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ABSTRACT
Application of deep neural network is a rapidly expanding field now reaching many
disciplines including genomics. In particular, convolutional neural networks have
been exploited for identifying the functional role of short genomic sequences. These
approaches rely on gathering large sets of sequences with known functional role,
extracting those sequences from whole-genome-annotations. These sets are then split
into learning, test and validation sets in order to train the networks. While the obtained
networks perform well on validation sets, they often perform poorly when applied
on whole genomes in which the ratio of positive over negative examples can be very
different than in the training set. We here address this issue by assessing the genome-
wide performance of networks trained with sets exhibiting different ratios of positive
to negative examples. As a case study, we use sequences encompassing gene starts from
the RefGene database as positive examples and random genomic sequences as negative
examples. We then demonstrate that models trained using data from one organism can
be used to predict gene-start sites in a related species, when using training sets providing
good genome-wide performance. This cross-species application of convolutional neural
networks provides a new way to annotate any genome from existing high-quality
annotations in a related reference species. It also provides a way to determine whether
the sequence motifs recognised by chromatin-associated proteins in different species
are conserved or not.

Subjects Bioinformatics, Computational Biology, Data Mining and Machine Learning
Keywords Transcription start sites, Promoters, Genome annotation, Deep learning, DNA motifs,
Sequence evolution, Unbalanced datasets

INTRODUCTION
The improvement of DNA sequencing techniques lead to an explosion in the number and
completeness of fully sequenced genomes. One of the major goals in the field is to annotate
these DNA sequences, which is to associate a biological function with sequence motifs
located at different positions along the genome (Stein, 2001). In the human genome for
instance, while some DNA sequences encode proteins, most sequences do not code for any
protein. Many of these non-coding sequences are nevertheless conserved in related species
and are necessary for the correct regulation of gene expression. Deciphering the function
of these non-coding sequences has been increasingly achieved through improvements in
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the throughput of next generation sequencing (Rivera & Ren, 2013). The 3.2 Billion base
pair (bp) long human genome is now annotated with many functional and bio-chemical
cues (Kundaje et al., 2015; ENCODE Project Consortium et al., 2012), among which are
the initiation sites of gene transcription (Carninci et al., 2006; Georgakilas, Perdikopanis &
Hatzigeorgiou, 2020). While these annotations are becoming more numerous and precise,
they cannot be determined experimentally for every organism and every cell type, as the
experiments needed to produce these annotations are often costly and difficult to carry
out. Computational methods are therefore widely used to extract sequence information
from known annotations and extrapolate the results to different genomes or conditions,
e.g., Kundaje et al. (2015) and Durham et al. (2018).

An related question is to understand the link between these annotations and the un-
derlying DNA sequence. To this end, supervised machine learning algorithms (Goodfellow,
Bengio & Courville, 2016) have been particularly successful (Zou et al., 2019; Angermueller
et al., 2016). Among those, deep Convolution Neural Networks (CNNs) are very efficient
at detecting sequence features since they rely on the optimisation of convolution filters
that can be directly matched to DNA motifs (Ching et al., 2018). Stacking several of these
convolution layers together can lead to the detection of nested motifs at larger scales.
Pioneering studies illustrated this ability of CNNs to reliably grasp complex combinations
of DNA motifs and their relationship with functional regions of the genome (Min et al.,
2016; Umarov & Solovyev, 2017; Alipanahi et al., 2015; Zhou & Troyanskaya, 2015; Kelley,
Snoek & Rinn, 2016; Pachganov et al., 2019).

Min et al. (2016) used a CNN to predict enhancers, which are specific sequences that
regulate gene expression at a distance. This method performed very well and ranked
above state-of-the-art support vector machine based methods. Similar tools were used in
different contexts, aiming at identifying promoters (Umarov & Solovyev, 2017; Pachganov
et al., 2019) or detecting splice sites (Leung et al., 2014; Jaganathan et al., 2019). In these
approaches, a sample set is first created by taking all positive class sequences (e.g., enhancers)
and adding the same amount of randomly picked negative class examples (e.g., non-
enhancers). This sample set is then divided into training, validation and test sets. Balancing
the data ensures that the model will be trained on the same number of positive and negative
examples, thus giving the same importance to both classes. While these approaches are
very successful when assessed on test sets derived from the sample set, we show here that
they tend to perform poorly when applied on entire chromosome sequences as required
for the task of complete genome annotation. This is due to the fact that the networks are
optimised on a similar number of positive and negative examples during training, but that
they will usually face very different ratios of negative over positive classes when used on a
full chromosome sequence (He & Garcia, 2009).

