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Abstract

Polynomial Modular Number System (PMNS) is a convenient number system for
modular arithmetic, introduced in 2004. The main motivation was to accelerate
arithmetic modulo an integer p. An existence theorem of PMNS with specific pro-
perties was given. The construction of such systems relies on sparse polynomials
whose roots modulo p can be chosen as radices of this kind of positional represen-
tation. However, the choice of those polynomials and the research of their roots
are not trivial.

In this paper, we introduce a general theorem on the existence of PMNS and
we provide bounds on the size of the digits used to represent an integer modulo p.

Then, we present classes of suitable polynomials to obtain systems with an
efficient arithmetic. Finally, given a prime p, we evaluate the number of roots of
polynomials modulo p in order to give a number of PMNS bases we can reach.
Hence, for a fixed prime p, it is possible to get numerous PMNS, which can be
used efficiently for different applications based on large prime finite fields, such as
those we find in cryptography, like RSA, Diffie-Hellmann key exchange and ECC
(Elliptic Curve Cryptography).
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Polynomial Modular Number System (PMNS) was introduced in 2004 [20] as
a representation system that allows implementation of an effective modular arith-
metic involving only additions and multiplications. Arithmetic operations called
modular addition, modular multiplication and modular reduction occur in seve-
ral of today’s public key cryptography algorithms such as the well-known RSA,
Diffie-Hellman key exchange and ECC [15]. These computations modulo an inte-
ger p consist in adding or multiplying two integers, then recovering the remainder
modulo p. The way to perform those operations varies depending on the form of p
(for example Mersenne numbers, of the form 2m − 1 allow fast reduction). PMNS
offers both the advantages of fast polynomial arithmetic and easy parallelization
for an arbitrary p, with algorithms more efficient than known division free methods
such as Montgomery [18] or Barrett[4].

The main idea behind the PMNS is that it is a modular system, where integers
modulo an arbitrary p (not necessarily prime) are represented by polynomials of
degree smaller than a fixed integer n. The coefficients of the polynomials are the
digits and are bounded by an integer ρ, which is small relatively to p (ρ ' p1/n).
Construction of such systems is based on sparse polynomials whose roots γ are used
as the radices of this kind of positional representation. The interest of these sparse
polynomials lies in the efficiency of the modular arithmetic spawned. Those ope-
rations are done in two steps. First, the operations are carried out on polynomials
modulo a sparse polynomial E(X), called polynomial reduction, which is of degree
n, and this reduction ensures that the degree of the result is smaller than n. Then,
a coefficient reduction is performed involving the Euclidean lattice associated with
the system [11, 21, 10], guaranteeing that the coefficients of the result are boun-
ded by ρ. The number of PMNS systems that we can generate from an integer p is
directly related to the number of roots of the reduction polynomial E(X) in Z/pZ.

A method for constructing an efficient PMNS was published in 2004 [3]. The
system is built from two sparse polynomials with good reduction properties (one for
polynomial reduction, E(X), one for coefficient reduction), in order to derive the
integer p through the calculation of a resultant, and also one root γ. We keep only
cases where p is prime, since p is likely to be prime for practical cryptographic
applications such as Diffie-Hellman and ECC. However, for most cryptographic
protocols, the modulo p used is often fixed or at least has strong mathematical
properties required. Hence, in order to be able to work with arbitrary p, prime
or not, a theorem [2] gives a construction of PMNS from an integer p, a number
of digits n and an integer polynomial E(X) of the form E(X) = Xn + aX + b
satisfying some assumptions. Thus, this theorem guarantees the existence of the
PMNS system B = (p, n, γ, ρ)E, with a bound on ρ. Nevertheless, building such
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systems from a given p is not trivial. To obtain an example of a PMNS system
from a fixed p, one has to seek a sparse polynomial E(X) satisfying the conditions
of the theorem, and one of its roots in Z/pZ. Very recently, the use of PMNS
to perform modular multiplications was reintroduced in [12], where we find some
interesting complexity theoretical bounds.

