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Breakdown of effective temperature, power law interactions and self-propulsion in a momentum conserving active fluid

Simplest extensions of single particle dynamics in a momentum conserving active fluid -an active suspension of two colloidal particles or a single particle confined by a wall -exhibit strong departures from Boltzmann behavior, resulting in either a breakdown of an effective temperature description or a steady state with nonzero entropy production rate. This is a consequence of hydrodynamic interactions that introduce multiplicative noise in the stochastic description of particle positions. This results in fluctuation-induced interactions that depend on distance as a power law. We find that the dynamics of activated colloids in a passive fluid, with stochastic forcing localized on the particle, is different from that of passive colloids in an active fluctuating fluid.

I. INTRODUCTION

Fluctuations of a dilute active suspension (e.g., bacterial bath, [1,2]) have often been described in terms of an equilibrium system with a (large) effective temperature [3,4], with theoretical rationalisations provided by studies of the dynamics of a single particle in an active fluctuating fluid or a single active particle embedded in a passive fluid [4,5].

However, as we find here, even the simplest extensions -the stochastic dynamics of two particles embedded in an unbounded active fluctuating gel or a particle in an active fluctuating gel bound within confining walls -do not allow for an effective temperature description, since the corresponding steady state probability distribution shows strong departures from the Boltzmann form. This is a consequence of a drift that arises from hydrodynamic interactions, that introduce multiplicative noise in the stochastic description of particle positions. The form of the drift can only be decided after solving the full hydrodynamics problem. This has important implications for current discussions on active contributions to pressure, osmotic pressure and surface tension in momentum conserving active fluids [4,6,7].

Indeed, deviations from Boltzmann behaviour and consequent breakdown of an effective temperature description have been systematically analysed in a dry system of active Ornstein-Uhlenbeck particles (AOUP) [8], where momentum is not conserved. Within a systematic perturbation expansion in the active noise correlation time τ n , the nonequilibrium nature of the steady state distribution first shows up at order τ n (characterised by non-Boltzmann probability distribution but zero entropy dissipation), while the full nonequilibrium aspect with nonzero entropy production shows up at order τ 3/2 n [8].

How do similar departures from Boltzmann show up in momentum conserving active systems? In this paper, we take a step in this direction. We find that the simplest extensions of single-particle dynamics, viz., that of colloid particle-wall and colloid particle-particle interactions embedded in a three dimensional active fluctuating gel, exhibits a clear non-Boltzmann steady state distribution, characterized by an effective attractive potential (∝ 1/r, for particle-wall separated by r and ∝ 1/r 4 , for particleparticle). This is a consequence of the active (fluctuationdissipation relation violating) fluctuations and hydrodynamic interactions that introduce a multiplicative noise. A dimer of unequal sized spherical particles embedded in an active fluctuating gel self-propels with a velocity proportional to the fluctuation amplitude. Interestingly, for this momentum conserving active system, both the breakdown of the effective temperature description and finite entropy production rate, appear even in the limit τ n → 0. We next study the statistics of fluctuations of activated particles in a passive fluid, i.e., particles directly subject to a stochastic driving force. We find that the dynamics of activated particles in a passive medium is not the same as the dynamics of particles in an active medium -for instance, the effective particle-particle interaction is repulsive and long ranged (∝ 1/r 2 ). We proceed to demonstrate these results below. Consider a spherical colloidal particle(s) embedded in an incompressible, isotropic, actively fluctuating viscoelastic gel, described by a local stress,

(1 + τ v ∂ t ) σ ij = -p + η (∂ i v j + ∂ j v i ) + σ n ij , (1) 
where τ v is a Maxwell time, η is the viscosity, p is the pressure which includes, a priori, the isotropic component of the mean and fluctuating active stress, and σ n ij is the fluctuating component of the active deviatoric stress,
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FIG. 1. Schematic of (A) a sphere of radius a at distance z from a fixed wall at z = 0, and (B) two spheres of radius a and b centred at R1 and R2 respectively, in an unbound fluctuating viscous fluid.

with zero mean and correlation [9, 10]