Alternative approaches (Alipanahi et al., 2015; Kelley, Snoek & Rinn, 2016) used
unbalanced datasets for training (i.e., with more negative than positive examples) to
predict DNA-binding sites for proteins and genome accessibility. In these two studies,
however, the prediction performance of the model is also assessed on test sets derived
from training sets, not on full genomic sequences. The task of genome-wide prediction
has been assessed in a more recent study aiming at identifying cell type specific regulatory
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elements (Kelley et al., 2018). In order to infer long range relationships between these
elements, Kelley et al. used very long (131 kb) non-overlapping windows covering the
whole genome. This approach has proven efficient but requires a lot of computational
memory.

As our goal is to provide genome-wide predictions, the methodology we used is inspired
from this last study. Since we do not aim here at predicting cell type specific features, we
could use shorter sequences as input and a simpler network architecture. We also present
two novelties for the development and for performance assessment of genome-wide
predictions. Firstly, we do not use as a quality measure the classical prediction scores
computed on test sets obtained by dividing the sample data into training, validation and
test sets as commonly done in machine learning. Rather, we compute prediction scores
that assess the ability of our model to annotate a full chromosome sequence by designing a
specific metric (described inMaterial andMethods). Secondly, we change the ratio between
positive and negative examples in order to obtain the highest prediction scores and show
that this tuning is has an important effect on the outcome. As a proof of principle, we use in
this work gene start sites (GSS) as features. DNA motifs around GSS are recognised by the
transcriptionmachinery and indicate the location of the initiation of transcription (Kugel &
Goodrich, 2017). The DNA sequence surrounding GSS therefore contains the information
that could in principle be used by an algorithm to identify in silico the GSS locations. These
DNA sequence motifs are different for different classes to genes. For instance, protein
coding genes can have either CG di-nucleotide (CpG) rich or poor sequences upstream
their GSS (Deaton & Bird, 2011). We show that using training sets with a higher ratio of
negative over positive examples, we can faithfully retrieve GSS positions, with performances
varying for different classes of genes such as coding or non coding genes.

We then propose a new application of CNNs in genomics that leverages the fact that
similar organisms tend to have similar regulatory mechanisms, i.e., rely on homologous
molecular machinery and on homologous DNA regulatory motifs. Exploiting these
homologies, we first train a model on a dataset corresponding to a given organism and use
it to predict the annotation on the genome of a related organism, opening newopportunities
for the task of de-novo genome annotation.We show that a CNN trained on GSS containing
regions in human is able to recover regions containing GSS in the mouse genome and vice
versa. We also assess the generalisation of the approach to more distant species, taking as
examples Gallus gallus and Danio rerio.

METHODS
Input generation
Genomic sequences were downloaded for the reference genomes for Human (hg38),Mouse
(mm10), Chicken (gg4) and Zebrafish (dr10) via the URLs shown in Table 1. Similarly, GSS
positions for each genome were extracted from their respective NCBI RefSeq Reference
Gene annotations (RefGene).

As a positive input class, we use regions of 299 bp flanking GSS (i.e., ±149 bp around
the GSS) which are supposed to contain multiple sequence signals indicating the presence
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Table 1 URL of the data used in the present work.

Genomes
human https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz
mouse https://hgdownload.soe.ucsc.edu/goldenPath/mm10/bigZips/chromFa.tar.gz
chicken https://hgdownload.soe.ucsc.edu/goldenPath/galGal4/bigZips/galGal4.fa.gz
zebrafish https://egg.wustl.edu/d/danRer10/refGene.gz
Reference Gene
human https://egg.wustl.edu/d/hg38/refGene.gz
mouse https://egg.wustl.edu/d/mm10/refGene.gz
chicken https://egg.wustl.edu/d/galGal4/refGene.gz
zebrafish https://egg.wustl.edu/d/danRer10/refGene.gz