In this paper, given a number p, we want to provide as many PMNS bases
as possible with efficient reduction polynomials. Therefore, we propose, in section
1, a theorem which gives, as criterium of existence, a bound on the digits size in
function of any polynomial E(X), and some properties when E(X) is irreducible.
Then, in section 3, we propose classes of suitable irreducible polynomials that sa-
tisfy the previous theorems, allowing efficient reductions, and whose roots can be
clearly identified in a finite prime field Z/pZ. In Section 4, we gives the number of
roots in function of p and the reduction polynomial E(X). Those roots are used
to generate the Euclidean lattice associated with the system, and act directly on
the coefficient reduction, making this search an important challenge to obtain effi-
cient representations in terms of calculation and storage. Thus, for a given prime
number p, it is now possible to obtain many PMNS bases with their own computa-
tional properties. This ability to provide several equivalent representations is also
an interesting point in terms of performance if we want to mask the computations
to protect an implantation against malicious observers.

1. Polynomial Modular Number System

We recall the definition of a classical positional number system. For a given
integer β greater or equal than 2, β is called the radix or the base, an integer a ∈ N
with a < βm can be represented by an unique sequence of integers (ai)i=0...m−1,

called digits, such that a =
m−1∑
i=0

aiβ
i, with ai ∈ N, 0 ≤ ai < β.

Let p ∈ N, βn−1 ≤ p < βn, βn ≡ δ (mod p), the following algorithm returns
c < βn with a ≡ c (mod p) :

c← a

do
1. c→ c0 + βnc1 with c0, c1 < βn

2. c← c0 + δc1

until c < βn,
return a ≡ c (mod p),
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If δ ≤ β
1
2 n then two iterations gives a < 2βn − β

1
2n − 1, if necessary, a last

subtraction gives a < βn.

For our purpose, this reduction can be decomposed using a polynomial ap-
proach. Since, βn − δ ≡ 0 (mod p), then β can be considered as a root modulo p
of the polynomial E(X) = Xn −∆(X) where ∆(β) ≡ δ (mod p).

Thus the reduction modulo p is computed with the iterations split in two steps :
1. polynomial reduction : C(X) = A(X) mod E(X)
2. coefficients reduction : C ′(β) ≡ C(β) (mod p) with C ′(X) of degree n − 1

and coefficients smaller than β
The polynomial reduction should be a fast rough reduction of the size (the de-

gree), then the coefficient reduction reduces the coefficients to digit values smaller
than β. Typically, the polynomial reduction looks like :

1. C(X) = A(X)
2. do until degree of C(X) lower than n, (the degree decreases about (n− t))

C(X) = ∆(X)×
m−1∑
i=n

ciX
i−n +

n−1∑
i=0

ciX
i

Thus, if t the degree of ∆(X) is lower than n/2 and m < 2n, then at the first
step of the loop degC(X) = t+m−n−1 and after the second one degC(X) < n−1.
Now, if ∆(X) is sparse with small coefficients then the multiplication by ∆(X)
corresponds to few shifts and additions only [22].

Unfortunately, it is not obvious to find a couple β,E(X) with good features,
in classical positional number systems. To get more opportunity of such couple,
a new kind of representation was introduced in [2], where the base, for a given p,
deeply depends of the choice of the reduction polynomial E(X).

Definition 1.1. A Polynomial Modular Number System (PMNS) is defined by a
quadruple (p, n, γ, ρ) and a polynomial E ∈ Z[X], called reduction polynomial with
respect to p, such that for each integer x in {0, . . . p−1}, there exists (x0, . . . , xn−1)

with x ≡
n−1∑
i=0

xiγ
i (mod p), where xi ∈ N, −ρ < xi < ρ, 0 < γ < p,

and E(γ) ≡ 0 (mod p), with E(X) a monic polynomial of degree n.