σ n ij (r, t)σ n kl (r , t ) = 2πδ(r -r )∆(t -t ) δ ik δ jl + δ il δ jk - 2 3 δ ij δ kl , (2) 
with ∆(t -t ) = Λτ -1 n e -|t-t |/τn . For simplicity, we have taken the variance of the anisotropic stress fluctuation to be a scalar ∆(t -t ). In general, ∆ ijkl (t -t ) is a fourth rank tensor, which can arise from fluctuations of the nematic order parameter [9]. Since the temporal correlations of the noise are unrelated to the drag, this system does not satisfy the generalized Stokes-Einstein relation at a microscopic scale. Throughout this paper, we work at timescales larger than τ n and τ v , thus Eq. 1 becomes

σ ij = -p + η (∂ i v j + ∂ j v i ) + σ n ij . (3) 
with ∆(t -t ) = 2Λδ(t -t ), obtained by taking the limit τ n → 0. The dynamics in the Stokes limit is ∇ • σ = 0, along with the incompressibility condition ∇ • v = 0.

II. PARTICLE-WALL

The Langevin dynamics of a single spherical colloidal particle embedded in an unbounded fluid is obtained by integrating out the fluid stress Eq. C3 and using no-slip boundary condition at its surface [11][12][START_REF] Doi | The theory of polymer dynamics[END_REF],

∂ t R = -µ∇ • U + 2λµ ϑ, (4) 
where λ = Λ/η, µ = 1/6πηa, and U is an externally applied potential. The steady state probability distribution of the position of the colloidal sphere obtained from the corresponding Fokker-Planck equation has a Boltzmann form P (z) ∝ e -U/λ , with an effective temperature k B T eff ≡ λ.

The Langevin dynamics of a spherical colloid of radius a at a distance z from a fixed wall at z = 0 (Fig. 1(a)), is obtained by integrating out Eq. C3 and using the no-slip boundary condition at the surface of the colloid [START_REF] Doi | The theory of polymer dynamics[END_REF],

∂ t z = -H z ∂ z U + 2λH z ϑ z , (5) 
∂ t x ⊥ = -H x ⊥ ∂ x ⊥ U + 2λH x ⊥ ϑ x ⊥ , (6) 
where x ⊥ ≡ (x, y), H z (H x ⊥ ) is the mobility in the longitudinal (transverse) direction to the wall, U(z, x ⊥ ) is the particle-wall potential, and ϑ z and ϑ x ⊥ are zero mean Gaussian white noise with correlation

ϑ i (t)ϑ j (t ) = 2λH -1 i δ ij δ(t -t ), (7) 
where i, j ∈ (x, y, z). The mobilities H i (z) are functions of the separation z from the wall, which can be evaluated as power series in a/z (Appendix B and [START_REF] Kim | [END_REF]). The appearance of a multiplicative and correlated noise is typical of a stochastic dynamics with hydrodynamic interactions. As is well known [START_REF] Van Kampen | [END_REF]16], this Langevin equation is meaningless unless supplemented with a stochastic calculus convention for the multiplicative noise. The choice of convention depends on the fast timescales that have been integrated out -viscoelastic relaxation time (τ v ), particle inertial relaxation time (τ m ∼ m/η a, where m is the particle mass and a is the particle size), and noise correlation time (τ n ). In [17,18] it was shown that for an active noise with τ n √ τ m τ v , the appropriate convention is Stratonovich [16,19]. For the cell cortex, for instance, the timescales are τ v ∼ 1-10 s [17,20], τ m ∼ 10 -9 s, and τ n ∼ 10 s [17], which makes √ τ m τ v ∼ 1 ms τ n . The Fokker-Planck equation corresponding to Eq. 5 and 6, interpreted in Stratonovich convention is (see appendix A)

∂ t P = ∂ z H z ∂ z U + 1 2 λ (∂ z H z ) + λH z ∂ z P + ∂ x ⊥ (H x ⊥ ∂ x ⊥ U + λH x ⊥ ∂ x ⊥ ) P. (8) 
which leads to a steady state probability distribution P (z, x ⊥ ) ∝ e -Φ/λ , with an effective potential,

Φ = U + 1 2 λ log H z . (9) 
This effective interaction between the wall and the particle, as a result of the active noise and hydrodynamics, is long-range (goes as a/z, for large z), attractive and anisotropic. The additional fluctuation term along with the applied potential cannot be captured by a simple effective temperature definition. Nevertheless, the steady state has zero current and obeys time reversal symmetry, making this a nonthermal equilibrium model [8]. We emphasise however that unlike in [8], this deviation from Boltzmann measure occurs even in the limit τ n → 0. Further, in contrast to thermal fluctuations where hydrodynamic interactions only affect dynamics, active fluctuations in a fluid affect both the dynamics and the steady state. The contribution to the force on the wall due to the bare colloid-wall potential U is,