of a GSS to the transcription machinery of the cell. For instance in the human genome,
31,037 GSS positions are extracted on both DNA strands (15,798 for the positive strand
and 15,239 for the negative strand). In order to generate the negative class, we select 31,037
×Q sequences of 299 bp at random positions on a random strand, rejecting regions that
do contain a GSS. The odds of getting at random a genomic region containing a GSS are
close to 0.28%. ForQ= 1, there is an equal number of negative and positive class examples.
Unbalanced datasets are produced using different values of Q ranging from 1 to 100. For
Q= 100, the negative class encompasses 100×299×31k≈ 1Gb, which represents one third
of the human genome. For the other genomes a similar procedure was implemented. The
total number of GSS used was 25,698 for the mouse, 6876 for the chicken and 14805 for
the zebrafish.

Convolution Neural Network (CNN)
A CNN (see Fig. 1) is trained in order to predict the presence of a GSS in a DNA sequence
of size 299 bp. The shape of the input layer is c×b in which c = 4 is the number of different
nucleotides and b= 299 is the length of the input sequence. The nucleotide sequences
are one hot encoded so that A=(1,0,0,0), T=(0,1,0,0), C=(0,0,1,0), and G=(0,0,0,1). The
training set contains N samples of labelled pairs (X (n),y(n)), for n∈ {1,...,N }, where X (n)

are matrices of size c×b and y(n) ∈ {0,1}. Each X (n) is associated with y(n) = 1 when it
corresponds to a region containing a GSS and y(n)= 0 otherwise. The first convolution
layer consists of k kernels of length s which are applied on b− s+1 successive sequences at
positions p∈ {1,...,(b− s+1)} to recognise relevant DNA motifs of size s. This operation
generates an output feature map of size k× (b− s+1) for an input X (n) of size c×b. The
feature mapM resulting from the convolution operation is computed as follows:

Mp,i=

c∑
j=1

s∑
r=1

Wi,j,rXp+r−1,j+Bi, i∈ {1,...,k} (1)

where W denotes the network weights with size (k× c× s) and B denotes the biases with
size (k×1) (see e.g., Goodfellow, Bengio & Courville, 2016). After the convolution layer a
non-linear function is applied to the output, here a Rectified Linear Unit (ReLU). This
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Figure 1 Overview of the CNNmodel. A total of 299 bp-long sequences were one hot encoded into a
4× 299 input matrix. The first CNN layer performs a convolution on each input matrix to recognise rel-
evant motifs. The next convolutional layers models the interplay among these motifs to grasp higher-level
features. Max-pooling layers reduce the dimensions of the layers. The model is trained to correctly label
input sequences as GSS or non-GSS. The output layer of the trained network then gives a probability for
any 299 bp region to contain a GSS. It can be applied along a full chromosome, i.e., on all 299 bp-long se-
quences with a 1 bp shift.

Full-size DOI: 10.7717/peerjcs.278/fig-1

activation function computes fReLU (M)=max(0,M) to incorporate non-linearity by
transforming all negative values to zero. In order to reduce the input dimension we apply a
max-pooling process with a pool size m over the output of fReLU (M). Similar convolution
layers followed by ReLu and max-pooling are added sequentially on the input of the first
layer to grasp higher order motifs. The output of the last max-pooling layer is then fed into
a fully connected layer which output x is transformed by a softmax layer, i.e., a sigmoid
function (φ= 1

1+e−x ), in order to give the final output of the CNN. This final score of the
input sequence is ideally 0 for non-GSS and 1 for GSS containing sequences. When we
need to perform a classification we use a threshold of 0.5 to discriminate between the two
classes.

In the training phase, the weights and biases of the convolution layers and the fully
connected layer are updated via back-propagation (Rumelhart, Hinton & Williams, 1986)
in a way which decreases the loss, which measures the discrepancy between the network
predictions and the reality averaged over individual examples. We use here the binary
cross-entropy computed as:

L=−1/N
N∑
i=1

[y(n)log (ŷ(n))+ (1−y(n))× log (1− ŷ(n))] (2)

where ŷ(n) is the estimated score for the input sample X (n).
As data are imbalanced forQ> 1, themodel may reach a local optimumwhen predicting

the non-GSS class for all input sequences. In order to deal with this issue, we attribute
different weights to the positive and negative classes. We assign a greater importance to
the less represented GSS class by multiplying the associated term in the loss by a weight
CW = number of non-GSS

number of GSS =Q.
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One of the important issues of any learning algorithm is overfitting. Overfitting occurs
when one achieves a good fit of the model on the training and validation data, while it does
not generalise well on new, unseen data. To deal with this issue, a regularisation procedure
called dropout is usually used (Srivastava et al., 2014). In the training step, some outputs of
the pooling layers are randomly masked while the remaining information is fed as inputs
for the next layer.

