficiently with classical resources [11, 12],
and is therefore an essential resource [13, 14] to achieve a
quantum advantage. In networked quantum technologies it is,
thus, crucial to generate and distribute Wigner-negativity in
the nodes of a quantum network. In this spirit we focus here
on the remote generation of Wigner-negativity, such that op-
erations in one node of a quantum network create negativity
in the Wigner function of another node while upholding the
entanglement in the quantum network.

Photon subtraction [15–17] is a natural candidate for such a
non-destructive operation. In previous work, we showed that
the subtraction of a photon causes an interplay between corre-
lations and non-Gaussian features [18]. In the specific case of
graph states, it was shown that photon subtraction propagates
non-Gaussian properties through the system [19, 20], how-
ever it is far from clear whether this mediated non-Gaussianity
has quantum features (see also [21]). Hence, here we turn
the question around, and ask what type of correlations are re-
quired to remotely generate Wigner-negativity through photon
subtraction. We show that Einstein-Podolsky-Rosen (EPR)
steering [22–26] is a necessary and sufficient condition.

In its essence, EPR steering focusses on the the structure of
conditional quantum probabilities: when Alice and Bob share
a quantum state, Bob can perform measurements on his part
of the state and Alice can condition her state on Bob’s mea-
surement outcomes. Quantum correlations can induce an ef-
fect on Alice’s statistics that cannot be explained by classical
probability theory. If this is the case, Bob is said to steer Al-
ice’s state. In communication protocols, steering allows Al-

ice to verify that strong quantum correlations are present and
that Bob conveyed the correct measurement outcomes [27–
29]. Motivated by such applications, EPR steering has been
demonstrated in a range of experiments [30–35]. Our current
results introduce the remote generation of Wigner-negativity
as a new application of EPR steering, which is achievable with
state-of-the-art experimental techniques.

Our manuscript is organised as follows: First we present
a general derivation for the condition for remote preparation
of Wigner negativity through photon subtraction, where we
show that EPR steering is necessary. Then, we prove that,
with an additional Gaussian transformation prior to photon
subtraction, EPR steering becomes necessary and sufficient.
Finally, we study a two-mode EPR state and a six-mode graph
state as examples.

First of all, let us introduce the theoretical framework of
multimode continuous-variable quantum optics [36], by intro-
ducing the observable Ê(~r, t) that describes an m-mode elec-
tric field:

Ê(~r, t) = εc

m∑
j=1

(x̂ j + ip̂ j)
2

u j(~r, t), (1)

where {u1(~r, t), . . . , um(~r, t)} is a mode basis, i.e. an orthonor-
mal set of solutions to Maxwell’s equations that describe the
system under consideration, and εc represents the single pho-
ton electric field. The observables x̂ j and p̂ j are known as the
amplitude and phase quadratures, respectively, and follow the
canonical commutation relations [x̂ j, p̂k] = 2iδ j,k, [x̂ j, x̂k] = 0,
and [p̂ j, p̂k] = 0.

The mode basis {u j(~r, t)} is not unique, and can be changed
through passive linear optics. When the mode basis is
changed, the observables x̂ j and p̂ j change with it. Hence, it
is often convenient to define the quadrature observable q̂( f ) =∑m

j=1( f2 j−1 x̂ j + f2 j p̂ j), where f ∈ R2m is a normalised vector in
phase space, associated with a given mode. This leads to the
general commutation relation [q̂( f1), q̂( f2)] = −2i( f1,Ω f2),
where (., .) is the standard inner product and Ω is the sym-
plectic form with properties Ω2 = −1, and Ωt = −Ω.

Our present work starts out from a multimode Gaussian
state ρ, from which a photon is subtracted to render the state
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non-Gaussian. The resulting photon-subtracted state is given
by

ρ− =
â(g) ρâ†(g)

tr[ρ â†(g)â(g)]
, (2)

where g ∈ R2m is associated with the mode in which we sub-
tract the photon. The Wigner function of ρ− can be obtained
analytically [18], leading to a phase space representation of
the state. Furthermore, the methods used to obtain this result,
can equally be applied to find the Wigner function of a single
mode, where all other modes are integrated out [37].