Example 1.1. Let us consider two PMNS defined as B = (p, n, γ, ρ)E.
A first, with p = 23, n = 3, γ = 7 and ρ = 2, for representing the elements of

Z/23Z as vectors with 4 digits belonging to { -1, 0, 1}. We note that γ3 + 2 ≡
0 mod 23 (i.e. E(X) = X3 + 2).
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0 1 2 3 4 5 6 7
(0, 0, 0) (1, 0, 0) (-1, 0, 1) (-1, 1, -1)

(0, 0, 1)
(0, 1, -1)
(1, 0, 1)

(1, 1, -1) (-1, 1, 0) (0, 1, 0)

8 9 10 11 12 13 14 15
(1, 1, 0) (-1, 1, 1) (0, 1, 1) (1, 1, 1) (-1,-1,-1) (0, -1, -1) (1, -1, -1) (-1, -1, 0)

16 17 18 19 20 21 22
(0, -1, 0) (1, -1, 0) (-1, -1, 1) (-1, 0, -1)

(0, -1, 1)
(0, 0, -1)
(1, -1, 1)

(1, 0, -1) (-1, 0, 0)

Now with p = 31, n = 4, γ = 15 and ρ = 2, for representing the elements of
Z/31Z as vectors with 3 digits belonging to { -1, 0, 1}. We note that γ4 − 2 ≡
0 mod 31.

0 1 2 3 4 5
(0, 0, 0, 0) (1, 0, 0, 0) (-1, 1, -1, 1) (-1, -1, -1, 1)

(-1, 0, 0, -1)
(-1, 0, 1, 1)
(0, 1, -1, 1)

(0, -1, -1, 1)
(0, 0, 0, -1)
(0, 0, 1, 1)
(1, 1, -1, 1)

(1, -1, -1, 1)
(1, 0, 0, -1)
(1, 0, 1, 1)

6 7 8 9 10 11
(-1, 1, -1, 0) (-1, -1, -1, 0)

(-1, 0, 1, 0)
(0, 1, -1, 0)

(0, -1, -1, 0)
(0, 0, 1, 0)
(1, 1, -1, 0)

(1, -1, -1, 0)
(1, 0, 1, 0)

(-1, 1, -1, -1)
(-1, 1, 0, 1)

(-1, -1, -1, -1)
(-1, -1, 0, 1)
(-1, 0, 1, -1)
(0, 1, -1, -1)
(0, 1, 0, 1)

12 13 14 15 16 17
(0, -1, -1, -1)
(0, -1, 0, 1)
(0, 0, 1, -1)
(1, 1, -1, -1)
(1, 1, 0, 1)

(1, -1, -1, -1)
(1, -1, 0, 1)
(1, 0, 1, -1)

(-1, 1, 0, 0) (-1, -1, 0, 0)
(0, 1, 0, 0)

(0, -1, 0, 0)
(1, 1, 0, 0)

(1, -1, 0, 0)

18 19 20 21 22 23
(-1, 0, -1, 1)
(-1, 1, 0, -1)
(-1, 1, 1, 1)

(-1, -1, 0, -1)
(-1, -1, 1, 1)
(0, 0, -1, 1)
(0, 1, 0, -1)
(0, 1, 1, 1)

(0, -1, 0, -1)
(0, -1, 1, 1)
(1, 0, -1, 1)
(1, 1, 0, -1)
(1, 1, 1, 1)

(1, -1, 0, -1)
(1, -1, 1, 1)

(-1, 0, -1, 0)
(-1, 1, 1, 0)

(-1, -1, 1, 0)
(0, 0, -1, 0)
(0, 1, 1, 0)

24 25 26 27 28 29
(0, -1, 1, 0)
(1, 0, -1, 0)
(1, 1, 1, 0)

(1, -1, 1, 0) (-1, 0, -1, -1)
(-1, 0, 0, 1)
(-1, 1, 1, -1)

(-1, -1, 1, -1)
(0, 0, -1, -1)
(0, 0, 0, 1)
(0, 1, 1, -1)

(0, -1, 1, -1)
(1, 0, -1, -1)
(1, 0, 0, 1)
(1, 1, 1, -1)

(1, -1, 1, -1)

30
(-1, 0, 0, 0)

We can remark that the redundancy depends of the number of digits 2ρ − 1,
the degree n and the modulo p. The redundancy is not equidistributed but we can
see a symmetry due to the sign of the value modulo p.