Implementation
We implement CNN using Keras library (Chollet et al., 2015) and Tensorflow (Abadi,
Agarwal & Barham, 2015) as back-end. Training on a GPU is typically faster than on a
CPU. We use here a GTX 1070 Ti GPU. We use Adaptive Moment Estimation (Adam) to
compute adaptive learning rates for each parameter (Kingma & Ba, 2014). Adam optimiser
is an algorithm for first-order stochastic gradient-based optimisation of functions, based
on adaptive estimates of lower-order moments. The network architecture (see Fig. 1) is
detailed in Table 2. Themodels are trained for 150 epochs and they mostly converge rapidly
(around 30–35 epochs, we use early stopping to prevent overfitting). Hyper-parameters
tuning is detailed in the supplementary materials.

Source codes are available at https://github.com/StudyTSS/DeepTSS/.

Genome wide performance measure
Different measures have been developed in order to assess the performance of different
models on conventional test sets, i.e., test sets derived from a subset of the initial data.
Such measures are described in details in the corresponding supplementary materials
section. In our case, we want to apply our model on all the 299 bp windows spanning a
full chromosome and eventually chromosomes from other species. Specifically, the model
was tested on chromosome 21 which was withdrawn from the training set. We therefore
developed a measure to evaluate the performance of the trained models in this case. This
metric, called λ, measures the enhancement of the predicted signal specifically in the regions
surrounding the known GSS. We use in the present papers regions of length r = 400 bp.
To compute λ, we first compute the genome-wide Z-score (Kreyszig, 2009) Zg =

yg−µ̄
σ

from
the predictions yg where g denotes positions on the genome, and µ̄ and σ stand for the
prediction mean and standard deviation, respectively. We extract ZGSS, the Zg signal over
10 kb windows centred on each GSS of the test region, e.g., a full chromosome. Zg is a
2D-array whose rows correspond to different genes and columns to different distances to
the GSS. We then average element-wise ZGSS over all GSS, i.e., along all rows. This gives us
S, the average of the Z-transformed prediction score in a 10 kb window around all GSS. In
order to measure the signal increase close to the GSS, that we call λ, we compute the average
of the curve S on a region of r bp centred on the GSS. A higher value of λ corresponds to
a higher signal-to-noise ratio around the GSS.
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Table 2 Network architecture of the CNNmodel. The first column depicts the different layers used con-
secutively in the network. The ’’layer shape’’ column reports the shape of the convolutional kernels, the
max-pooling windows and the fully connected layers. The ’’output shape’’ column reports the variation of
layer shapes at each step.

Layer name Layer shape Output shape

Input – 4×299×1
Conv2D 32×4× (4×1) 32×296×1
Max-pooling 2×1 32×148×1
Dropout – 32×148×1
Conv2D 64×32× (4×1) 64×145×1
Max-pooling 2×1 64×72×1
Dropout – 64×72×1
Conv2D 128×64× (4×1) 128×69×1
Max-pooling 2×1 128×34×1
Dropout – 128×34×1
Dense 128 128
Dropout – 128
Dense (sigmoid) 1 1

RESULTS
Training models for genome annotation of GSS
The problem of detecting human GSS using deep neural networks has been tackled in
(Umarov & Solovyev, 2017). We first follow a similar approach and use a balanced dataset
(see Methods for details). The model is trained/validated on an equal number of 299 bp
long positive and negative examples and is evaluated on a test set composed of 15% of the
original data that was left aside prior to training. The specificity (Sp), the sensitivity (Sn) and
the Matthews Correlation Coefficient (MCC, Chicco & Jurman, 2020) (see Supplemental
Information 1 for definition) were found to be similar to the ones found in (Umarov
& Solovyev, 2017) which used a similar approach albeit separating the sample data into
TATA-containing GSS and non-TATA GSS (Sp = 0.94, Sn = 0.92 and MCC = 0.86).