F p = ∞ 0 dzP (z)∂ z U(z) ∝ ∞ 0 dz 1 √ H z e -U/λ ∂ z U(z).
(10) The observation that the force on the wall depends on the form of wall-particle interaction, is directly related to the fact that the probability distribution is non-Boltzmann. This is analogous to the situation in dry active particle systems [21], where, apart from the kinetic contribution, this would have sufficed to give the pressure. However, in momentum conserving Stokesian fluid systems, the net force due to particle-wall interactions is balanced by the force due to embedding fluid. As a consequence the total force exerted on the wall by the system particle+fluid vanishes exactly (shown in Appendix C). This point appears to have been disregarded in recent theoretical studies of the active contribution to osmotic pressure and surface tension in momentum conserving active fluids [4,6,7].

III. TWO PARTICLES EMBEDDED IN ACTIVE FLUID

We now consider the dynamics of two spherical colloids of radius a and b, centered at R 1 , and R 2 respectively (Fig. 1(b)), in an unbounded active fluctuating fluid. Since for spherical colloids, the translational motion of the center of mass is decoupled from the rotational motion, we will consider only the hydrodynamic coupling between the translational degree of freedom.

The Langevin dynamics for the centers of the spherical colloids follows as before and is given by [2,[START_REF] Kim | [END_REF],

dR α dt = β H αβ • (f β + ϑ β ), (11) 
where α, and β are particle labels, H αβ , is the 3 × 3 hydrodynamic interaction tensor coupling the translation motion of particle β with that of particle α (see appendix B for the form), f β = -∇ R β U is the deterministic force from an externally applied potential U. The stochastic force ϑ β on the particle β, is a three dimensional vector of Gaussian white noise with correlation

ϑ i α (t)ϑ j β (s) = 2λH -1 αβ δ ij δ(t -s). (12) 
The Fokker-Planck equation corresponding to Eq. 11, interpreted in Stratonovich convention is [22] (see appendix A) [START_REF] Doi | The theory of polymer dynamics[END_REF], the first non-zero contribution is at order 1/r 4 . In terms of variables, R ≡ R 1 + R 2 and r ≡ R 2 -R 1 , Eq. 13 is

∂ t P = ∇ Rα • -H αβ • f β + λ 2 ∇ R β • H αβ + λH αβ • ∇ R β P. ( 13 
) Due to incompressibility, ∇ R β • H αβ is identically zero in Oseen approximation of H αβ
∂ t P = ∇ R • -M 11 • f1 -M 12 • f2 + λM 11 • ∇ R P (14) +λ∇ R • 1 2 ∇ r • M 12 + M 12 • ∇ r P + ∇ r • (λM 12 • ∇ R ) P +∇ r • -M 12 • f1 -M 22 • f2 + λ 2 ∇ r • M 22 + λM 22 • ∇ r P,
where f1 = -∇ R U, f2 = -∇ r U, and the mobility matrix

M = H 11 + H 22 + 2H 12 H 22 -H 11 H 22 -H 11 H 11 + H 22 -2H 12 . (15) 
Let us first look at equal sized colloids, a = b. In this case, the off-diagonal block matrix M 12 = 0, and Eq. 14 reduces to

∂ t P = ∇ R • -M 11 • f1 + λM 11 • ∇ R P (16) + ∇ r • -M 22 • f2 + λ 2 ∇ r • M 22 + λM 22 • ∇ r P,
which at steady state satisfies the potential condition [16] 

∇ α ∇ β log P = ∇ β ∇ α log P, (17) 
which is a necessary and sufficient condition for the steady state solution to have zero probability current.

Using this we see that the steady state distribution has the form P ∝ e -Φ/λ , where

Φ(r, R) = U - 1 2 λ 15b 4 8r 4 + O 1 r 5 . ( 18 
)
As in the colloid-wall interaction, the steady state distribution is non-Boltzmann with a fluctuation-induced particle-particle interaction that is attractive, though short-ranged.

