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Abstract

This paper deals with Montgomery-friendly primes designed for the modular reduction
algorithm of Montgomery. These numbers are scattered in the literature and their proper-
ties are partially exploited. We exhibit a large family of Montgomery-friendly primes which
give rise to efficient modular reduction algorithms. We develop two main uses. The first one
is dedicated directly to cryptography, in particular for isogeny based approaches and more
generally to Elliptic Curves Cryptography. We suggest more appropriate finite fields and
curves in terms of complexity for the recommended security levels, for both isogeny-based
cryptography and ECC. The second use is purely arithmetic, and we propose families of
alternative RNS bases. We show that, for dedicated architectures with word operators, we
can reach, for a same or better complexity, larger RNS bases with Montgomery-friendly pair-
wise co-primes than the RNS bases generally used in the literature with Pseudo-Mersenne
numbers. This is particularly interesting for modular arithmetic used in cryptography.

Introduction

Montgomery-friendly primes were introduced in [27, 14, 15] for cryptographic applications on
elliptic or hyperelliptic curves. They are an alternative to Mersenne or pseudo-Mersenne primes
as long as the Montgomery reduction is used. More precisely, they have the form p = 2e2α± 1
where 2e2 is an upper bound for the reduction coefficient 2r in Montgomery reduction, so that
the reduction steps are simplified by the fact that p = ±1 mod 2r.
In isogeny-based cryptography, the involved primes naturally have this form, so that optimized
Montgomery reduction can be used for efficient implementations [4]. In fact, the initial motiva-
tion of this work was to propose efficient Montgomery-friendly primes of the form 2e2α− 1 for
isogeny-based cryptography. However, the results obtained eventually went fare beyond this
field and proved to have particularly interesting applications in a wider range of areas of both
public-key cryptography and Residue Number Systems (RNS) arithmetic. As an example, we
exhibit new prime numbers for elliptic curve cryptography which provide a simpler reduction
algorithm than the ones obtained with the prime numbers given in [27, 15].
We thus present three main results. We propose new primes for SIKE-like isogeny-based pro-
tocols. They are are better balanced between the powers of 2 and 3, and therefore offer better
complexity costs in function of the security level. Then, we construct Montgomery-friendly
primes which offer both efficient modular reduction and secure elliptic curves for ECC (Ellip-
tic Curve Cryptography). And we suggest some Montgomery-friendly RNS bases offering an
efficient internal reduction algorithm, which makes them competitive with respect to pseudo-
Mersenne reductions.
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The organization of the paper is as follows. We first present in Section 1 a brief review of
the primes offering specific efficient modular reduction algorithms like the Mersenne primes,
the pseudo-Mersenne primes and their generalization as Solinas primes. We also recall the
Montgomery reduction as well as its Residue Number System (RNS) version, and remind that
most of the bases in the literature use pairwise pseudo-Mersenne co-primes. Then, in Section
2, we give general modular reduction algorithms for Montgomery-friendly primes and explain
how to smartly choose their parameters. Section 3 is dedicated to the analysis of the SIKE
protocol based on isogeny, and we produce new primes offering an optimized complexity for
a given security. We also exhibit, in Section 4, new primes and curves for elliptic curves
cryptography that can be very interesting alternatives to the existing ones (e.g. Curve25519)
from an efficiency viewpoint. Section 5 is devoted to the construction of RNS bases with
Montgomery’s pairwise co-primes, and to the adaptation of the RNS Montgomery reduction,
as could be used in cryptography. We compare our approach with those in the literature.

1 Modular arithmetic for prime fields

The goal of this section is to recall the main techniques for efficient modular reduction in large
prime fields of characteristic p. It will be used in the context of modular multiplication in Fp,
which means that we want to reduce an integer a which is smaller than p2 (as the result of
the multiplication step). For simplicity reasons and without loss of generality, we will in fact
assume that a < 2ep if p is e-bits long.

1.1 Use of Mersenne or pseudo-Mersenne primes

1.1.1 Mersenne primes

The simplest prime numbers for efficient reduction are the so-called Mersenne primes. They
have the form p = 2e − 1 and are historically used to break large prime numbers records. In
this case, we use that 2e = 1 mod p to get the reduction Algorithm 1: the input a is split after
e bits and the sum of the low and the high parts equals to a modulo p and is less than 2p.
We then only have to substract p if this sum is greater than or equal to p to get the expected
reduction. As this comparison with p is not trivial, we used the standard trick which consists
in subtracting p−2e (which is −1 in this case) and then compare with 2e (which is easy in base
2).

Algorithm 1: Reduction modulo a Mersenne prime

Data: p = 2e − 1 a Mersenne prime
Input: 0 ≤ a < 2ep
Result: r = a mod p and 0 ≤ r < p

Write a = a12
e + a0 // division by 2e

r ← a0 + a1
r′ ← r + 1 // r′ ← r − p+ 2e

if r′ ≥ 2e then
r ← r′ mod 2e // r ← r − p if r ≥ p

end if
return r

The complexity of this algorithm is one addition of e-bits numbers and one incrementation.
It is very attractive especially if e is a multiple of the word-size w. Unfortunately, very few
Mersenne primes are available for cryptographic sizes. The most known is P521 = 2521 − 1
discovered by Robinson in 1954 [44] and used as a standard for elliptic curve cryptography at
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the 256-bits security level. 2127 − 1 is also used for hyperelliptic curve cryptography at the
128-bits security level [12, 42] for efficiency reasons.

Remark 1 Using primes of the form 2e + 1 provides an equivalent reduction algorithm. How-
ever there is no such primes for classical cryptographic sizes.

1.1.2 Pseudo-Mersenne primes

Pseudo-Mersenne numbers were introduced in order to improve modular reduction as a gener-
alization of Mersenne primes. They have the form p = 2e − c with usually 0 < c < 2

e
2 . The

reduction of an integer a < 2ep modulo p follows the Algorithm 2 which essentially consists in
replacing two times 2e by c in the input. The costs of the steps of this reduction algorithm

Algorithm 2: Pseudo-Mersenne Reduction

Data: p = 2e − c with 0 < c < 2
e
2

Input: 0 ≤ a < 2ep
Result: r = a mod p and 0 ≤ r < p

Write a = a12
e + a0 // a0 < 2e and a1 < p

b← a1 × c+ a0 // b ≤ 2
3e
2

Write b = b12
e + b0 // b0 < 2e and b1 ≤ 2

e
2

r = b1 × c+ b0 // r < 2.2e < 3p
r′ ← r + c // r′ ← r − p+ 2e

if r′ ≥ 2e then // else r < p
r ← r′ − 2e // r ← r − p if r ≥ p
r′ ← r + c // repeat the

if r′ ≥ 2e then // previous step

r ← r′ − 2e // if r ≥ p
return r

are:

• one multiplication of a e-bits number (a1) with a e
2 one (c), denoted Me, e

2
,

• one multiplication of 2 e
2 -bits number (b1 and c) denoted M e

2
,

• 2 additions of e-bits numbers (a0, b0), denoted Ae,

• at worst 2 additions of c which has at most e
2 bits.

So the overall cost of Algorithm 2 is at most

Me, e
2

+M e
2

+ 2Ae + 2A e
2
.

Remark 2 In this paper, complexities for additions are given in terms of the smallest number
involved. In other words, we do not take into account carry propagation. We made this choice
because it is more representative of the complexity in average and it has no consequence on our
results which are relative ones (long carry propagation may exceptionally occur in our methods
as well as in any other one).

The value of c plays of course a central role in the complexity of Algorithm 2. Then, in 1992,
Crandall suggested pseudo-Mersenne primes such that c is small (in the sense that it fits on a
machine word) [21]. The most known for cryptographic applications is probably 2255 − 19 that
has been used by Bernstein to define the elliptic curve Curve25519 [11].
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In 1999, Solinas from NSA published a report on generalized Mersenne numbers [46] to counter
Crandall’s patent. These primes are such that p = f(2k) where f(t) = td − c1td−1 − · · · − cd
with |ci| small integers (|ci| << 2k) or null. The polynomial f(t) should be irreducible [39] and
|cd| odd. The goal is to get simple multiplications by c in Algorithm 2 using sparse values for
c instead of small ones.
Solinas numbers are suggested by the NIST1 and included in many standards for elliptic curve
cryptography. For example p256 = 2256 − 2224 + 2192 + 296 − 1 is used for the 128-bits security
level. Note that, contrary to the Solinas primes suggested by the NIST for other security levels,
c > 2

e
2 for p256, so more rounds are needed in Algorithm 2.