In order to assess how this model would perform as a practical tool for detecting GSS
on a genome-wide scale, we apply it on all the sequences along chromosome 21 (which
has been withdrawn from the training phase, i.e., from the training and validation sets)
obtained using a 299 bp long window sliding with an offset of 1 bp. Figure 2A illustrates the
predictions of the CNN model over a typical region of 300 kbp containing 7 out of the 480
GSS of chromosome 21. Although the predictions yield higher scores over GSS positions,
they also yield high scores over many non-GSS positions reflecting a low signal-to-noise
ratio. This is due to the fact that the reality is biased in the training phase during which
the CNN model learns an equal number of examples from the positive and the negative
classes (He & Garcia, 2009). Applied over all the 299-bp sequences of chromosome 21, the
model encounters many more examples of the negative class and fails to generalise to the
new examples.

Khodabandelou et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.278 7/18

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.278#supp-1
http://dx.doi.org/10.7717/peerj-cs.278#supp-1
http://dx.doi.org/10.7717/peerj-cs.278


Figure 2 CNN predictions for two regions of chromosome 21. (A) Prediction scores for balanced 1*
model (Q = 1) and unbalanced 100* model (Q = 100), respectively in blue and red on a 300 kb region.
The position of genes is indicated below. The annotation track was done using the UWash Epigenome
browser (https://epigenomegateway.wustl.edu/). Both models detect 7 GSS positions, but the 1* model re-
turns a higher background signal at non GSS positions. Adding negative examples using the 100* model
mitigates the noise while preserving the high scores over GSS. (B) Application of 30 1* models, trained on
different datasets, over a 3.2 kb region of chromosome 21. At each site, the maximum and minimum pre-
diction scores are respectively displayed in black and red. Other prediction scores are plotted in grey.

Full-size DOI: 10.7717/peerjcs.278/fig-2

To address this issue and train a network for genome annotation, we propose a heuristic
wheremore negative examples are added into the balanced dataset to reduce the importance
of the positive class during training and to allocate more weight to the negative class. We
call these augmented datasets limited unbalanced datasets. The parameter Q is the ratio
between negative and positive training examples and denote as Q∗ models trained with
the corresponding ratio. For instance, on Fig. 2A the model trained on the balanced data
yielding to blue signal predictions is denoted as 1∗. We train our CNN model on a 100*
dataset (Q= 100) and assess the efficiency of the trained model. As depicted on Fig. 2A by a
red signal, the predictions for this model display a much higher signal-to-noise ratio, with
significant peaks over each of the 7 GSS (C21orf54, IFNAR2, IL10RB, IFNAR1, IFNGR2,
TMEM50B, DNAJC28) and a much weaker signal between these sites. Predicting GSS
using the 100* model is thus expected to generate fewer false positives than the 1* model,
regardless the value of the threshold used to identify GSS-containing regions. In order to
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assess how changing the value of Q affects GSS classification, we apply a threshold on the
prediction and compute the precision and the recall obtained for both models (i.e., 1* and
100*) at 600 bp resolution on a full chromosome. The precision recall curves confirmed the
compromising effect of a lower signal-to-noise ratio on the accuracy of the classification
(Fig. S1). For the sake of completeness, the performance of more models (1*, 10*, 20*, 30*,
50*, 100*) evaluated using conventional metrics on test sets derived from the initial sample
sets can be found in Supplemental Information 1.

Investigating the effect of random selection of the negative examples
on predictions
While positive examples are always the same in different sample sets, the negative examples
are randomly picked out of the genome. The performance of the model in different regions
of chromosome 21 can thus vary for different training sets (Wesolowska-Andersen et al.,
2020). To investigate this variation, we set up 30 balanced 1∗ datasets and train 30 CNNs
separately. The 30 models are then applied over human chromosome 21 to study the
fluctuations of the predictions. The variation of 30 predictions is depicted in Fig. 2B.
The first observation is that almost all predictions present a peak over the DIP2A GSS.
However, the large gap between the minimum and maximum predictions underlines
the variability of predictions obtained with different training datasets. This variability
illustrates the uncertainty of the predictions obtained from a single CNN trained on a
balanced dataset and highlights the need to use limited unbalanced datasets for the task of
genome annotation.