For spheres of unequal size, a = b, the steady state distribution does not obey the potential condition; thus the steady state has a finite probability current and an associated entropy production rate, resulting in a finite propulsion velocity at steady state. We emphasize that unlike AOUP [8], this nonequilibrium steady state with finite entropy dissipation occurs even in the limit of τ n → 0.

To see this, we describe the two particles as a dimer, characterised by the separation r, the orientation r, and the center of mass position R [23]. In general, it is difficult to obtain an analytic expression for the steady state distribution P (r, r, R). However, in a well defined limit where there is a time scale separation, we obtain analytic expressions for the steady state distribution, fluctuationinduced potential and mean propulsion velocity.

Taking U to be a function of r alone, f1 = 0 and f2 = -U (r)r. With this, the probability flux for r in Eq. 16 is now independent of R, hence, we can integrate out R to obtain the marginal dynamics of r. This allows us to solve for the steady state marginal distribution. The steady state for the marginal distribution: P (r), obtained by integrating Eq. 14 in the main text over R, with no flux boundary condition gives

∇ r log P (r) = 1 λ f2 - 1 2 M -1 22 • (∇ r • M 22 ) . (19) 
The mobility tensor M defined in Eq. 15 decomposed as sum of projection along r (denoted by superscript n) and perpendicular to r (denoted by superscript q) is

M αβ = m q αβ (r) (I -rr) + m n αβ (r)rr. ( 20 
)
From this we see that the inverse is

M -1 αβ = 1 m q αβ (I -rr) + 1 m n αβ rr, (21) 
and its divergence is

∇ r • M αβ =   ∂ ∂r m n αβ + 2 m n αβ -m q αβ r   r. (22) 
Using Eq. 21 and Eq. 22 we get

M -1 22 • (∇ r • M 22 ) = 1 m n 22 ∂ ∂r m n 22 + 2 (m n 22 -m q 22 ) r r. (23) 
The form of M is given in Appendix B. We see that in Oseen and Rotne-Pragar approximation of M the right hand side of Eq. 23 is zero. The first nonzero contribution comes when M is of order 1/r 4 , at which the self mobilities of the particles are also modified. Substituting M to the order 1/r 4 (see Appendix B) in Eq. 23 gives

M -1 22 • (∇ r • M 22 ) = 15ab(a 3 + b 3 ) 2(a + b) 1 r 5 r. ( 24 
)
Substituting this expression in Eq. 19 and using f = -U (r)r gives

∇ r log P (r) = - 1 λ U (r)r - 15ab(a 3 + b 3 ) 4(a + b) 1 r 5 r. (25) 
Integrating this gives log P (r) ∝ -

1 λ U(r) + 15ab(a 3 + b 3 ) 16(a + b) 1 r 4 , (26) 
which gives P (r) ∝ e -Φ(r)/λ , where

Φ = U(r) - 1 2 λ 15ab(a 3 + b 3 ) 8(a + b) 1 r 4 + O 1 r 5 . (27) 
Note that while we can define an effective potential for the marginal dynamics of r , there is no effective potential description in the full Fokker-Planck description that includes r and R. If we now assume that the dynamics of r is fast, we can decompose the probability distribution as

P (R, r, r) = P (r) drr 2 P (R, r, r) = P (r) P (R, r), (28 
) where we have defined P (R, r) ≡ drr 2 P (R, r, r).

Decomposing the derivative as radial and rotational derivative

∇ r = r ∂ ∂r + 1 r r × R, ( 29 
)
where R is the rotation operator that rotates the r keeping r fixed. In spherical co-ordinates it reads

r × R = θ ∂ ∂θ + φ 1 sin θ ∂ ∂φ . (30) 
Integrating out r from Eq. 16 we get [23] ∂

t P = ∇ R • -v 0 r + λ M 12 r • r × R + λ M 11 • ∇ R P + λr × R • M 12 r • ∇ R + M 22 r 2 • r × R P , (31) 
where the averages are over the distributions P (r), φ(r) = drr 2 φ(r)P (r), and the self-propelled velocity

v 0 = r 2 drr• M 12 • f2 - λ 2 ∇ r • M 12 -λM 12 • ∇ r P (r).
(32) Note that if the fluctuations are thermal, the middle term in Eq. 32 is not present, the probability distribution has the Boltzmann form P (r) ∝ e -U/λ , and the velocity vanishes as shown Appendix D. To evaluate the average, we consider the bare inter-particle potential to be a stiff spring, U = k(r -l) 2 /2, and l a, b. In this limit, the relaxation time scale of r is set by M 22 , k, and λ; kl 2 /2λ