Here, we use correlations with the aim to remotely induce
Wigner-negativity. Hence, we study the reduced Wigner func-
tion for a single mode f ∈ R2m, given that we subtracted the
photon in an orthogonal mode g ∈ R2m. To express this single-
mode Wigner function, we must introduce several objects.
First, we define V f and Vg as the two-dimensional covariance
matrices [38] for modes f and g, respectively. Moreover, we
introduce the 2 × 2 matrix V f g that contains the correlations
between these modes, such that

V{ f ,g} =

(
V f V f g

V t
f g Vg

)
, (3)

is the covariance matrix that describes the two-mode system
associated with f and g. Note that V{ f ,g} is a positive symplec-
tic matrix with respect to the symplectic form Ω with m = 2.
Finally, we introduce ξ f , ξg ∈ R

2 that describe the mean field
(i.e. the displacement) in modes f and g, respectively. Af-
ter the subtraction of a photon, we find that the single-mode
Wigner function for the mode f is given by

W−
f (β f ) =

exp
{
− 1

2 ([β f − ξ f ],V−1
f [β f − ξ f ])

}
2π

√
det V f (tr

[
Vg

]
+ ‖ξg‖

2 − 2)
(4)

×
{
‖Vg f V−1

f (β f − ξ f ) + ξg‖
2 + tr[Vg| f ] − 2

}
,

where β f ∈ R
2 denotes an arbitrary point in the two-

dimensional phase space associated with mode f . In (4), we
introduced the Schur complement of V{ f ,g}, given by

Vg| f ≡ Vg − V t
f gV−1

f V f g. (5)

In statistical terms [39], this matrix describes the variance of
mode g when conditioned to a specific joint measurement out-
come for the phase- and amplitude quadrature in mode f (a
procedure which is unphysical).

As a next step, we note that the Wigner function W−f (β f ) is
negative if and only if the polynomial ‖Vg f V−1

f (β f −ξ f )+ξg‖
2+

tr[Vg| f ] − 2 is negative. This polynomial reaches its minimal
value tr[Vg| f ]− 2 in the point β f = −V f (V t

f g)−1ξg + ξ f . Hence,
we find the simple negativity condition

tr[Vg| f ] < 2. (6)

Now we must understand the constraints that (6) puts on the
correlation in the initial Gaussian state. The relation between

the Schur complement Vg| f and EPR steering is crucial for this
understanding.

The mode f is said to steer the mode g when condi-
tional covariances violate Heisenberg’s uncertainty relation
[40], which is directly related to the properties of Vg| f [24].
More specifically, Gaussian EPR steering can be quantified
through the Williamson decomposition which (in this single-
mode case) allows to write Vg| f = νS tS , where S is a sym-
plectic matrix and ν > 0. In the absence of EPR steering, the
positive matrix Vg| f gives rise to values ν > 1. On the other
hand, when mode f can steer mode g, we find that ν < 1. Note
that ν can be used to define a measure for the capability of f
to steer g [41]. Using this decomposition in (6), we find that

ν
eq. (6)
<

2
tr[S tS ]

6 1, (7)

where the latter inequality follows from the fact that S tS is
a positive symplectic matrix (and thus has a trace larger than
two).

Condition (7) shows that EPR steering is a necessary
condition to remotely prepare Wigner-negativity through
photon subtraction. More specifically, if a photon is sub-
tracted in mode g and the single-mode Wigner function
of a correlated mode f is rendered negative, this implies
that homodyne measurements in mode f are able to steer
homodyne measurements in mode g.

Although (7) shows that EPR steering is a necessary condi-
tion, it is typically not a sufficient one. The condition entails
that a certain amount of steering is required, and this amount
depends on the fine details of the initial Gaussian state, as cap-
tured by the factor tr[S tS ]. However, in the derivation of (7)
we only consider photon subtraction on mode g. It is thus nat-
ural to search for an additional operation in mode g that can
make EPR steering also a sufficient resource to remotely gen-
erate Wigner-negativity. This additional operation turns out to
be a local Gaussian transformation. Note that applying such a
local operation to the initial Gaussian state cannot change its
steering properties.

We thus consider a local Gaussian operation on mode g,
represented by a symplectic matrix R, which we implement
prior to the subtraction of the photon. Because this operation
is local, it only affects Vg and V f g, as given by Vg 7→ RtVgR,
and V f g 7→ V f gR. Hence, as this local operation is imple-
mented prior to the photon subtraction, we can modify Vg and
V f g in (4) accordingly, and (6) then becomes tr[RtVg| f R] < 2.
When we apply Williamson’s decomposition to this inequal-
ity, we find that (7) changes as

ν <
2

tr[RtS tS R]
(8)

Thus, in contrast to EPR steering, the condition for remote
creation of Wigner-negativity in mode f is not independent of
local Gaussian transformations on mode g, as shown directly
by (8). Because we allow any local Gaussian operation R on
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mode g, we can choose R = S −1 and obtain our key result:

Wigner-negativity in f
eq. (8)
⇐⇒ ν < 1 ⇐⇒ f steers g. (9)

Thus, we can induce negativity in the Wigner function in
mode f by implementing local Gaussian operation and a
photon subtraction in mode g if and only if mode f can steer
mode g. From (8), we see that the Gaussian transformation
R must change the squeezing for the effect to be non-trivial.
Since the transformation is obtained through the Williamson
decomposition of Vg| f , which is a priori not a physical covari-
ance matrix, there is no simple relation between the required
squeezing values in the local Gaussian transformation and the
physical noise in mode g.