1.2 Use of Montgomery arithmetic

The Montgomery reduction [38] is used when the modulo does not have a special form allowing
fast reduction. This algorithm is regularly used in cryptography, like for RSA [43], or all the
approaches based on finite field arithmetic like Elliptic Curve Cryptography [35, 37], pairing-
based protocols [32] or more recently isogeny key exchanges [31].

1.2.1 Principle of Montgomery reduction

The main idea is to replace divisions by p by much simpler divisions by a power of the radix,
in other words to replace divisions by shifts. For example, with radix 2, if p is a e-bits number,
the reduction Red(a) of a < 2ep involves 2 steps:

• q = −ap−1 mod 2e

• r = (a+ qp)/2e

It is then easy to prove that r < 2p and r = a2−e mod p which is not exactly the expected
reduction of a mod p. Of course, we can subtract p as we did for Mersenne primes to get r < p.
On the other hand, the fact that r = a2−e mod p instead of a can be handled using the so-called
Montgomery representation of numbers defined by x = x 2e mod p for any 0 ≤ x < p.
This representation is indeed stable for the addition (x+ y = x+ y) but also for the multipli-
cation with the Montgomery modular reduction Red:

Red(x y) = x y 2−e mod p = x y 2e mod p = x y mod p.

The Montgomery representation of any x ∈ [0, p[ can be easily obtained by x = Red(x y) if
y = 22e mod p. Reciprocally, the value of x mod p can be recovered with x = Red(x).

1.2.2 Word version of the Montgomery reduction and complexity

We did not give a precise general algorithm for the Montgomery reduction in the previous
section because it is mainly used in its word version. We assume in the following that p fits
on n w-bits words and denote β = 2w. The word version of the Montgomery reduction of any
a < pβn modulo p < βn ([38, 13]) is Algorithm 3.
Each step of the for loop of this algorithm requires

• 1 word multiplication Mw (to compute µr0),

• 1 multiplication of a word (q) by a n-words number (p) for computing r. Such a multi-
plication requires of course nMw but also (n− 1)Aw,

• 1 addition with a (n+ 1)-words number (qp), namely (n+ 1)Aw.

1https://csrc.nist.gov/publications/detail/fips/186/4/final
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Algorithm 3: Word version of the Montgomery reduction

Data:
• A prime p < βn (β is the word size)

• The precomputed value µ = −p−1 mod β

Input: 0 ≤ a < pβn

Result: r = aβ−n mod p and 0 ≤ r < p
r ← a
for i = 0 to n− 1 do

r0 ← r mod β // word truncation

q ← µ× r0 mod β
r ← (r + q × p)/β // r + qp multiple of β

end for
r′ ← r − p+ βn

if r′ ≥ βn then // else r < p
r ← r′ mod βn // r ← r − p if r ≥ p

return r

So, the for loop requires (n2 + n)Mw + 2n2Aw. Finally, one addition of βn − p is required to
ensure that r < p. The overall complexity of Algorithm 3 is then

(n2 + n)Mw + (2n2 + n)Aw

Remark 3 There also exists an interleaved version of the modular multiplication ([38, 13])
that has some advantages (smaller intermediate results) and some drawbacks (only compatible
with schoolbook multiplication). We do not give it here because we are only interested in the
reduction step but it can be used with all the Montgomery-like reduction algorithms given in this
paper (as long as Karatsuba like technique is not used).

1.3 Use of RNS arithmetic

1.3.1 Principle of RNS arithmetic

The Residue Number Systems have their origin in the Chinese Remainder Theorem [24]. We
consider a set of co-prime numbers {m1, . . . ,mn} and M =

∏n
i=1mi. Then, an integer 0 ≤ a <

M is fully defined by the set (a1, . . . , an) with ai = a mod mi for i ∈ {1, . . . , n}. In practice,
the mi would fit on one or two machine word.
Additions and multiplications modulo M can be performed on each modulo independently:

a+ b mod M = (a1 + b1 mod m1, . . . , an + bn mod mn)

ab mod M = (a1b1 mod m1, . . . , anbn mod mn)

1.3.2 RNS Montgomery reduction

When we want to speed up computations in cryptography using RNS, we need to support
modular reduction operations related to the finite ring or finite field on which the cryptographic
system is defined. This is the case of many cryptographic approaches: RSA [8], ECC [2] or
Pairing [17], Homomorphic Encryption [7, 26]... Thus, we consider arithmetics over finite rings
like Z/pZ (or finite fields if p prime), where p is a huge number, as it occurs in cryptography. In
general p is not the product of small numbers, thus the reduction modulo p must use a specific
algorithm like the modular reduction algorithm of Montgomery given in Section 1.2.1. Indeed,
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this algorithm deals with the least significant digits of the handled values, thus its adaptation
to RNS is natural [41, 5, 33].
The main idea, as the set B = {m1, . . . ,mn} represents the RNS base, is to use M =

∏n
i=1mi

as the Montgomery factor of reduction instead of 2e.
If we consider 0 ≤ a < pM , the modular reduction can be done with a Montgomery approach
assuming 2p < M and the use of a second base B′ = {m′1, . . . ,m′n} such that 2p < M ′ =∏n
i=1m

′
i. This second base is necessary, because we must divide by M (or multiply by M−1)

which cannot be done modulo M . This algorithm works in four main steps:

Algorithm 4: RNS Montgomery Reduction

Data:
• B = {m1, . . . ,mn} and B′ = {m′1, . . . ,m′n} 2 RNS

bases s.t. 2p < M =
∏n
i=1mi and 2p < M ′ =

∏n
i=1m

′
i

• µ = −p−1 mod M precomputed in B
Input: 0 ≤ a < pM given in B and B′
Result: r = aM−1 mod p and r < 2p

q ← a× µ mod M , in B
conversion of q from B to B′
r ← (a+ q × p)×M−1 mod M ′, in B′
conversion of r from B′ to B

return r given in B and B′

As it was already the case for the classical Montgomery reduction, the result of Algorithm 4
is not exactly a mod p (it is multiplied by the constant value M−1 mod p), but the result is
reduced (r < 2p), and r mod M ′ = r mod M = r because 2p < M,M ′. Again, this can
be handled using the Montgomery representation defined in this case by â = aM mod p and
â < 2p. It can of course also be easily obtained by applying Algorithm 4 to aM2 and the value
of a mod p can be recovered by applying Algorithm 4 to â.

Remark 4 When we want to perform sequences of operations, we need at least 4p2 < MM ′

to assume the representation of the product of two values smaller than 2p. The condition
2p < M then becomes 4p < M so that a product of 2 numbers smaller than 2p followed by a
Montgomery reduction will give a result smaller than 2p. Of course operations should be done
in Montgomery representation because it is stable for the addition and for the multiplication
followed by a Montgomery Reduction.

1.3.3 RNS bases and conversions

General pseudo-Mersenne numbers are massively used in RNS arithmetic. For example, Kawa-
mura et al [33] use bases of n moduli mi, = 2w−ci (w represents the number of bits of the basic
words) and ci < 2w/2. In fact this approach works under a condition which is roughly speaking
ci <

2w

n , but they use ci < 2w/2 due to the internal modular reduction for each element of
the RNS base. In [9], a double Montgomery reduction is suggested to avoid internal modular
reduction constraint and the use of pseudo-Mersenne. In 2017, J. van der Hoven suggests in
[29] to use s-gentle moduli, for example for s = 2, mi = 22w − ε2i with 0 ≤ εi < 2(w−1)/2.
To convert a RNS representation to a classical representation or to another RNS base, most of
the approaches use a Lagrange interpolation:
if 0 ≤ X < M =

∏n
i=1mi, and (x1, . . . , xn) is the RNS representation ofX in B = {m1, . . . ,mn},
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then,

X =
n∑
i=1

∣∣xiM−1i ∣∣
mi
Mi − αM where Mi =

M

mi
.