1 ensures that the r-dynamics is fast [23]. Using the Laplace approximation [24], we obtain, to leading order in 1/l, the propulsion velocity

v 0 = 5ab 4πη (b -a) λ l 5 + O 1 l 6 . ( 33 
)
directed along r, if b > a. Orientation decorrelation will lead to diffusion over times longer than the orientation correlation time of r (τ R ). The enhancement of the diffusion constant due to this self-propulsion in units of diffusion of a sphere of radius l is

v 2 0 τ R /D t = (1 -δ) 2 δ 2 6
, where D t = λ/6πηl, τ R ∼ 3ηl 3 /λ, δ = a/b, and = b/l. Since δ < 1 and 1, this enhancement is very small.

IV. ACTIVATING THE PARTICLE BY A FLUCTUATING FORCE

Now consider two colloidal spheres of radii a and b, embedded in an unbounded passive fluid, each of which experiences a stochastic force, localized on the colloids. To make the discussion simple, we set the stress fluctuations of the embedding medium σ n ij = 0; the dynamics of the colloids is then given by Eq. 11, with ϑ β = 0, and the applied force on the particles is a sum of deterministic and stochastic components, f β ≡ f β + ξ β . The fluctuating force on the two colloids is taken to be isotropic, zero mean Gaussian white with correlations,

ξ αi (t)ξ βj (s) = 2Λδ αβ δ ij δ(t -s). (34) 
The corresponding Fokker-Planck equation is now (see Appendix A),

∂ t P = ∇ R • -M 11 • f1 -M 12 • f2 + ΛD 11 • ∇ R P (35) +Λ∇ R • 1 2 ∇ r • D 12 + D 12 • ∇ r P + ∇ r • (ΛD 12 • ∇ R ) P +∇ r • -M 12 • f1 -M 22 • f2 + 1 2 Λ∇ r • D 22 + ΛD 22 • ∇ r P,
where, M is given by Eq. 15, and the diffusion matrix Once again, Eq. 35 does not satisfy the potential condition [16], and hence does not have a zero probability current steady state, even when the spheres are of the same size. This proves that the dynamics of particles in an active medium is fundamentally different from the dynamics of activated particles. In this context, we refer to recent experiments [25? , 26] in which two spheres embedded in a fluid are held in two optical traps. A fluctuating force is applied on one sphere by moving the position of its laser trap randomly. This has been modeled as a two temperature system [25? -27], where the static particle feels the bath temperature and the particle in the fluctuating trap, a higher temperature. Our study demonstrates the inadequacy of such an effective temperature approach, and in principle (at least numerically) provides a full solution to the steady state distribution.

D αβ is 3 × 3 matrix
We now consider the case when U is a function of r alone implying f1 = 0 and f2 = -Ur. For this case Eq. 35 reduces to

∂ t P = ∇ R • -M 12 • f2 + 1 2 ∇ r • D 12 + ΛD 11 • ∇ R P +Λ∇ R • (D 12 • ∇ r ) P + ∇ r • (ΛD 12 • ∇ R ) P +∇ r • -M 22 • f2 + 1 2 Λ∇ r • D 22 + ΛD 22 • ∇ r P. ( 36 
)
The steady state for the marginal distribution P (r) obtained by integrating Eq. 36 over R, with no flux boundary condition gives

∇ r log P (r) = 1 Λ D -1 22 • M 22 • f2 - 1 2 D -1 22 • ∇ r • D 22 . ( 37 
)
The tensor D decomposed as sum of projection along r (denoted by superscript n) and perpendicular to r (denoted by superscript q) is

D αβ = d q αβ (r) (I -rr) + d n αβ (r)rr. ( 38 
)
The inverse is

D -1 αβ = 1 d q αβ (I -rr) + 1 d n αβ rr, (39) 
and the divergence is

∇ r • D αβ =   ∂ ∂r d n αβ + 2 d n αβ -d q αβ r   r. ( 40 
)
Using Eq. 39, and Eq. 40 we get