Comparing 1* and 100* models over a full chromosome
Models trained on 1* and 100* sets are applied to the full chromosome 21 and the
Z-normalized prediction scores around GSS are presented as heat-maps. While the 1*
model (Fig. 3A) presents a noisy signal around GSS positions, the 100* model (Fig. 3B)
presents a higher signal-to-noise ratio. To investigate the performance of different models
on a genome-wide scale we devised a custom metric λ which measures the average
signal-to-noise ratio around GSS (see Methods for the definition of λ).

Figures 3C, 3D illustrate the average of the Z-score over all the GSS of chromosome
21 for the models 1* and 100*, respectively, and λ denotes the average of this average
over a r = 400 bp region centred on the GSS. A larger λ score corresponds to a higher
signal-to-noise ratio. In this particular case, we find a λ score of 2.21 and 5.81 for the 1*
and 100* model, respectively.

To illustrate the variability of prediction scores achieved around different GSS, we
randomly selected four GSS within the chromosome. The first GSS corresponds to the
gene CXADR, shown in Fig. 3E. While the prediction of 1* model results in a low averaged
Z-scores over all positions, the averaged Z-score of 100* model strongly peaks around
the GSS position and shows low variations over non-GSS positions. Figure 3F depicts the
second selected GSS corresponding to the KRTAP19-2 gene. This gene is part of a cluster
of similar genes belonging to the family of Keratin Associated Proteins (highlighted by a
yellow rectangle on Figs. 3A, 3B). For this particular cluster, the predictions are poor for
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Figure 3 Comparison of the 1* and 100* models predictions over chromosome 21. (A) and (B) Heat
maps depict the Z-score of the prediction for the 1* and 100* models respectively on 5,000 bp flanking
each GSS of chromosome 21. (C) and (D) Averaged Z-score of the predictions over each GSS of chromo-
some 21. (E–H) Zoom on regions around randomly selected GSS. Genes are indicated at the bottom of
each plot. (I–K) Averaged Z-score of the predictions over each GSS of mouse chromosome X (I) and for
networks trained on mouse/human chromosomes (except X) and applied on human/mouse chromosome
X (J,K).

Full-size DOI: 10.7717/peerjcs.278/fig-3

both 1* and 100*, probably reflecting a specific GSS signature that has not been grasped
by the model. Another example of gene cluster with a poor prediction score for GSS
is the t-RNA cluster, highlighted in green in Figs. 3A, 3B. Figures 3G, 3H displays the
predictions around the GSS of the SCAF4 and, PCNT and C21ORF58 genes, respectively.
On these more typical GSS the 100* model shows a higher signal-to-noise ratio than the
1* and regions containing GSS are detected. These regions often stretch over 1 kb while
our training sequence centred on each GSS is only 299 bp long. This could indicate the
presence either of alternative GSS close to the annotated GSS or of similar sequence patterns
in broader regions surrounding the GSS (Carninci et al., 2006; Sandelin et al., 2007).

Learning and predicting in human and mouse
To show the potential of our annotation method in a different context, we replicate a
similar GSS analysis in mouse. Models with values of Q ranging from 1 to 100 trained
on mouse chromosomes (except X) are applied over the mouse chromosome X to assess
the model performance (see Fig. 3I, and Figs. S2A, S2D, S2G). The averaged Z-score of
λ reaches values of 2.24 and 4.90 respectively for the 1* and 100* models in quantitative
agreement with the model performance in human.