Proposition 1.1. If B = (p, n, γ, ρ)E is a PMNS, then p ≤ (2ρ− 1)n.

Proof. The number of representations in B is (2ρ − 1)n, this number must be at
least greater than p, i.e. the number of values 0 ≤ x < p.

Remark.
1. PMNS looks like a positional system, but (γi mod p) < (γi+1 mod p) is not

always true anymore.
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2. For every quadruple (p, n, γ, ρ), there exists a polynomial E(X) ∈ Z[X]
satisfying E(γ) ≡ 0 mod p and degE(X) = n :
for example E(X) = Xn − (γn mod p).

3. If p < (2ρ− 1)n, then the representation is redundant (i.e., some values can
have more than one representation).

4. If B = (p, n, γ, ρ)E is a PMNS, so is B′ = (p, n, γ, ρ+ 1)E.
Given p, n, γ, in order to minimize the redundancy of the system, it could be
judicious to take ρ as the smallest integer such that (p, n, γ, ρ) is a PMNS.
We denote ρmin this integer. ρmin can be determined with a lattice reduction
[20], it gives the minimal representation size for a given n.

The question, for p and n given. Which polynomials E(X)
-i) offer a good modular reduction,
-ii) have a large number of roots γ in Z/pZ,
-iii) allow to have ρ as small as possible, to ensure several PMNS, both compact

and with an efficient arithmetic on representations ?

Notations. In the following, we note A(X) = a0 + a1X + · · · + an−1X
n−1 the

polynomial and A = (a0, a1, . . . , an−1) the corresponding vector. We will use this
different notations in function of the purpose.

2. Theorem of bounds and existence of a PMNS

In this section, we give conditions to ensure the existence of a PMNS B =
(p, n, γ, ρ)E.

2.1. Lattice associated to a PMNS
We consider the lattice L over Zn of the polynomials of degree at most n− 1,

for which, γ is a root modulo p (see [16] for basics on lattices theory) .
We define this lattice by giving A, one of its bases, whose elements are A0 =

(p, 0, . . . , . . . , 0) (i.e., A0(X) = p), and Ai = (0, . . . ,−γ, 1i, . . . , 0) (i.e. Ai(X) =
X i − γX i−1), for 1 ≤ i ≤ n − 1. Thus with A0 all the multiples of p have a
representation in this lattice, and the Ai for 0 ≤ i ≤ n−1 are linearly independent.
The fundamental volume of L is detA = p.
Remark. It is possible to consider A′i(X) = X i − γi, for 1 ≤ i ≤ n − 1, which
represents the same lattice L. We have A1(X) = A′1(X) = X − γ and Ai(X) =
A′i(X)− γA′i−1(X).
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A =



p 0 . . . . . . 0 0
−γ 1 . . . . . . 0 0
...

. . .
. . .

...
0 . . . −γ 1 . . . 0
...

. . .
. . .

...
0 0 . . . . . . −γ 1


,A′ =



p 0 0 . . . 0 0
−γ 1 0 . . . 0 0
...

. . .
...

−γi . . . 0 1 . . . 0
...

. . .
. . .

...
−γn−1 0 . . . . . . 0 1


(1)

Theorem 2.1. Let p ≥ 2 and n ≥ 2 two integers, E(X) a polynomial of degree n
in Z[X] and γ be a root of E(X) in Z/pZ.
Let r be the covering radius of the lattice L, if ρ > r, then B = (p, n, γ, ρ)E is a
Polynomial Modular Number System.

Proof. The covering radius r of L is the smallest number, such that the balls
BV = {T ∈ Rn, ‖T − V ‖2 ≤ r} centered on any point V ∈ L, cover the space
Rn. In other words, for any T ∈ Rn there exists V ∈ L such that ‖T − V ‖∞ ≤
‖T − V ‖2 ≤ r. Thus for any T ∈ Rn there exists V ∈ L, such that T − V ∈ CO,
CO = {T ∈ Rn, ‖T‖∞ ≤ r}.