We note |.|mi
the value modulo mi.

For [33], the challenge is to compute α. They show that the first conversion in Algorithm 4
can be an approximation as q is then multiply by p that does not affect the result modulo p.
The second conversion needs to be exact, that is done if w < 2p < (1 − 1

ρ)M ′ for ρ ≥ 2 and
ci
2w < 1

n(1− 1
ρ). In [9] the conditions are a little bit relaxed, but the philosophy stays the same.

In [29], the complexity is studied asymptotically so the author uses a binary tree construction
with a logarithmic depth with a modulo reduction at each level.
In Section 5 we introduce a new alternative of RNS bases using primes of the form p = 2e2α∓1
and which are well adapted to preconfigured words architectures (CPU, GPU, FPGA,...).

2 Primes of the form p = 2e2α∓ 1

In this paper, we focus on so-called Montgomery-friendly prime numbers [27, 14, 15], namely
having the form p = 2e2α− 1 with e2 larger than the word size w. Similar results are obtained
for primes of the form 2e2α+ 1.

Remark 5 These prime numbers do not have significantly better reduction algorithm than the
ones of Section 1 but they are attenuating their main default by providing more choices of primes
suitable for cryptographic applications.

2.1 General reduction algorithm

The main interest of such primes is their nice behaviour with the word version of the Mont-
gomery reduction (Algorithm 3) because −p−1 = 1 mod 2w (because w ≤ e2), so that the
parameter µ equals 1.Then, the only operation to perform in the for loop is the computation
of (r + qp)/β where β = 2w and q is simply r mod β. This can be simplified if p is written as
β2e2−wα − 1. Indeed, assuming that r =

∑
riβ

i at the beginning of each step of the for loop,
then:

(r + qp)/β =
(∑

riβ
i + r0β2e2−wα− r0

)
/β

=
∑
i 6=0

riβ
i−1 + r02

e2−wα

So the cost of each step of the for loop is reduced to one multiplication of a single word by
α2e2 mod w, a shift of e2 div w words which is for free and the addition of the result of this
multiplication. The final addition requires n word additions. Assuming α2e2 mod w fits on nα
words, this gives the overall complexity for Algorithm 5:

nnαMw + n (2nα + 1)Aw

Remark 6 We get the same result if p = 2e2α + 1. The only difference is that Algorithm 5
involves −r0α2e2−w instead of +r0α2e2−w

2.2 Choice of e2 and α

The complexity of Algorithm 5 is dominated by multiplications by α. As a consequence, when
it is possible, good choices of α allow to improve the complexity of the reduction modulo prime
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Algorithm 5: Word version of the Montgomery reduction if p = 2e2α− 1

Data: p < βn with β = 2w and w ≤ e2
Input: 0 ≤ a < pβn

Result: r = aβ−n mod p and 0 ≤ r < p
r ← a
for i = 0 to n− 1 do

r0 ← r mod β
r ← (r − r0)/β + r0 × α2e2−w

end for
r′ ← r + (βn − p)
if r′ ≥ βn then

r ← r′ − βn
return r

numbers p of the form 2e2α∓ 1. The best possible choice for α is of course 1 but p would then
be a Mersenne prime. In order to get more candidates, we can choose small values of α or use
the same process than in Section 1, namely considering α of the form 2e

′
2 − c with c small (as

an equivalent of pseudo-Mersenne primes) or sparse involving only coefficients of the word size
(as an equivalent of the Solinas primes).
The other way to optimize the complexity of Algorithm 5 is to assume that e2 (and e′2) is a
multiple of the word size. This may reduce the word size nα to the one of α.
If both α and e2 can be wisely chosen as above, the cost of each step of the for loop is only
one multiplication of a single word by c and the addition of the result of this multiplication.
The best choice for c is of course ±1. However this case is similar to Mersenne primes in the
sense that such primes are very rare for real world cryptographic applications. For example, if
w = 32, there are only 4 of them in the cryptographic range for elliptic and hyperelliptic curve
cryptography:

• p192 = 264(2128 − 1)− 1, used in most standards,

• p448 = 2224(2224 − 1)− 1, used for the curve Ed448 [28],

• p480 = 2448(232 − 1)− 1,

• p512 = 232(2480 − 1)− 1,

Remark 7 There are all for high security levels and only p192 can be used if w = 64. Consid-
ering primes of the form 2e2(2e

′
2 − 1) + 1 provides 7 additional primes but only one can be used

if w = 64 and it is 576-bits long.

If c is assumed to be small, typically if it fits on a word (of size w), Algorithm 5 requires only
one word multiplication (r0c) as well as 3 word additions (one for adding r02

e′2 to (r − r0)/β
and 2 for adding r0c2

e2−w which fits on two words because e2−w is a multiple of the word size.
The final addition is also simpler than in the general case, because βn − p = c2e2 + 1 so that
computing r′ requires only 2 word additions.
Consequently, if p = 2e2(2e

′
2 − c)− 1 where c fits on one word and both e2 and e′2 are multiples

of the word size w, the complexity of Algorithm 5 becomes

nMw + (3n+ 2)Aw.

Of course, if c is sufficiently small, the Mw can be replaced by some Aw.

8



Let us now assume that c is written in the form
∑
ci2

wi (in the spirit of Solinas primes). The
ci can be chosen of any sign and size, but they should be very small in practice for efficiency
reasons. In this case, multiplying r0 by c and adding the result to (r − r0)/β requires at most∑
|ci| word additions. One more word addition is necessary to add r02

e′2 . As in the previous
case, the final addition is simplified by the form of βn − p and computing r′ requires only
1 + #{ci}ci 6=0 word additions. Then the complexity of Algorithm 5 in this case is at most(

n+ 1 + n
∑
|ci|+ #{ci}ci 6=0

)
Aw.

2.3 The case e2 ≥ log2(p)/2

In this section, we assume that e2 ≥ e/2 where p is e-bits long and that e2 is a multiple of the
word size, which is n−nα if p (resp. α) fits on n (resp. nα) words. We can then introduce a new
version of the Montgomery reduction that is intermediate between the word version and the
general case and that is still optimized in the sense that the parameter µ involved is±1. The idea
is to perform 2 Montgomery reduction steps modulo 2e2 (instead of one step modulo 2e in the
general case or n steps modulo β = 2w in the word version) using that µ = −p−1 = ±1 mod 2e2 .
More precisely, the first step of such a reduction of some a < 2ep ≤ 22e2p will be

1. q0 = a(−p−1) mod 2e2 = ±a mod 2e2

2. r0 = (a+ q0p)/2
e2 = (a− a mod 2e2)/2e2 + q0α

It is then easy to prove that r0 has been reduced compared to a but it is only smaller than 2e2p
so that a second Montgomery reduction step is necessary to get a full reduction of a. We then
get Algorithm 6 for the modular reduction in this case.

Algorithm 6: Intermediate Montgomery reduction for p = 2e2α− 1 with e2 ≥ log2(p)/2

Data: A e-bits long prime p = 2e2α− 1 s.t. e2 ≥ e/2
Input: 0 ≤ a < 2ep
Result: r1 = a2−2e2 mod p and 0 ≤ r1 < p

q0 ← a mod 2e2

r0 ← (a− q0)/2e2 + q0 × α // first reduction

q1 ← r0 mod 2e2

r1 ← (r0 − q1)/2e2 + q1 × α // second reduction

r′1 ← r1 − p+ 2e

if r′1 ≥ 2e then
r1 ← r′1 mod 2e // r ← r − p if r ≥ p

return r1

It is obvious that the output of this algorithm is a2−2e2 mod p as it was already the case in
classical Montgomery reduction. Moreover, it is less than p because at the end of the 2 reduction
steps

r1 =
(a+q0p)

2e2 + q1p

2e2
=
a+ (q0 + q12

e2)p

22e2

<
22e2p+ (22e2 − 1)p

22e2
< 2p

The operations involved in Algorithm 6 are the following ones:

• a mod 2e2 and (a− q0)/2e2 is a simple truncation which is for free because e2 is assumed
to be a multiple of the word size,
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• q0α and q1α are 2 multiplications of n− nα by nα words numbers,

• 2 additions of two n-words numbers (q0α and q1α),

• a final addition of 2e − p which is less than n-words long.