D -1 22 • (∇ r • D 22 ) = 1 d n 22 ∂ ∂r d n 22 + 2 (d n 22 -d q 22 ) r r. ( 41 
)
Taking the diffusion tensor D (see Appendix E) to the order 1/r and substituting it in Eq. 41 gives

D -1 22 • (∇ r • D 22 ) = - 9(a 2 b 2 ) 4(a 2 + b 2 ) 1 r 3 r, ( 42 
)
and substituting the diffusion tensor in the first term on the right of Eq. 37 we obtain

D -1 22 • M 22 • f2 = - m n 22 d n 22 U (r)r (43) 
Substituting Eq. 42 and 43 in Eq. 37 gives

∇ r log P (r) = - 1 Λ m n 22 d n 22 U (r)r + 9(a 2 b 2 ) 8(a 2 + b 2 ) 1 r 3 r. (44)
From this the effective potential Φ ≡ -Λ log P upon integration of Eq. 44 is

Φ = drr 2 m n 22 d n 22 U + Λ 9(a 2 b 2 ) 16(a 2 + b 2 ) 1 r 2 + O 1 r 3 . (45)
Note that in this case m 22 /d 22 depends on r, it is not possible to define an effective free energy, keeping the energy U and a constant effective temperature. As in the colloid-colloid interaction in an active fluid, the steady state distribution is non-Boltzmann with a fluctuationinduced particle-particle interaction. However, in contrast, the interaction is repulsive, long-ranged, and depends on the form of the interaction potential U. This effect is similar to that of effective colloid-wall interactions due interplay between hydrodynamic and electrostatic interactions [28].

Integrating out r from Eq. 36 leads to the similar form of self-propulsion velocity as Eq. 32. To order 1/r 3 M 12 is a constant and self-propulsion velocity is

v 0 = -N drr 2 m n 12 U -d n 12 ∂ ∂r Φ e -Φ/Λ . (46) 
Using Eq. 45 we get

∂ ∂r Φ = m n 22 d n 22 U -Λ 9(a 2 b 2 ) 8(a 2 + b 2 ) 1 r 3 + O 1 r 4 . (47) 
and

m n 22 d n 22 = (6πηba)(a + b) a 2 + b 2 1 + 6b 2 a 2 (a 2 + b 2 )(a + b) 1 r + O 1 r 2 .
(48) Thus to leading order in 1/r we obtain

v 0 = -N drr 2 m n 12 1 - d n 12 m n 22 d n 22 m n 12 U e -U/Λ , (49) 
where Λ = Λ(a 2 + b 2 )/6πηab(a + b). As before, taking U = k(r -l) 2 /2, with k large and l a, b, such that kl 2 /2Λ 1, gives the mean self-propulsion velocity of the dimer to be

v 0 ∼ a -b 18π 2 η 2 ab(a + b) Λ l ,
directed along r. Note that this leading order contribution is due to the interaction potential between the dimer. In contrast, the leading order contribution in the fluctuation fluid case was form the fluctuation induced interaction. The long time dynamics of the dimer is diffusive, thus resembling an active Brownian particle [29].

The enhancement in diffusion constant over the bare diffusion

D t ∼ k B T/6πηl is v 2 0 τ R D t ∼ (1 -δ) 2 (1 + δ 2 ) 2 2 Λ 2 k B T 2 (50) 
where the rotational correlation time is τ R ∼ 3ηl 3 /λ, δ = a/b, = b/l, and Λ = Λ(a 2 + b 2 )/6πηab(a + b).

Since both k B T/Λ , 1, this enhancement can now be large compared to the bare diffusion. For Λ ∼ k B T, a = 2 nm, b = 3 nm, l = 10 nm, and η = 10 -3 Pa s we get v 0 = 5 mm/s and v 2 0 τ R ∼ 25 µm 2 /s, a value which is comparable to thermal diffusivity D t .

V. DISCUSSION

We have seen that the interplay between nonequilibrium fluctuations and hydrodynamics, even in the simplest extension of a single particle embedded in a momentum conserving fluid, viz., two particles embedded in an unbounded active gel or a particle in an active gel bound within confining walls, brings out the inadequacy of the effective temperature description, since the corresponding steady state probability distribution shows strong departures from the equilibrium Boltzmann form. This leads to a non-equilibrium effective "Casimir-like" power law interaction [30][31][32][33][34][35]. Furthermore, both in an active fluid or in an passive fluid activated by stochastic forcing, unequal size particles exhibit short time ballistic motion.