Remark. Let λn be the smallest integer such that L contains at most n linearly
independent vectors of length lower or equal to λn for the euclidien norm. A
classical result of lattice theory states that the covering radius r, is such that,
1
2λn ≤ r ≤

√
nλn [16].

An interpretation of Theorem 2.1. Let a ∈ N and let Fa(X) be a polynomial
such that Fa(γ) ≡ a mod p, then Ta(X) = Fa(X) (mod E(X)), satisfies Ta(γ) ≡
a mod p with deg Ta < n (polynomial reduction step).

Next, there exists V ∈ L such that, ‖Ta − V ‖∞ < ρ, and (Ta − V )(γ) ≡
Ta(γ) − V (γ) ≡ a mod p. Hence Ta − V is a representative of a in the PMNS B.
Therefore, any a ∈ N can be represented in the PMNS modulo p.

2.2. Lattice’s bases and PMNS
Currently, to our knowledge, there is no efficient algorithm to compute the

covering radius of a lattice. In this section, we provide a bound on ρ which can be
computed from a base of a lattice L defined by a matrix A.

Let B = {B0, . . . , Bn−1} a base of L, and B the matrix associated such that,
Bi represents the ith row., with Bi = (bi,0, . . . , bi,n−1), thus bi,j represents the
coefficient of the ith row, jth column (number beginning by 0).
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Theorem 2.2. If ρ > 1
2 ‖B‖1, (‖B‖1 = max

j

{
n−1∑
i=0
|bi,j|

}
), then B = (p, n, γ, ρ)E

is a Polynomial Modular Number System.

Proof. Let S ∈ Rn, we define :
— bSe as the vector whose coordinates are integers equal to the round to nearest

of those of S.
— frac(S) as the vector (S) = S − bSe, notice that ‖frac(S)‖∞ ≤ 1

2
Let S ∈ Rn, we search a close vector T ∈ L using a Babaï round-off approach

[1]. We have, T = BT .b(BT )−1.Se.

S = BT .(BT )−1.S = T + BT .frac
(
(BT )−1.S

)
with

∥∥∥frac ((BT )−1.S
)∥∥∥
∞
≤ 1

2

Then

‖S − T‖∞ =
∥∥∥BT .frac

(
(BT )−1.S

)∥∥∥
∞
≤ 1

2
∥∥∥BT

∥∥∥
∞

= 1
2 ‖B‖1 .

Remark. In order to minimize ‖B‖1, a first general strategy is to compute a reduced
base B of L defined by A using algorithms like LLL, BKZ or HKZ [13].

The next strategies can be applied when the polynomial E(X) is irreducible.

2.3. Irreducible polynomials and PMNS
Let E(X) = Xn + an−1X

n−1 + · · · + a1X + a0, and let C be the companion
matrix of E(X) :

C =



0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1
−a0 −a1 −a2 . . . −an−2 −an−1

 .

Let V = (v0, . . . , vn−1) the vector representing the coefficient of the polynomial
V (X) = ∑n−1

i=0 viX
i, then V.C is the vector whose coordinates are the coefficients

of the polynomial X.V (X) mod E(X).
Proposition 2.3. Let V a non-null vector of L, the lattice of rank n defined by
A, Equ. (1). Let Bi = V.Ci the row vector whose coordinates are the coefficients
of the polynomial Bi(X) = X i.V (X) mod E(X). Let B the n×n matrix whose ith
row is the vector Bi.

If V (X) is inversible modulo E(X) then :
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— the matrix B defines a sublattice L′ ⊆ L of rank n (i.e. B = (B0, . . . , Bn−1)
is a base of L′),

— and V ∈ L′.

Proof. The Bi are linearly independent. Indeed, let us suppose that there exists
a non nul vector (t0, t1, . . . , tn−1) ∈ Zn such that ∑n−1

i=0 tiBi = 0. It means that∑n−1
i=0 tiX

iV (X) = 0 mod E(X), or equivalently T (X)V (X) = 0 mod E(X), with
T (X) = ∑n−1

i=0 tiX
i. Then T (X)V (X)V −1(X) mod E(X) = T (X) = 0, since V (X)

is inversible modulo E(X) and degree of T (X) is at most n − 1. Hence the rows
of B are a base of a sublattice L′ ⊆ L of rank n, and V ∈ L′.