Khodabandelou et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.278 10/18

https://peerj.com
https://doi.org/10.7717/peerjcs.278/fig-3
http://dx.doi.org/10.7717/peerj-cs.278#supp-1
http://dx.doi.org/10.7717/peerj-cs.278#supp-1
http://dx.doi.org/10.7717/peerj-cs.278#supp-1
http://dx.doi.org/10.7717/peerj-cs.278


Mammals show a substantial degree of homology in the DNA sequence found at
GSS (Waterston et al., 2002), and earlier computational models were trained to recognise
transcription start site in any mammalian species (Down & Hubbard, 2002). This study
focused on 313 sequences, of which 50 were kept aside for test purposes and we want here
to extend the validity of this initial study at the genome wide level. Following this line, we
determine the possibility of predicting GSS in one organism with a network trained on a
related organisms. This possibility has previously been shown to be effective for sequence
variants calling (Poplin et al., 2018) To this end, the mouse trained model is applied on
human chromosome X and the human trained model is applied on mouse chromosome
X. The two chromosomes carry homologous genes (Waterston et al., 2002), the number of
annotated GSS varies with a total of 4,968 GSS in human and 2,005 GSS in mouse. While
the model trained and applied on mouse shows a better signal-to-noise ratio, the same
model applied to human chromosome X still captures most of the GSS and gives a λ score
of 5.18 for the 100* model (see Fig. 3J and Figs. S2B, S2E, S2H). Similarly, the models
trained on human capture most of GSS on the mouse X chromosome as shown in Fig. 3K
and Figs. S2C, S2F, S2I and reaches a λ score of 4.32 for the 100* model. In all cases, the
signal-to-noise ratio is improved in the 100* models with respect to the 1* models. The
human model applied on human provides the highest scores for both 1* and 100* models
probably a signature of an overall better GSS annotation.

Evaluation of the prediction for different GSS classes
The potential of our trained networks to recover GSS containing regions along the human
and mouse genomes is assessed in the previous parts without any distinction between
different GSS classes. Since we find that some GSS are better predicted than others (Fig. 3),
we compute the λ score independently for the two main classes of GSS: mRNA-GSS and
ncRNA-GSS. While λ is higher for the mRNA-GSS class, the model is versatile and is also
able to predict the ncRNA-GSS (Fig. 4B). In human and mouse, mRNA-GSS are found
in different classes, that can be derived from the CpG content of the region flanking the
GSS. High CpG regions, also called ‘‘CpG island’’ can be methylated and play an important
role in gene regulation (Deaton & Bird, 2011). Figure 4A displays the distribution of
the CpG number in 299 bp regions surrounding the all mRNA-GSS for the mouse and
human X chromosome. From this distribution, we identify three classes of mRNA-GSS
with respectively a high, medium and low CpG content. High CpG GSS correspond to
genes regulated by DNA methylation and have been shown to exhibit a different pattern
of chromatin modifications (Vavouri & Lehner, 2012). Assessing the performance of the
model for the three different classes, we find that better scores are obtained for CpG richer
GSS (Fig. 4B). The worst performing GSS are low CpG content GSS which are hardly
recovered by our model. In order to test whether CpG content alone could be used to
predict GSS we computed the λ score over all GSS using the Z-normalized CpG content
as predictor. We get values of 1.30 and 0.92 respectively for the human and mouse GSS
indicating that the CpG content is a strong indicator of the present of GSS but that our
models use as well other features which allow them to reach much higher scores.
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Figure 4 Evaluation of the model performance for different classes of genes. (A) and (B) CpG number
in 299 bp regions centred on mRNA-GSS in X chromosomes for human (A) and mouse (B). These regions
were divided in three groups of similar size according to their CpG number into low, medium and high
groups (the bounds are 35% and 60% for human and 30% and 60% for mouse). The proportion of genes
in each class is similar on the X chromosome (test set) than on other chromosomes (training and valida-
tion sets). (C) Lambda values computed for networks trained on each species non-X chromosome GSS (t)
and predicted on either species’ X-chromosome GSS (p). Lambda values for each mRNA-CpG sub-group
and ncRNA genes are also shown to highlight different levels of performance.

Full-size DOI: 10.7717/peerjcs.278/fig-4

Application of the approach to other vertebrates
The performance of a CNN trained on human GSS to recover mouse GSS is not surprising
given the similarity between their genomes (Waterston et al., 2002). We next set out to
apply the same methodology on more diverse species, including chicken and zebrafish
(Fig. 5). Four CNNs were trained on all the GSS from the genomes of Homo Sapiens
(human), Mouse musculus (mouse), Gallus gallus (chicken) and Danio rerio (zebrafish).
G.g. and D.r. are model organisms, and together with H.s. and M.m. provide the most
comprehensive GSS annotations for mammals, birds and fishes. These four CNNs were
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Figure 5 Lambda scores obtained with CNN trained on four different species: human, mouse, chicken
and zebrafish. Lambda scores are computed from predictions done on GSS of (A) human, (B) mouse, (C)
chicken and (D) zebrafish chromosomes.