This algorithm is of course optimal when 2e2 fits on n/2 words, namely nα = n/2. In this case,
its complexity is the same as the one of Algorithm 5 if schoolbook method is used for computing
the qiα. But thanks to this approach, alternative multiplication algorithms like Karatsuba’s
one can be used to reduce the global complexity of Algorithm 6. Of course, this will only be
interesting if α cannot be chosen with small coefficients.

Remark 8 We get the same result if p = 2e2α + 1. The only difference is that Algorithm 6
involves −qiα instead of +qiα.

2.4 Comparison with other methods

The complexities we obtain have the same order than the one for pseudo-Mersenne or Solinas
primes. We will give more precise comparison for each application in the following. But the
main interest of this new form of primes is that we get new prime numbers having an efficient
reduction algorithm that can be used when pseudo-Mersenne or Solinas primes are too rare. The
situation is in fact even better with the new prime numbers we introduced because, contrary
to pseudo-Mersenne primes, the value of c can be even in our case. As a consequence, for the
same size of primes we will be able to find roughly twice more candidates. This will for example
be very interesting for generating RNS bases as we will see in Section 5.

3 New Primes for Isogeny-based cryptography

Isogeny-based protocols such as SIDH are based on a shared secret which is the j-invariant
of some elliptic curve. They have been introduced in cryptography by Couveignes in 1997
[20] and have been recently developed as an alternative for quantum resistant cryptography
[30, 19, 18, 36]. SIKE is now a second-round candidate for the NIST post-quantum cryptography
standardization process [40]. We will present it here briefly in a simplified form.

3.1 The SIKE protocol

The public parameters are

• a prime number p = 2e23e3 − 1 such that 2e2 ' 3e3 ,

• a supersingular elliptic curve E0 defined over Fp2 ,

• two points of order 2e2 , P2 ∈ E0

(
Fp2
)
\E0 (Fp) and Q2 ∈ E0 (Fp),

• two points of order 3e3 , P3 ∈ E0

(
Fp2
)
\E0 (Fp) and Q3 ∈ E0 (Fp).

The points P2 and Q2 (resp. P3 and Q3) then form a base for the full 2e2 (resp. 3e3) torsion of
E0. The key exchange process is as follows

• Alice chooses ` = 2 or 3 (let m be the other one) and a secret key sk` < `e` . She computes
a point S` = P`+ sk`Q` ∈ E0

(
Fp2
)

which defines an isogeny φ` of degree `e` as its kernel.
This isogeny can be easily computed as a sequence of `-isogenies and Alice’s public key
is given by φ`(Pm) and φ`(Qm). The elliptic curve E` = φ` (E0) is also part of the public
key but it is deduced from φ`(Pm), φ`(Qm) and φ`(Pm −Qm) in practice.

10



• Bob follows the same process exchanging ` and m. His public key is then Em, φm(P`)
and φm(Q`).

• Alice repeats the process with Em and S′` = φm(P`)+sk`φm(Q`). She then gets an isogeny
φ′` with kernel generated by S′` = φm(S`) so that φ′` ◦ φm has kernel generated by S` and
Sm.

• Again, Bob do the same exchanging ` and m and gets φ′m such that φ′m ◦φ` has the same
kernel.

• Allice and Bob can then both compute their share secret, the j-invariant of the target
elliptic curve of φ′` ◦ φm and φ′m ◦ φ` which are the same.

Most of the computations involved are then elliptic curves operations and 2 or 3-isogenies com-
putation over Fp or Fp2 . Modular reductions modulo p then have a key role in the computational
cost of the SIKE protocol.
The computational security of this protocol is based on the degrees of the isogenies involved

and then on 2e2 and 3e3 . Known classical attacks are in O
(√

`e`
)

and quantum once are in

O
(

3
√
`e`
)

. In order to achieve a close balance on both sides of the protocol, e2 and e3 are chosen

such that 2e2 ' 3e3 .

3.2 Primes of the form 2e23e3 − 1

According to the constraints above, the original SIKE proposal [4] recommended to use re-
spectively the prime numbers p503, p751 and p964 (given in Table 1) to meet the security
requirements of NIST categories 1, 3 and 5. However, it has been recently shown that the
hardness of computing isogenies on quantum computers were overestimated [1]. As a conse-
quence the second round proposal of SIKE [3] provides new primes p434 and p610 suitable for
NIST categories 1 and 3. Note that the reference implementation of SIKE (that we will use for
comparisons) only uses p503 and p751.

prime e2 e3 log2(3
e3)

security symmetric
category key size

p434 216 137 218 1
128 bits

p503 250 159 253 2

p610 305 192 305 3
192 bits

p751 372 239 379 4

p964 486 301 478 5 256 bits

Table 1: Primes of the SIKE NIST proposals [4, 3]

Reductions are done using the word version of the Montgomery reduction algorithm (or its
interleaved version, see Remark 3) for this specific form of primes, namely Algorithm 5 with
α = 3e3 . Assuming p fits on n w-bits words, and that α2e2 mod w fits on nα words, the cost of
the reduction is then

nnαMw + n (2nα + 1)Aw

Remark 9 Remember that we did not consider the carry propagation cost for simplicity but
also because it will not significantly change the cost evaluation and it will occur in the same
way in our proposal. Then this assumption will not affect the results of this work.
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prime min(e2, log2(3
e3))

security symmetric
category key size

p448 262.2224 3136 − 1 216 1

p477 37.2256 3136 − 1 216 1 128 bits

p512 31.2256 3158 − 1 251 2

p630 39.2320 3192 − 1 305 3
192 bits

p765 214.2384 3235 − 1 373 4

p996 69.2512 3301 − 1 478 5 256 bits

Table 2: New primes proposed for SIKE-like protocols

For example, for p503 we have n = 8 if w = 64 and α = 3159258 so that nα = 5 and the
overall cost of the reduction algorithm is then 40M64 + 88A64 (which fits with the reference
implementation of SIKE). The complexities for reducing modulo the SIKE primes are given in
Table 3.
We explained in Section 2.2 that it would be interesting to choose e2 to be a multiple of the
word-size in order to reduce the cost of Algorithm 5. This is not the case for the primes given in
Table 1. That is the reason why we propose here new primes for the SIKE protocol satisfying
this property.

3.3 New primes proposed

The only condition on the form of p for SIKE-like protocols is that p+1 is divisible by sufficiently
large powers of 2 and 3 which ensures the existence of the isogenies φ2 and φ3. It is then not
restrictive to consider primes p with a small cofactor f , namely of the form p = f.2e23e3 − 1.
This is besides mentioned in the SIKE proposals [4, 3] but discarded because they was enough
candidates satisfying all the conditions with f = 1. For efficiency reasons, we consider here
the new condition that e2 is a multiple of the word size. This is of course quite restrictive so
we do need to consider non-trivial cofactors in this case. We give in Table 2 the new values
we propose for SIKE primes such that e2 is a multiple of 64 (so that e2 is always a multiple of
the word size in real world applications). These primes provide at least the same security level
that the ones of Table 1 (because min(e2, log2(3

e3)) is always larger in our case) and p requires
the same number of words. For the security category 1, considering 32-bits word may be more
appropriate. Indeed 64-bits word implies that the e2 and e3 parts of p both fit on 4 words while
they can fit on 7 32-bits words. We then give the prime p448 for which e2 is only a multiple of
32.
Because of our new constraint, both sides of the protocol are not balanced anymore at first
glance. This can be solved by shortening the longest loop considering public points of lower
order. For example, with p630, 2e2 is 320-bits long while 3e3 is only 305. So the 2-side of the
protocol should have 320 steps while only 305 are necessary for this security level. In this case,
we only have to choose P2 and Q2 having order 2305 instead of 2320 to shorten the 2-side loop.
The security level remains the same because it was determined by the 3-side of the protocol.
The value of α is f.3e3 and is smaller than 2e2 by construction. As a consequence, e2 ≥ log2(p)/2
so that Algorithm 6 can be used for reducing modulo these primes. Of course, Algorithm 5 can
also be used with the same complexity if schoolbook method is used in Algorithm 6 because in
any case, p fits in n words and α in n/2 words. This complexity is given by

n2

2
Mw + n(n+ 1)Aw.

12



Symmetric Security NIST Complexity New
Complexity

key size category primes Algorithm 5 primes
Algorithm 5 or 6 Algorithm 6 with
with Schoolbook one Karatsuba step