The first term on the right is unambiguously approximated for small ∆t using a straightforward Taylor expansion of F i , in contrast, the limit of the second term is not well defined [16,36]. Unlike deterministic calculus, there are multiple choices for stochastic calculus. This amounts to choosing the time between t and t + ∆t at which x in G(x) is evaluated. If G(x) is evaluated at t it is Ito calculus [16], at t + ∆t/2 it is Stratonovich calculus [16,19], and at t + ∆t it is Hanggi-Klimontovich calculus [37,38]. Using the definition introduced in [36], x(t) evaluated at any generic point between t and t + ∆t, parameterized by ∈ (0, 1) gives

∆x i = F i (x t )∆t + G ij (x t + ∆x)) t+∆t t dt ϑ j (t ). (A4)
Taylor expanding G(x) around x(t)

∆x i = F i (x t )∆t + G ij (x t ) t+∆t t dt ϑ j (t ) + ∂G ij (x t ) ∂x k ∆x k t+∆t t dt ϑ j (t ). (A5)
∆x k has a term of order √ ∆t hence the term has a contribution of order ∆t, substituting ∆x k back in the equation and keeping terms to order ∆t we get

∆x i = F i (x t )∆t + G ij (x t ) t+∆t t dt ϑ j (t ) (A6) + ∂G ij (x t ) ∂x k G kl (x t ) t+∆t t dt ϑ l (t ) t+∆t t dt ϑ j (t ).
The first and the second moment of ∆x are

∆x i = F i (x t )∆t + ∂G ij (x t ) ∂x k G kl (x t )C lj (x t )∆t, (A7) ∆x i ∆x l = G ij G lk C jk ∆t. ( A8 
)
The corresponding Fokker-Plank equation is [16] ∂

t P = ∂ ∂x i -F i - ∂G ik ∂x j S jk + 1 2 ∂ ∂x j G ik S jk P, ( A9 
)
where S ij = C ik G jk . Thus we see that different choices of stochastic calculus ( ) leads to different Fokker-Planck equations and hence different physics.

For a given problem, the relevant value of depends on the fast timescales which have been integrated out. Furthermore the existence of a simple convention choice is not always guaranteed [17]. In this paper, the effective description of aviscoelastic gel is obtained by integrating out: the viscoelastic relaxation time (τ v ), the inertial relaxation time (τ m = m/η), and the noise correlation time (τ n ). In [17,18] it was shown that for an exponentially correlated noise with τ n √ τ m τ v = 1/2 (Stratonovich convention) is the right value. For thermal noise, in general, no simple convention works. But if G ik ∂xj S jk = G ik S jk ∂xj , = 1 (Hanggi-Klimontovich convention) is the right value (see [36] for a detailed discussion on noise convention for thermal fluctuations). These are the convention choices used throughout this paper.

The Langevin equations in the main text are of the form given by Eq. A1 and the corresponding Fokker-Planck will be given by Eq. A9 by making the following identifications in different cases

• Wall-particle: Comparing Eq. A1 with Eq. 5,6

and noise correlation given by Eq. 7 we get: F = -∇U ẑ, G = H, and C = 2λH -1 , which gives S = 2λH -1 •H = 2λ I,where I is 3×3 identity matrix. Using these values in Eq. A9 leads to Eq. 8.

• Fluctuating fluid: Comparing Eq. A1 with Eq. 11 and noise correlation given by Eq. 12 we get: G = H, and C = 2λH -1 , and S = C • H = 2λI, where I is 6 × 6 identity matrix. Using the above values in Eq. A9 we get Eq. 13.

• Fluctuating force: Comparing Eq. A1 and Eq. 11 and the noise correlation given by Eq. 34 we get: G = H, and C = 2ΛI, and S = C • H = 2ΛH, where I is the 6 × 6 identity matrix. Using the above values in Eq. A9 and changing of variables to R and r we get Eq. 35.