Full-size DOI: 10.7717/peerjcs.278/fig-5

then applied genome wide on each of the four species and the λ metric is computed for
each chromosome independently, using a r value of 400 bp (see Methods).

The results for the human and mouse genomes are very similar, with only a slightly
better performance when the model trained on a species is applied on the same species. The
model trained on the chicken genome performs less well when applied on the mammalian
genomes and themodel trained on the zebrafish genome is not able recover themammalian
GSS as shown by a λ value of 0.

When applied on the chicken genome, the mouse and human models surprisingly
outperform the chicken model, probably because the GSS annotation is better in the two
mammals so that the training phase is more efficient. This result highlights the potential
of the method when used across different species when the genome of one species is more
precisely annotated.

When applied on the zebrafish genome on the other hand, the human, mouse and
chicken models all show poor performances while the zebrafish model performs well. This
is in line with the fact that the CpG composition of zebrafish regions around GSS if very
different than in chicken and mammals. CpG islands, which are high density CpG regions,
are found upstream of many GSS for coding genes in chicken and mammals while they
are less abundant in the zebrafish’s genome which has a low GC content (Han et al., 2008).
All together, these results suggest that the molecular machinery that interprets the genome
sequence in order to find start sites of genes has a similar specificity in human, mouse and
chicken, but a different specificity in zebrafish.

CONCLUSIONS
With the surge of DNA sequencing technologies, over a million genome datasets are
now available and petabases of transcripts are sequenced every year to annotate these
datasets with functional marks (Wainberg et al., 2018). It has not escaped the notice of
many computational biologists that deep neural networks are a key tool to deal with this
exponentially increasing amount of data (Wainberg et al., 2018). One possible application is
to leverage datasets with good annotations in order to train neural networks and to predict
annotations on other datasets. One of the practical issues when applying neural networks
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on genomic sequences is unbalanced data, a well-known issue in the machine learning
literature (He & Garcia, 2009; Chawla, Japkowicz & Kotcz, 2004; Batista, Prati & Monard,
2004). In the present paper, we address this problem using GSS as a case study. Indeed, GSS
occupy only a few locations on the genome (31,037 GSS for human) leading to extreme
unbalances in datasets (i.e., the ratio of GSS-containing 299 bp windows to non-GSS in the
human genome is 1/400). In this case, the lack of examples of the minority class (i.e., true
GSS) impacts the learning process as conventional machine learning algorithms usually
measure the model performance on the majority class (i.e., non-GSS) leading to biased or
inaccurate prediction of theminority class. To deal with this disparity, we adopt a weighting
strategy to decrease the importance of the majority class samples (non-GSS) during the
learning process thereby improving identification of the rare minority class samples (GSS).
Using this approach, which we call ‘‘limited unbalanced datasets’’, we show that learning
on imbalanced datasets can be performed effectively, and that for GSS recognition, a ratio
of 1 to 100 positive over negative examples is usually sufficient to achieve a good signal
to noise ratio in the prediction. This approach can be easily extended to identify other
functional regions in any annotated genome.

We also show that our method can be efficiently used across genomes of different
species, i.e., training the model on one genome and applying it to another genome. We
use the X chromosomes of human and mouse GSS as a case study, and apply models
trained on each one’s other chromosomes to its own and the other one’s X chromosome.
While the sequence of this chromosome has evolved differently in both species, many
genes are homologous (Sinha & Meller, 2007). The fact that we are able to recover GSS in
mouse/human with a model trained on the other organism suggests that the machinery
capable of recognising GSS in each organism is overall conserved. We also show that this
methodology can be applied to more distant species, and use as examples chicken and
zebrafish. Our results point toward a higher similarity between mammal and chicken while
zebrafish GSS cannot cannot be reliably predicted with models trained on mammal and
chicken sequences. While the genome sequence conservation can be computed directly
from DNA sequences, further developments of our method may provide a new tool
to quantify more complex patterns of similarity between different organism’s nuclear
machinery that interprets DNA sequences in vivo.
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