1 p434
112M32 + 238A32 p448 98M32 + 196A32 82M32 + 210A32

128 bits 28M64 + 63A64 p477 32M64 + 72A64 24M64 + 76A64

2 p503 40M64 + 88A64 p512 32M64 + 72A64 24M64 + 76A64

192 bits
3 p610 60M64 + 130A64 p630 50M64 + 110A64 44M64 + 120A64

4 p751 84M64 + 180A64 p765 72M64 + 156A64 54M64 + 150A64

256 bits 5 p964 144M64 + 304A64 p996 128M64 + 272A64 96M64 + 248A64

Table 3: Complexity comparison for modular reduction in SIKE-like protocols

For example, using p512 = 31.22563158 − 1 instead of p503 = 22503159 − 1 provides a reduction
that costs 32M64 + 72A64 instead of 40M64 + 88A64. This is substantially better and will give
a speed-up around 20% of the reference implementation of SIKE. Moreover, as explained in
Section 2.3, contrary to Algorithm 5, large multiplications are directly involved in Algorithm 6,
so that Karatsuba method can be used to compute q0×α and q1×α. In our case, α and the qi
are all n/2-words numbers. For example if we perform one Karatsuba step in the case of p512,
the cost of qi × α is 3M128 + 7A128 instead of 4M128 + 4A128 so that only 24M64 are necessary
instead of 32 (but of course, more additions).
We give in Table 3 a reduction complexity comparison between SIKE primes of Table 1 and
our new proposals given in Table 2. This table clearly shows that the new primes we propose
may have an great interest for efficient implementations of SIKE-like protocols.

Remark 10 Complexities involving Karatsuba should be considered carefully because practice
and theory may differ. That is the reason why we did not give the complexities for all the
possibilities of using this method in Table 3 (one could for example make more Karatsuba steps to
get a better theoretical complexity). Note also that α is constant and used 2 times in Algorithm 6
so that some precomputations could be done to reduce the number of additions involved in a
Karatsuba implementation of the multiplication by α.

4 Application to Elliptic curve cryptography

Because of their efficient reduction algorithm, particular forms of prime are used in elliptic
curve cryptography for a long time. For example, Solinas primes are used in the FIPS 186-3
standards [22] and the prime used for Ed25519 curve is the pseudo-Mersenne prime 2255−19 [11].
Several authors already proposed to use Montgomery-friendly primes of the form 2e2(2e

′
2−c)± 1

and provide elliptic curves defined over such prime fields which are suitable for cryptographic
use [27, 15, 16]. They are for example recommending the primes 2240(216−88)−1 and 2240(214−
127) − 1 for the 128-bits security level. However these proposals are not satisfying what we
identified in Section 2.2 as good choice for the parameters e2 and e′2. In particular there are
not multiples of the word size. We propose in this paper new primes satisfying this condition
and then providing a more efficient reduction step.
We will first focus on the 128-bits security level because it is the most commonly used in practice
and we will then give the results we obtained for higher security levels.

4.1 The 128-bits security level

The first step is to find a prime p of the form 2e2(2e
′
2− c)± 1 such that multiplications by c is as

inexpensive as possible and such that e2 and e′2 are mutliples of the word size. We assume that
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the word size is 64 to cover as many use cases as possible. For each security level, we made an
exhaustive search of such p with c small or sparse.
The best result we get for the 128-bits security level is given by e2 = 192, e′2 = 64 and c = 4

p256 = 2192(264 − 4)− 1

In this case, each of the 4 step of the for loop of Algorithm 5 consists in the computation of
r−r0
264

+r02
64−4r0 which requires only 4 word-additions. The final addition step of Algorithm 5 is

the computation of r−p+2256 = r−4.2192 +1 which is a very fast operation. Finally, the word
version of the Montgomery reduction algorithm requires approximately 17A64. Algorithm 6
can be also used for this prime if one wants to use some Karatsuba steps into the reduction
algorithm. Moreover, p = 3 mod 4 which allows efficient modular square root computations.
As a comparison, with the prime 2240(216 − 88) − 1, each step of the for loop of Algorithm 5
would require M64 + 2A64 because α fits on one word in this case. Again, the final addition
can be simplified in the same way, so that the complexity of Algorithm 5 is approximately
4M64 +9A64. As a consequence, assuming we are working on a plateform for which additions of
64-bits words are at least twice faster than multiplications, the reduction step is always faster
with the prime p256 introduced in this paper. Of course, this result is also valid for any platform
using less than 64-bits words.
Reducing modulo 2240(214 − 127)− 1 or 2255 − 19 will also require some multiplications (so we
get a similar result) but allow to avoid the final addition step.

Remark 11 Choosing e2 and e′2 multiples of the word size implies that the final addition of
the Montgomery reduction step cannot be avoided assuming 4p < 2256 as it is the case for
2240(214 − 127) − 1. But, the gain obtained thanks to our choice outreaches this additional
addition, especially because it is not a full addition due to the form of p.

The second step is to generate an elliptic curve satisfying all security requirements. We follow
the process explained in [15] to generate parameters A and d0 defining the isogeneous elliptic
curves in Montgomery and twisted Edwards forms

MA : y2 = x3 +Ax2 + x

Ed0 : −x+ y2 = 1 + d0x
2y2

These parameters are chosen such that the cardinalities of the curve and its twist are almost
prime with the minimal cofactor (which is 4) in order to guarantee the expected security level
both on the curve and its twist. For efficiency reasons, A and d0 have to be chosen as small as
possible. It is explain in [15] that under some conditions (that will be satisfied in our cases),
A2−4 is not a square (which simplifies notions of completeness [11]) and d0 can be chosen equal
to −(A+2)/4. By the way, this value is the one involved in the Montgomery ladder formulas. So,
in any case, it is necessary to select the parameter A such that (A+2)/4 is as small as possible in
order to improve the global efficiency. This is what is done in [15]. However, using Montgomery-
friendly primes implies that the operands have to be in Montgomery representation. So the
value that has to be small is not (A + 2)/4 or d0 but its Montgomery representation d0 =
−(A + 2)2256/4 mod p. Of course, we also checked that the curves obtained are satisfying the
security requirements given in [10]. For the 128-bits security level, the smallest values we get
for the Montgomery representation of −(A+ 2)/4 are d0 = 5919 and −9869 which both fit on
16 bits contrary to the values given in [15] or Curve25519. This may be an advantage for small
devices.
Finally, using the prime p256 = 2192(264 − 4) − 1 for elliptic curve cryptography seems to be
a better choice than the other ones given in the literature for efficiency reasons. This should
of course be verified by a practical implementation but in any case, it provides an interesting
alternative to Curve25519. More generally considering primes of the form 2e2(2e

′
2−c)±1 allows

to get more choice for efficient elliptic curve cryptography than using only Bernstein-like curves.
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4.2 Higher security levels

At the 192-bits security level, we found the prime

p384 = 2128(2256 − 2192 + 264 + 1)− 1

and the elliptic curve defined by the parameter A or d0 such that the Montgomery representation
d0 of −A+2

4 equals −10498.2128 which still fits on one (shifted) 16-bits word.
The prime p = 2192(2192 − 2128 + 264 − 2) − 1 could also be considered with d0 = 39737. One
more addition is required for each step of Algorithm 5 but, contrary to p384, it is compatible
with Algorithm 6.
Concerning the 256-bits security level, we found three primes ensuring the same complexity for
Algorithm 5 and well suited for 64-bits architectures. One can for example choose

p512 = 2128(2384 − 2128 + 264 − 1)− 1

and the elliptic curve defined over Fp512 by the parameter A or d0 such that d0 = −60237 which
also fits on one 16-bits word. The two other primes are

• 264(2448 − 2192 − 2128 + 1)− 1 and

• 2192(2320 − 2128 + 2)− 1

5 Alternative RNS bases with mi = 2e2(2e
′
2 − ci)∓ 1

We consider in this section RNS bases made of co-prime numbers {m1, . . . ,mn} such that for
i ∈ {1, . . . , n}, mi = 2e2(2e

′
2 − ci)∓ 1 with 0 < ci < 2e

′
2 (when ci = 0 then mi = 2e2+e

′
2 − 1). In

this case, the reduction modulo each mi uses Algorithm 6 for the internal modular reduction. If
such number system is implemented on a word-architecture (w−bits unit) like GPU or FPGA
(DSP-unit), a good choice is to have e2 = e′2 = w so that each mi is coded on two words to fit
well Algorithm 6. We consider in this part that e2− 1 ≤ e′2 ≤ e2 which seems the most adapted
to our purpose, but a generalisation is always possible.