Remark that the conditions (6) and (9) are independent
on the displacement of the state. Thus, in principle the dis-
placement plays no role in whether or not W−

f (β f ) reaches
negative values. However, our criteria only test the exis-
tence of Wigner-negativity, they do not provide a quantita-
tive measure for this negativity. We can evaluate W−

f (β f ) in
β f = −V f (RtV t

f g)−1ξg + ξ f to find the minimal value Wmin of
the Wigner function

Wmin =
(tr[RtVg| f R] − 2)e−

1
2

(
ξg,[V f gR]−1V f [RtV t

f g]−1ξg

)
2π

√
det V f

(
tr
[
RtVgR

]
+ ‖ξg‖

2 − 2
) . (10)

Here we see that Wmin rapidly tends to zero for increasing
displacements ξg. In other words, even though displacement
does not play a role in (6) and (9) for determining whether
the Wigner function is negative, the displacement ξg in the
mode g of photon subtraction strongly impacts the amount of
negativity that is induced in mode f . Surprisingly, the dis-
placement ξ f in mode f does not play any role in (10). Given
that the Wigner-negativity in mode f is manifested around
β f = −V f (RtV t

f g)−1ξg + ξ f , this implies this scheme can be
used to generate “bright” non-Gaussian states.

Another important element in determining the amount of
Wigner-negativity in W−f (β f ) is purity of mode f , given by
(det V f )−1/2 in (10). This highlights two competing effects:
on the one hand, to induce Wigner-negativity in mode f ,
we require EPR steering between modes g and f , which
induces impurity in the reduced single-mode state of f . On
the other hand, impurity of mode f reduces the amount of
Wigner-negativity that can be induced.

Up to this point, the argumentation held for any arbitrary
pair modes f and g, let us now make the obtained results more
concrete. First of all, we consider the EPR state [22, 30, 40,
42, 43], which is obtained by mixing two squeezed vacuum
states with covariance matrices

V1 =

(
ns1 0
0 n/s1

)
, and V2 =

(
n/s2 0

0 ns2

)
(11)

on a balanced beamsplitter. Here we assume the presence of
some additional thermal noise n, which is the same in each

FIG. 1. Left Panel: For the impure EPR state (see main text), re-
motely generated Wigner-negativity Wmin (10), with R = S −1, is
shown as a function of thermal noise n and the geometric mean of the
squeezing parameters (s1 s2)1/2. The white curve indicates ν = 1. The
white dot indicates the parameters n = 1.2 and (s1 s2)1/2 = 4dB, with
2πWmin ≈ −0.135, which is studied explicitly in the Right Panel:
Different setup with (s1 s2)1/2 = 4dB are shown. When s1 = 7dB
and s2 = 1dB condition (6) is not fulfilled, but a local Gaussian
transformation R = S −1 allows to reach 2πWmin ≈ −0.135. For
s1 = s2 = 4dB, condition (6) is satisfied, and 2πWmin ≈ −0.135
is achieved without local Gaussian transformation. Note that the
Wigner function has the property that −1 < 2πWmin < 1.

mode. We create a negative Wigner function in one of the
two EPR-modes (mode f ) by subtracting a photon in the other
(mode g).

To assess EPR steering, Vg| f can be calculated in a straight-
forward way from which we then obtain

ν =
2n(s1s2)1/2

1 + s1s2
. (12)

Note that ν, and therefore also the capacity to remotely pre-
pare Wigner-negativity according to (9), does not depend on
the individual values of s1 and s2, but only on their geometric
mean (s1s2)1/2. Computing the minimal value of the Wigner
function (10), we observe that it shares this dependence on
(s1s2)1/2, under the condition that R = S −1. This minimal
value is plotted in the left panel of Fig. 1, and reaches signifi-
cantly negative values (comparable to what is experimentally
achieved in [20] for instance) for realistic amounts of ther-
mal noise and squeezing. The white curve corresponds to the
case where ν = 1 and Wmin = 0, and can be associated with
the experimental scenario of having 50% losses in the system.
Furthermore, we observe that Wmin tends towards zero as the
squeezing parameter is increased, which is a consequence of
an associated increase in entanglement. Larger entanglement
leads to a lower purity in modes f and g, thus increasing the
denominator in (10).