Corollary 2.1. Let V a non-null vector of L, the lattice of rank n defined by A,
Equ. (1).

If E(X) is irreducible, then
— V can define a sublattice L′ ⊆ L of rank n,
— and V ∈ L′.

Proof. If E(X) is irreducible, then V (X) is inversible and Proposition 2.3 gives
B = (B0, . . . , Bn−1) a base of L′, L′ ⊆ L of rank n, and V ∈ L′.

Hence, the second strategy involves taking a short vector V ∈ L, that is a
vector which satisfies the Minkowski bound, ‖V ‖∞ ≤ α(p)1/n with α ∈ ]0, 1].

In the last strategy we propose another way to compute the base B of L′.

Corollary 2.2. Let L, the lattice of rank n given by A (Equ. (1)), and let the
lattice LD of rank n in Zn2 defined by D = (A|A.C1| · · · |A.Cn−1), then for any
V = (V0, V1, ..., Vn−1) ∈ LD such that V 6= (0)n2 :

If E(X) is irreducible then :
1. V0 ∈ L,
2. (V0, V1, ..., Vn−1) is a base of L′ ⊆ L.

Proof. V0 is a linear combination of rows of A, hence it belongs to L. Next, since
Vi = V0.Ci, for all i ≥ 1, then, due to Corollary 2.1, the vector (V0, V1, ..., Vn−1) is
a base of a sublattice L′ ⊆ L.

Hence, the last strategy is to choose a short vector (V0, V1, ..., Vn−1) of LD and
to build the base B of L from V .
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2.4. Some examples of PMNS
In these examples we give the value of ‖B‖1 for each reduced base approach :

LLL or BKZ or HKZ reduction of A, or the one of Corollary 2.1, or Corollary
2.2. We remark that the two last approaches offer the best results for polynomials
E(X) with small coefficients. In section 4.4, we give experimental results with
exhaustive searches.

Example 2.1.
p = 112848483075082590657416923680536930196574208889254960005437791530871071177777
n = 8, E(X) = X8 +X2 +X + 1,
γ = 14916364465236885841418726559687117741451144740538386254842986662265545588774
LLL : ‖B‖1 = 16940155314 BKZ : ‖B‖1 = 15289909984
HKZ : ‖B‖1 = 15289909984
Cor. 2.1 : ‖B‖1 = 13881325101 Cor. 2.2, : ‖B‖1 = 12883199915

Example 2.2.
p = 96777329138546418411606037850670691916278980249035796845487391462163262877831
n = 8, E(X) = X8 −X4 − 1,
γ = 66378119609141043317728290217053385256449145407556727004132373270146455575461
LLL : ‖B‖1 = 17955608045 BKZ : ‖B‖1 = 17955608045
HKZ : ‖B‖1 = 17955608045
Cor. 2.1 : ‖B‖1 = 11628752571 Cor. 2.2 : ‖B‖1 = 10489321362

Example 2.3.
p = 94234089378179148303661339351342500658910595299680545500602453424882978290351
n = 8, E(X) = X8 +X4 −X3 + 1,
γ = 55857489577292751855009098551500852039618350925837275620376166398325678525151
LLL : ‖B‖1 = 12305954812 BKZ : ‖B‖1 = 12305954812
HKZ : ‖B‖1 = 12305954812
Cor. 2.1 : ‖B‖1 = 15570303402 Cor. 2.2 : ‖B‖1 = 14857375293

Example 2.4.
p = 96777329138546418411606037850670691916278980249035796845487391462163262877831
n = 8, E(X) = X8 + 6,
γ = 5538274654329514802181726618906590237936295237553666062542808070676484572674
LLL : ‖B‖1 = 12509178620 BKZ : ‖B‖1 = 12509178620
HKZ : ‖B‖1 = 12509178620
Cor. 2.1 : ‖B‖1 = 47611052126 Cor. 2.2 : ‖B‖1 = 40733847267

3. Suitable irreducible polynomials for PMNS

In Theorem 2.1, we show that if E(X) is an irreducible polynomial, then we
can define a PMNS B = (p, n, γ, ρ)E depending of E(X). Now, for an algorithmic
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purpose about the reduction modulo E(X), with respect to the size of the digits
in B = (p, n, γ, ρ)E, E(X) must respect some criteria. Thus we define what can
be a suitable PMNS irreducible reduction polynomial.