Appendix B: Hydrodynamic interaction tensor 1. Wall-Particle

For distances larger than the particle size (z a), the mobilities can be calculated as a power series in the inverse of separation from the wall (1/z). To second order (Rotne-Prager approximation) the mobility longitudinal to the wall is [START_REF] Kim | [END_REF]39] 

H z = 1 6πηa 1 - 9 8 a z + 1 2 
a 3 z 3 , (B1) 
and the mobility transverse to the wall is

H x ⊥ = 1 6πηa 1 - 9 16 a z + 1 8 a 3 z 3 . (B2)

Two spheres

The hydrodynamic interaction tensor H αβ coupling the translational degree of freedom is a 3 × 3 tensor. This tensor can be calculated as a power series in the inverse of separation (1/r) between the center of the two spheres. To the fourth power it is given by [START_REF] Kim | [END_REF] H The mobility tensor M defined in Eq. 15 of the main text decomposed as sum of projection along r (denoted by superscript n) and perpendicular to r (denoted by superscript q) is where g f i is the force density on the fluid due to interaction between fluid particles and the wall. Integrating this relation over a volume V bounded by two parallel surfaces S f and S f , the first at the wall, the second in the fluid at a distance such that the body forces g p i and g f i vanish:

M αβ = m q αβ (
S f σ ij dS j + S f σ ij dS j + V -N Vp dV g f i = - N I=1 Sp
σ ij dS j , (C4) where N are the number of colloidal particles within the volume V and the surface normals point outside the considered fluid volume. Substituting Eq. C2 in Eq. C4 gives

S f σ ij dS + S f σ ij dS j = - V -Vp dV g f i - N I=1 Vp
dv g p i .

(C5) Now, the force exerted by the suspension on the wall is,

F i = - S f σ ij dS j - V -Vp dV g f i - N I=1 Vp dv g p i , (C6)
where the first term is the force on the confining wall due to the fluid, the second term is the force on the wall due to the fluid particles, which is equal and opposite to the force on the fluid due to the wall by Newton third law, similarly, the third term is due to the interaction between the colloidal particles and the wall. Substituting Eq. C5 in Eq. C6 we get

F i = S f σ ij dS j . (C7)
Since S f is an arbitrary surface chosen to be far from the wall, we see that there is no net added force on the wall even though the particles feel an effective attraction towards it.

(a 2 + b 2 ) πηr 3 - 5 8 a 3 + b 3 πηr 4 .

 22834 r) (I -rr) + m n αβ (r)rr.(B4)By substituting Eq. B3 into Eq. B4 we get (B10)

  given in terms of H αβ by D 11 = (H 11 + H 12 ) 2 + (H 22 + H 12 ) 2 , D 12 = D 21 = H 2 22 -H 2 11 , and D 22 = (H 11 -H 12 ) 2 + (H 22 -H 12 )

2 

.
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Appendix A: Fokker-Planck from Langevin Following [22] we derive the Fokker-Planck equation from a multivariate overdamped Langevin equation with multiplicative noise, for general choice of stochastic calculus. The Langevin equations are

where i ∈ (1, ..., N ) and j ∈ (1, ..., M ), ϑ j is a zero mean Gaussian white noise with correlation

where (k, j) ∈ (1, ..., M ). Integrating Eq. A1 over a small time interval ∆t gives

Appendix C: Pressure on the wall Consider a suspension of N colloids in the semi-infinite active fluid confined by a wall. Assuming particles do not interact directly with each other via forces such as van der Waals, the total force on the I th particle reads:

where σ ij is the fluid stress acting on the particle I, S p is the surface with normal pointing out of the fluid, g p 1 is the force density on the colloid due to wall-particle interaction, and V p is the volume of the particle I. Force balance on the particle I:

The dynamics of the Stokesian fluid is given by,

Appendix D: Passive colloids in active fluid -Thermal Fluctuations

For thermal fluctuations, λ = k B T , and the Fokker-Planck equation corresponding to Eq. 11 with noise correlation given by Eq. 12 in Hanggi-Klimontovich convention is

The marginal of steady state distribution of r is P (r) ∝ e -U/λ . Integrating out separation r as for active fluctuation we get the self-propulsion velocity of the form

Expanding this we get

∂ ∂r e -U/λ = 0.

(D3) As expected for thermal fluctuations the self-propulsion velocity is identically zero.

Appendix E: Activated particles in a passive fluid

The effective diffusion tensor for an activated particle in a passive fluid as defined in Eq. 35