RNS addition
The addition of a = {a1, . . . , an} and b = {b1, . . . , bn} is of course done by computing ri =
ai + bi mod mi for each modulo mi. The reduction can then be obtained by computing r′i =
ri + (2e2ci ± 1): if r′i ≥ 2e2+e

′
2 then ri is replaced by r′i mod 2e2+e

′
2 .

RNS multiplication
The multiplication is also done component by component. But, in this case, a stronger modular
reduction, like the one of Montgomery (Algorithm 6) must be applied. The result of each
reduction will then be ri = aibi2

−2e2 mod mi with ri < 2mi.

Montgomery RNS representation
Even at the moduli level it is then interesting to use a Montgomery representation: a =
a22e2 mod M , in other words (a1, . . . , an), with ai = ai2

2e2 mod mi for i ∈ {1, . . . , n}. We
obviously have a+b = a+ b mod M so the addition is stable for the Montgomery representation.
But the multiplication is not.
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The operator ⊗
We then introduce the operator ⊗ defined by a ⊗ b = ab2−2e2 . It is said stable for the Mont-
gomery representation with reduction factor equals to 2−2e2 because a⊗b = ab22e2 = ab mod M .
The operator ⊗ also has the following properties modulo M that can be used for switching be-
tween representations: ∣∣∣∣∣∣

a⊗ 24e2 = a
a⊗ 1 = a

a⊗ b = ab

5.1 Modular reduction modulo a given p in RNS with bases of the form
2e2(2e

′
2 − ci)∓ 1

In this section, we consider bases B and B′ such that mi = 2e2(2e
′
2 − ci) ∓ 1 and m′i =

2e2(2e
′
2 − c′i) ∓ 1 with 0 < ci, c

′
i < 2e

′
2 (we can have ci or c′i = 0 then mi or m′i = 2e2+e

′
2 − 1),

and the Montgomery reduction modulo each element of the bases.

The global RNS Montgomery reduction algorithm is Algorithm 7. The only difference with
Algorithm 4 is that the precomputed values are affected by the Montgomery representation on
each modulo.

Algorithm 7: RNS Montgomery reduction with specific RNS bases

Data:
• 2 co-prime RNS bases B = (m1, . . . ,mn) and B′ = (m′1, . . . ,m

′
n) s.t.

mi = 2e2(2e
′
2 − ci)∓ 1 and m′i = 2e2(2e

′
2 − c′i)∓ 1 with 0 ≤ ci, c′i < 2e

′
2

• a prime p s.t. 2p < M =
∏
mi and 2p < M ′ =

∏
m′i

• the precomputed values µ = −p−1 22e2 mod M , λ = M−122e2 mod M ′ and
γ = pM−122e2 mod M ′

Input: a given in B and B′ with 0 ≤ a < pM
Result: r = aM−1 mod p and r < 2p

q ← a⊗ µ in B // q = a
(
−p−1

)
modM (1)

conversion of q from B to B′

r ← a⊗ λ+ q ⊗ γ in B′ // r = (a+ qp)M−1 modM ′ (2)

conversion of r from B′ to B
return r in B and B′

As we have, a⊗ b = ab2−2e2 , then

q = a⊗ µ = a
(
−p−1 22e2

)
2−2e2

= a
(
−p−1

)
mod M (1)

r = a⊗ λ + q ⊗ γ = aM−1 + qpM−1

= (a+ qp)M−1 mod M ′. (2)

As 0 ≤ a < pM , then (a + qp) < 2pM . Thanks to (1), a + qp is a multiple of M , so
(a+qp)M−1 < 2p < M ′, and Equation (2) is in fact not true only modulo M ′. As a consequence,
the result of Algorithm 7 satisfies r = aM−1 mod p and r < 2p.
In most cases, the input of Algorithm 7 will be given in Montgomery representation for the
moduli mi and m′i as the result of a product of two values in Montgomery representation
a = b ⊗ d = bd22e2 mod MM ′ in B and B′. If the input is a with a < pM , then Algorithm 7
will compute

q = a⊗ µ = aµ = a
(
−p−1

)
22e2 mod M in B

16



instead of q = a
(
−p−1

)
mod M , thus we cannot ensure that q < M and then that (a+ qp)M−1 <

2p. Finally, the result will not be less than 2p as expected.
Hence, we must adapt this algorithm in order to have q = a

(
−p−1

)
mod M . For this we will

compute q = a ⊗ µ in B and then r with r ← a ⊗ λ + q ⊗ γ = (a+ qp)M−1 in B′, and finally
we obtain r = (a+ qp)M−1 mod M ′ < 2p. This adaptation is presented in Algorithm 8.

Algorithm 8: RNS reduction with specific bases in Montgomery representation

Data:
• 2 co-prime RNS bases B = (m1, . . . ,mn) and B′ = (m′1, . . . ,m

′
n) s.t.

mi = 2e2(2e
′
2 − ci)∓ 1 and m′i = 2e2(2e

′
2 − c′i)∓ 1 with 0 ≤ ci, c′i < 2e

′
2

• a prime p s.t. 2p < M =
∏
mi and 2p < M ′ =

∏
m′i

• the precomputed values µ = −p−1 mod M λ = M−122e2 mod M ′ and
γ = pM−124e2 mod M ′

Input: a = a22e2 given in B and B′ with 0 ≤ a < pM
Result: r = r22e2 with r = aM−1 mod p and r < 2p

q ← a⊗ µ in B // q = a(−p−1) modM

conversion of q from B to B′

r ← a⊗ λ+ q ⊗ γ in B′ // r = (a+ qp)M−1 modM ′

conversion of r from B′ to B
return r in B and B′

Remark 12 Two levels of Montgomery representations can occur, one due to the moduli oper-
ator ⊗ and one due to the RNS Montgomery reduction: we note â = (aM mod p) 22e2 mod M
this double level of Montgomery representation. As in the previous cases of Montgomery repre-
sentation, â can be easily obtained: let τ = M2 mod p, if we compute a⊗τ = aτ with aτ < pM ,
then Algorithm 8 returns â.

Remark 13 As usual, if we consider a sequence of operations, the input data could be the
product of two previous results lower than 2p. Then, we need to have 4p2 < pM (in other words
4p < M instead of 2p < M) to ensure that the input is lower than pM .

5.2 Bases conversion with specific RNS bases

Algorithms like the Cox-Rover approach [33] are dependent of the RNS bases elements seen as
pseudo-Mersenne close to a power of two. So they will clearly not work directly with mi =
2e2(2e

′
2 − ci)∓ 1.

Hence, we consider approaches like the one of [6] where the first conversion is a partial Chinese
remainder Theorem method without a final reduction (only the summation is done). The second
conversion is exact using an auxiliary modulo [45].
Let 0 ≤ X < M given by its residues xi modulo the mi. The CRT construction gives

X =

n∑
i=1

ξi
mi
M − αM with ξi =

∣∣xiM−1i ∣∣
mi
.