3.1. Suitable PMNS reduction polynomial
Definition 3.1. A polynomial E(X) is a suitable PMNS reduction polynomial,
if :

1. E(X) is irreducible in Z[X],
2. E(X) = Xn + akX

k + · · ·+ a1X + a0 ∈ Z[X], with n ≥ 2 and k ≤ n
2 ,

3. most of coefficients ai are zero, and others are very small (if possible equal
to ±1) compare to p1/n.

The second item ensures that the polynomial reduction modulo E(X) of a
polynomial T (X) of degree lower than 2n, is done in two steps, i.e. T (X) =
T1(X)Xn + T0(X) with T1(X) and T0(X) of degree lower than n, and Xn mod
E(X) = −(∑k

i=0 aiX
i) mod E(X).

The third item allows to give a bound on the coefficients of T (X) mod E(X),
namely ‖T (X) mod E(X)‖∞ < s‖T (X)‖∞, where s is the 1−norm of the (2n −
1) × n matrix S whose row i represents the coefficients of X i (mod E(X)) for
i = 0 . . . 2n − 1 (see Prop. 2.3 of [7]). As a consequence, if G(X) and F (X) are
two elements of the PMNS, i.e. ‖F (X)‖∞ < ρ and ‖G(X)‖∞ < ρ then ‖F (X) ×
G(X)‖∞ < nρ2 and ‖F (X)×G(X) (mod E(X))‖∞ < snρ2.

For the first item, we must find an irreducible polynomial. Then to be a sui-
table PMNS reduction polynomial E(X) must satisfy the two other items. In the
sequel, we adapt some classical irreducibility criteria and give example of irredu-
cible polynomials with few non zero coefficients.

3.2. Classical polynomial irreducibility criteria
To verify the first item, we can use general criteria like Schönemann-Eisenstein

or Dumas [8] or the generalization given by N. C. Bonciocat in [6], that we adapt
to our purpose : a monic polynomial E(X) = Xn + akX

k + · · ·+ a1X + a0.
Proposition 3.1 (from Dumas’ criterion [8]). We assume that if there exists a
prime µ and an integer α, such that, µα | a0, µα+1 - a0 and, µdα(n−i)/ne | ai, and
gcd(α, n) = 1, then E(X) = Xn + akX

k + · · ·+ a1X + a0 is irreducible over Z[X].
For example, E(X) = Xn+µXk+µ is irreducible with this criterion. If k < n/2

and µ << p1/n, then E(X) is a suitable PMNS reduction polynomial.
Proposition 3.2 (from Corollary 1.2 [6]). Let E(X) = Xn+akXk+· · ·+a1X+a0,
a0 6= 0, let t ≥ 2 and let µ1, . . . , µt be pair-wise distinct numbers, and α1, . . . , αt
positive integers. If, for j = 1, . . . , t, and i = 0, . . . , k, µαjj | ai and µ

αj+1
j - a0, and

gcd(α1, . . . , αt, n) = 1 then E(X) is irreducible over Z[X].
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For example, E(X) = Xn + µα1
1 µ

α2
2 X

k + µα1
1 µ

α2
2 with gcd(α1, α2, n) = 1, is

irreducible with this criterion. If k < n/2 and µα1
1 µ

α2
2 << p1/n, then E(X) is a

suitable PMNS reduction polynomial.

3.3. Suitable Cyclotomic Polynomials for PMNS
A well known set of irreducible polynomials in Z [X] is the set of cyclotomic

polynomials. Let us denote by ClassCyclo(n) the class of suitable cyclotomic
polynomials for PMNS, whose degree is n.