The right panel of Fig. 1 explicitly shows the example
for n = 1.2 and (s1s2)1/2 = 4dB. In the symmetric case
with s1 = s2 = 4dB (experimentally realised with ∼ 5dB
squeezing, subjected to ∼ 30% losses) condition (6) is
satisfied and S = 1, such that nothing can be gained by
performing a Gaussian operation prior to photon subtraction.
We therefore consider this to be the optimal case. However,
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(s1s2)1/2 = 4dB can also be achieved by very different choices
of parameters, e.g., s1 = 7dB and s2 = 1dB. In this case we
explicitly show that no Wigner-negativity can be generated
remotely with only photon subtraction, i.e., condition (6) is
not satisfied. However, by implementing a local Gaussian
transformation R = S −1 in mode g, we can fulfil (9) and
reach a significant amount of Wigner-negativity equal to the
optimal case Wmin ≈ −0.135/2π. This example shows that the
main role of the local Gaussian transformation R is to balance
the noise in modes f and g. This explains why the symmetric
setup with s1 = s2 = 4dB is the optimal case.

Impure two-modes states do not only arise due to losses,
they could also originate from entanglement to additional
modes. To explicitly explore this case, we now subtract a
photon from a mode in a larger multimode state. In particular,
we consider CV graph states [5–9], which form the backbone
of measurement-based quantum computing in CV [44], and
have tractable entanglement properties. Recently, EPR steer-
ing was experimentally observed in such a system [33]. These
states are Gaussian, with a covariance matrix that is built in
accordance with a graph G as a blueprint. The graph G de-
scribes the entanglement pattern that will be imprinted on a set
of squeezed modes. For simplicity, we assume that all modes
are equally squeezed. Now, let A denote the adjacency ma-
trix of the graph (i.e. A jk = 1 when j and k are connected,
and zero otherwise), which gives us the final graph state co-
variance matrix [45, 46]

V =

(
X Y
−Y X

)  m⊕
j=1

(
ns 0
0 n/s

) (X −Y
Y X

)
, (13)

where X = (A2 +1)−1/2 and Y = AX. We refer to s > 0 as the
squeezing parameter, and n > 1 denotes the fraction of added
thermal noise.

In Fig. 2, we consider a six-mode scenario, corresponding
to a graph G, as shown in panel (a). In panel (d), we see that
(6) is fulfilled in regions of intermediate squeezing, whereas
the amount of thermal noise that can be allowed depends on
the squeezing. EPR steering can be achieved for a larger range
of parameters, as shown in panel (b), and thus there is some-
thing to be gained from local Gaussian transformations R. A
priori, this is surprising, since the considered setup is highly
symmetric (recall that in Fig. 1 the local Gaussian transfor-
mation served to change the asymmetry between modes f and
g). This highlights a second important feature R: not only can
it change the local squeezing, it can also change its orienta-
tion in phase space. The latter feature is crucial for the remote
preparation of Wigner-negativity in this example.

Panel (c) of Fig. 2 explicitly shows that, even in systems
with a significant number of modes, Wigner-negativity can
be remotely prepared. This result is intriguing since addi-
tional entangled modes lead to more noise in the subsystem
of modes f and g. Naturally, for increasing values of ther-
mal noise n, the Wigner-negativity in mode f will steadily
decrease.

FIG. 2. Photon subtraction in mode g of six-mode graph state (a) can
render the Wigner function in mode f negative [see Wigner func-
tion in Panel (c)]. For a graph state, generated according to (13), the
squeezing s and the fraction of thermal noise n (compared to vac-
uum noise) is varied, and we show how this influences the validity
of condition (9) in Panel (b), and condition (6) in Panel (d). The
white curves in panels (b) and (d) represent the case where ν = 1
and tr[Vg| f ] = 2, respectively. The arrow between f and g indicates
direction of EPR steering.

In conclusion, we have shown that photon subtraction can
be used to transfer Wigner-negativity to an entangled node,
given that condition (6) applies: for photon subtraction in
mode g to create Wigner-negativity in mode f , it is necessary
that g is EPR steerable by f . EPR steering also becomes a
sufficient condition when we allow for additional local Gaus-
sian transformations prior to photon subtraction. In Figs. 1
and 2, we show that this remote generation of negativity is
feasible with realistic values of squeezing and thermal noise,
and in relevant multimode states such as graph states. This
result highlights the potential use of EPR steering as a tool for
studying and Wigner-negativity and vice-versa. For instance,
in multimode photon subtraction experiments, it is a priori
hard to witness Wigner negativity due to the complexity of
multimode tomography. For some states, our result provides
an elegant way of identifying exactly which individual mode
needs to be measured as a witness for this Wigner-negativity,
and in other cases our result provides a way to prove that
any present Wigner-negativity cannot be witness only through
single-mode measurements.
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