Thus, the integer part

⌊
n∑
i=1

ξi
mi

⌋
equals α. With our specific bases we can have an approach

which looks like the Kawamura et al one [33] to recover α.
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5.2.1 A general approach

We develop

⌊
n∑
i=1

ξi
mi

⌋
using mi = 2e2(2e

′
2 − ci)∓ 1 ,

n∑
i=1

ξi
mi

=

n∑
i=1

ξi

2e2(2e
′
2 − ci)∓ 1

=

n∑
i=1

(
ξi

2e2+e
′
2

+
ξici2

e2 ± ξi
2e2+e

′
2

(
2e2(2e

′
2 − ci)∓ 1

))

And, because 0 ≤ ξi < 2e2(2e2 − ci)∓ 1 and ci = 0 only when mi = 2e2+e
′
2 − 1, we have

n∑
i=1

ξi
mi

<
n∑
i=1

(
ξi

2e2+e
′
2

+
ci2

e2 ± 1

2e2+e
′
2

)
<

n∑
i=1

(
ξi

2e2+e
′
2

+
ci

2e
′
2

+
1

2e2+e
′
2

)

Now, if we consider that

n∑
i=1

(
ci +

1

2e2

)
< 2e

′
2 , then

n∑
i=1

(
ξi

2e2+e
′
2

)
<

n∑
i=1

ξi
mi

<
n∑
i=1

(
ξi

2e2+e
′
2

)
+ 1

and we are in a case similar to Kawamura et al one [33]. We can conclude that, when
n∑
i=1

(
ci +

1

2e2

)
< 2e

′
2 ,

⌊
n∑
i=1

ξi

2e2+e
′
2

⌋
≤

⌊
n∑
i=1

ξi
mi

⌋
≤

⌊
n∑
i=1

ξi

2e2+e
′
2

⌋
+ 1.

In Algorithm 7, the first conversion ”of q from B to B′ ” can then be done with an algorithm
similar to the one of [33]. It will compute q or q + M in B′. As this value is multiplied by
γ = pM−122e2 mod M ′, that will not affect the result modulo p.

Example 1 We consider 2e2 = 2e
′
2 = 216, for example in a case of a 16-bits architecture. With

a trivial algorithm it is possible to construct a set of 180 pairwise 32-bits co-primes satisfying∑n
i=1

(
ci + 1

2e2

)
< 2e

′
2 with a maximal value of ci equal to 360 < 216

180 −
1
216

and we have 25759 ≤∏180
i=1mi < 25760. This means that one can perform RNS arithmetic with p up to 2878 bits on

a 16 bits plateform.
If we want the mi to be prime, for example in an homomorphic context, we can obtain 106
primes with ci ≤ 616 < 216

106 −
1
216

and 23391 ≤
∏
mi < 23392. If we impose small values for

the ci, e.g. ci < 28, we can obtain 136 co-primes moduli with ci ≤ 253 < 216

136 −
1
216

and

24351 ≤
∏
mi < 24352. We can also easily obtain 45 primes with ci ≤ 255 < 216

45 −
1
216

and
21439 ≤

∏
mi < 21440 .

5.2.2 An exact conversion

Now, we consider ρ ≥ 2 such that X < 1
ρM as for the second conversion in Kawamura et al

[33].
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If
n∑
i=1

(
ci +

1

2e2

)
< 2e

′
2

(
1− 1

ρ

)
, then

n∑
i=1

(
ξi

2e2+e
′
2

)
<

n∑
i=1

ξi
mi

<
n∑
i=1

(
ξi

2e2+e
′
2

)
+

(
1− 1

ρ

)
.

As X < 1
ρM,

⌊∑n
i=1

ξi
mi

⌋
equals

⌊∑n
i=1

ξi
mi

+
(

1− 1
ρ

)⌋
, so we have⌊

n∑
i=1

ξi
mi

⌋
=

⌊
n∑
i=1

ξi

2e2+e
′
2

+

(
1− 1

ρ

)⌋
.

That means that in Algorithm 7, the second ”conversion of r from B′ to B” can be done exactly
as in [33].

Example 2 As in Example 1, we consider 2e2 = 2e
′
2 = 216, adding ρ = 2. In this case, we can

construct a set of 132 co-primes with 24223 ≤
∏132
i=1mi < 24224 and a maximal value of ci equals

to 243 < 215

132 −
1
216

. But also 75 primes with 22399 ≤
∏
mi < 22400 and ci ≤ 436 < 216

106 −
1
216

or

45 if the ci are chosen less than 28 and then 21439 ≤
∏
mi < 21440 and ci ≤ 255 < 216

45 −
1
216

.

5.2.3 A conversion with truncated values

The two previous conversions require the calculation of
∑n

i=1
ξi

2e2+e′2
= 1

2e2+e′2

∑n
i=1 ξi. Suppose

our architecture is on (e2 + e′2)-bits. Since we are only interested in the most significant digits
of the

∑n
i=1 ξi, it might be interesting to consider a truncated summation that stays on less

than (e2 + e′2)-bits. So, we can, as in Kawamura et al [33], compute instead the sum

n∑
i=1

⌊
ξi
2t

⌋
,

with 2t ≥ n.
In this case we have

n∑
i=1

ξi
mi

<
n∑
i=1

(
ξi

2e2+e
′
2

+
ci

2e
′
2

+
1

2e2+e
′
2

)
<

1

2e2+e
′
2

n∑
i=1

(⌊
ξi
2t

⌋
2t + |ξi|2t

)
+

n∑
i=1

(
ci

2e
′
2

+
1

2e2+e
′
2

)
<

2t

2e2+e
′
2

n∑
i=1

⌊
ξi
2t

⌋
+

n2t

2e2+e
′
2

+
1

2e
′
2

n∑
i=1

(
ci +

1

2e2

)
.

Thus, if

n∑
i=1

(
ci +

1

2e2

)
< 2e

′
2 − n2t

2e2
, we have

2t

2e2+e
′
2

n∑
i=1

⌊
ξi
2t

⌋
≤

n∑
i=1

ξi
mi

<
2t

2e2+e
′
2

n∑
i=1

⌊
ξi
2t

⌋
+ 1,

so that

⌊
n∑
i=1

ξi
mi

⌋
=



⌊
2t

2e2+e
′
2

n∑
i=1

⌊
ξi
2t

⌋⌋
or⌊

2t

2e2+e
′
2

n∑
i=1

⌊
ξi
2t

⌋⌋
+ 1.
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If we consider ρ ≥ 2 such that X < 1
ρM and if we assume

n∑
i=1

(
ci +

1

2e2

)
< 2e

′
2

(
1− 1

ρ

)
− n2t

2e2
,

then ⌊
n∑
i=1

ξi
mi

⌋
=

⌊
2t

2e2+e
′
2

n∑
i=1

⌊
ξi
2t

⌋
+ 1− 1

ρ

⌋
.

Note that the larger t is, the smaller the architecture needed to calculate this summation is.

5.2.4 Summary

In this work, we introduced the RNS bases of coprimes mi = 2e2(2e
′
2 − ci)∓ 1 with 0 ≤ ci < 2e

′
2

for i = 1 . . . n. If 0 ≤ X < M is represented in this base by (x1, . . . , xn), ξi =
∣∣xiM−1i ∣∣

mi
and

α =
⌊∑n

i=1
ξi
mi

⌋
, the CRT construction is given by

X =

n∑
i=1

ξi
mi
M − αM.

Let us summarize how to find α in the general case:

• Assuming

n∑
i=1

(
ci +

1

2e2

)
< 2e

′
2 , we have

α =

⌊
1

2e2+e
′
2

n∑
i=1

ξi

⌋
or

⌊
1

2e2+e
′
2

n∑
i=1

ξi

⌋
+ 1.

• If 2t ≥ n and
n∑
i=1

(
ci +

1

2e2

)
< 2e

′
2 − n2t

2e2
,

α =

⌊
2t

2e2+e
′
2

n∑
i=1

⌊
ξi
2t

⌋⌋
or

⌊
2t

2e2+e
′
2

n∑
i=1

⌊
ξi
2t

⌋⌋
+ 1.

If ρ ≥ 2 such that X < 1
ρM , we get an exact result:

• Assuming

n∑
i=1

(
ci +

1

2e2

)
< 2e

′
2

(
1− 1

ρ

)
, we have

α =

⌊
1

22e2

n∑
i=1

ξi +

(
1− 1

ρ

)⌋
.

• If 2t ≥ n and
n∑

i=1

(
ci +

1

2e2

)
< 2e

′
2

(
1− 1

ρ

)
− n2t

2e2
,

α =

⌊
2t

2e2+e
′
2

n∑
i=1

⌊
ξi
2t

⌋
+

(
1− 1

ρ

)⌋
.
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5.3 Some comparisons

The main difference between our approach with Montgomery’s RNS bases and pseudo-Mersenne
bases, and the approach of Kawamura et al [33] lies in the internal modular reduction modulo
mi, the elements of the RNS bases. In the first one, we use Algorithm 6 which uses two
multiplications of a value on e2-bits by ci, then in the second one we use Algorithm 2 with a
multiplication by ci of a value on (e2 + e′2)-bits and one by ci of a value on e2-bits. Depending
on the architecture, size or even shape, the ci values are therefore important.
Another difference is the upper bound for c = max ci. In the general case we need that

c + 1
2e2 <

2e
′
2

n −
2t

2e2 while Kawamura et al requires c < 2e2+e′2
n − 2t. Our upper bound is then

smaller than the one given by Kawamura et al [33]. More precisely it is essentially 2e2 times
smaller and the situation is similar for the exact conversion with ρ ≥ 2. But, on the other hand,
for the same selection criterion of the ci, we have at least 4 times more candidates for the same
bound on the ci (2 times because of the ±1 concerned and 2 times because we can consider
even values of ci contrary to [33]). Consequently, we are able to build bases with smaller ci.
Similarly, if the maximum size of ci is supposed to be small, we can build bases larger than [33].

e = e2 + e′2 ec ρ t n (Kawamura et al [33]) n (this paper)

(mi < 2e) (ci < 2ec ) (mi = 2
e2+e′2 − ci) (mi = 2e2 (2

e′2 − ci)∓ 1)

16 4 2 10 2 7
16 6 2 10 7 7
16 7 2 10 11 7
16 8 2 10 21 7

16 6 2 7 7 8
16 8 2 7 21 8

32 4 2 24 2 7
32 6 2 24 7 21
32 8 2 24 23 65
32 9 2 24 36 65
32 10 2 24 66 65

32 8 2 20 23 68
32 10 2 20 66 89
32 11 2 20 121 89

64 4 2 56 2 8
64 6 2 56 7 20
64 8 2 56 21 62
64 10 2 56 67 127
64 12 2 56 127 127
64 13 2 56 127 127
64 14 2 56 127 127

64 10 2 48 67 205
64 12 2 48 215 688
64 13 2 48 388 1295
64 14 2 48 710 2365

Table 4: Largest n reached for [33] and our approach with a greedy search algorithm based on
increasing the ci

Using a greedy algorithm based on increasing the ci, we give in Table 4 the largest size n of
the RNS bases that can be reached by Kawamura et al [33] approach and by ours. It is given
in function of the parameters e = e2 + e′2 (the bitsize of the moduli), ec (the maximal bitsize
expected for the ci), ρ and t (the truncation size), knowing that at least 2n base elements are
required.
We note that, as expected, our approach reaches bigger RNS bases than Kawamura et al for
small ci (which is important in term of efficiency because the internal modular reduction modulo
mi uses multiplications by ci). We remark also that, by changing the size of the truncation,
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our approach becomes a little bit better, see for exemple e = 16 or e = 32. These phenomena
correspond to the bounds given on c which are smaller in our case so that t may have greater
influence.
Another interesting point comes from the use of Algorithm 6. This algorithm has the advantage
of being able to use basic RNS elements of twice the size of the architecture because the
multiplications are on e2-bit values instead of (e2 + e′2)-bits. For example, for an architecture of
16-bits, we can consider e = e2 + e′2 = 32 and e2 = 16. As a consequence RNS-based arithmetic
can be considered for larger fields or rings on such architectures. For example, a RNS-based
implementation of RSA-1024 can be done on a 16-bits architecture (we need 64 moduli with
e2 = 16 for this) while it cannot be done directly with pseudo-Mersenne 16-bits moduli (128
are required with e = 16) and are more costly with 32-bits moduli due to Algorithm 2.
In a recent paper, Kawamura et al [34] give an interesting survey of different approaches [33,
25, 17, 23] about RNS ECC implementations. They also suggest an original approach using
bases where each element is a square modulo the others and p is a square modulo each element
of the bases (the elliptic curve is defined over Fp). The bases proposed by our approach are
compatible with all the previous approaches and also with the one of [34]. Moreover, one can
see in Table 5 that our approach offers smaller ci than [34].

Method (p, e, ec, ρ, t, 2n) [ ci] size
This paper (p192,50,12,2,42,8) [2, 68, 98, 134, 158, 206, 1902, 2903], 199

[34] (p192,50,14,2,42,8) [27, 117, 351, 951, 1163, 2567, 2855, 8543] 199
This paper (p224,58,11,2,53,8) [32, 67, 122, 123, 413, 1653, 1751, 1943] 231

[34] (p224,58,13,2,53,8) [27, 57, 63, 147, 447, 731, 3807, 7403] 231
This paper (p256,65,12,2,58,8) [49, 73, 391, 512, 578, 1630, 2212, 3812] 259

[34] (p256,65,14,2,58,8) [49, 535, 751, 979, 2191, 3219, 8031, 11335] 260
This paper (p384,98,14,2,90,8) [7, 21, 44, 792, 2301, 3251, 5286, 8601] 391

[34] (p384,98,16,2,90,8) [51, 117, 831, 855, 1571, 1827, 4343, 52155] 392
This paper (p521,132,14,2,124,8) [4, 43, 252, 315, 906, 3010, 7696, 9022] 528

[34] (p521,132,16,2,124,8) [347, 363, 527, 725, 6647, 11535, 38679, 38835] 528
This paper (pCurve25519,64,12,2,57,8) [1, 4, 92, 241, 483, 1230, 2410, 3645] 255

[34] (pCurve25519,64,14,2,57,8) [59, 83, 323, 899, 3263, 6983, 8547, 13515] 256

Table 5: Comparison of our approach with the one of Kawamura et al [34]. p defines the finite field,
e = e2 + e′2, ec > log2 (ci), t is the truncation size, and 2n the number of mi for the two bases needed.
We return the set of ci defining the RNS bases.

In [9], the authors propose a double Montgomery reduction in a Cox-Rover like architecture
which is more general than our current approach (which also involves a double level of Mont-

gomery reduction). In their approach, the Kawamura et al. condition c < 2e2+e′2
n (1 − 1

ρ) − 2t

becomes c < 2e2+e′2
n (1− 1

ρ)−2e2+e
′
2−t+ 1. As a consequence, they can generate more bases than

[33] as they allow bigger ci. This could be very interesting when e2 + e′2 is small, but the cost
of the multiplication by ci can become costly depending of the architecture and this approach
has the same drawback than [33] compared to ours. When e2 + e′2 ≥ 32 our approach is clearly
very attractive.

6 Conclusions

Montgomery-friendly prime numbers, which are particularly suitable for Montgomery modular
reductions, form a large family. They offer new prime numbers that can be used in many
cryptographic contexts such as elliptic curve or isogeny based cryptography or RNS arithmetic
for large numbers. For isogenies, we have proposed new primes that significantly improve the
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complexity of the modular reduction step for each of the NIST security categories. For ECC,
we provide new primes for base fields for the 3 standard security levels as alternatives to the
pseudo-Mersenne primes like 2255 − 19, or other Montgomery-friendly primes like 2240(216 −
88) − 1. Again, the modular reduction is expected to better depend on the relative costs of
word additions versus word multiplications. Note that we get curves with smaller coefficients
than the existing ones which can be an advantage for small devices. The use of Montgomery
Friendly moduli for RNS implementations offers several advantages. It is indeed possible to
obtain larger sets of pairwise co-prime numbers with very small ci parameters. The size of this
parameter is a very important criterion for the cost of the modular reduction at the moduli
level. Moreover, Algorithm 6 allows the use of moduli with a size that is twice the size of the
operators of the targeted architecture.
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