Proposition 3.3. ClassCyclo(n) 6= ∅ if and only if, n = 2i3j with i ≥ 1, j ≥ 0.

Proof. Let us first recall some classical properties on cyclotomic polynomials :
(a) Let m ∈ N∗, the mth cyclotomic polynomial is defined as :

Φm(X) =
m∏
k=1

gcd(k,m)=1

(X − ζk)

with ζ a primitive mth root of unity, deg Φm(X) = ϕ(m) (ϕ is Euler’s totient
function) and Φm(X) is a monic polynomial, i.e. aϕ(m) = 1.

(b) Let m > 1 and let n = ϕ(m), Φm(X) is self-reciprocal, Φm(X) = XnΦm( 1
X

)
(we can prove that they have the same roots), i.e. ai = an−i.

(c) Let m = ∏r
i=1 p

ei
i and m0 = ∏r

i=1 pi, then Φm(X) = Φm0(Xm/m0).
(d) Let m = 2t with t odd and t ≥ 3 then Φm(X) = Φt(−X).
Let n such that ClassCyclo(n) 6= ∅, hence there exists an integer m such that

n = ϕ(m) and Φm(X) is a suitable cyclotomic reduction polynomial. From (b), it
means that Φm(X) is either Xn + 1 or Xn + an/2X

n/2 + 1. Hence Φm(X) has 2 or
3 coefficients.

Letm = ∏r
i=1 p

ei
i , ei ≥ 0, p1 = 2, p2 = 3 . . . andm0 =

r∏
i=1
ei 6=0

pi. From (c), if e1 = 0

then Φm(X) = Φm0(Xm/m0). If e1 6= 0, from (c) and (d), Φm(X) = Φm0/2(X2m/m0).
Hence in any cases Φm(X) has the same number of coefficients than Φm′(X), where

m′ =
r∏
i=2
ei 6=0

pi.

Suppose that r ≥ 3 then there exists j ≥ 3 such thatm′ = pjµ and gcd(pj, µ) =
1 (in other words m′ is divisible by a prime other than 3). A well known result on
cyclotomic polynomials states that Φpjµ(X) = Φµ(Xpj )

Φµ(X) .
Let Φµ(X) = X t+asXs+· · ·+1, (t > 0), then Φµ(Xpj )

Φµ(X) = X(pj−1)t−asX(pj−2)t+s+
· · · = Φm′(X). If Φm′(X) has only two coefficients then (pj−2)t = −s, since t > 0.
It implies pj = 2 which is impossible since j ≥ 3.

12



If Φm′(X) has only three coefficients, due to (b), it implies that (pj − 2)t+ s =
(pj−1)t/2, which gives 2s = (3−pj)t. Now, 2s ≥ 0 and (3−pj)t < 0 since pj ≥ 5.
Hence r ≤ 2 and so m = 2e13e2 . From the definition of cyclotomic polynomials,
we deduce that if Φm(X) has two coefficients the m = 2e1 with e1 ≥ 1, and when
Φm(X) has three coefficients then m = 2e13e2 with e1 ≥ 0 and e2 ≥ 1.

Hence, suitable cyclotomic polynomials are :
— Φ2i(X) = X2i−1 + 1, thus n = 2i−1 with i ≥ 2,
— Φ3j(X) = X2.3j−1 +X3j−1 + 1, thus n = 2.3j−1 with j ∈ N∗,
— Φ2i.3j(X) = X2i.3j−1 −X2i−1.3j−1 + 1, thus n = 2i.3j−1 for i, j ∈ N∗.
Conversely, it is clear that the above polynomials are by construction suitable

cyclotomic polynomials.

3.4. Suitable PMNS reduction {−1, 1}-quadrinomials
In [9], Finch and Jones give criteria of irreducibility for polynomials Xa +

βXb + γXc + δ with β, γ, δ ∈ {−1, 1} and a > b > c > 0. They suppose that
gcd(a, b, c) = 2tm with m odd and they note a′ = a/2t, b′ = b/2t and c′ = c/2t.
They define a = gcd(a′, b′ − c′), b = gcd(b′, a′ − c′) and c = gcd(c′, a′ − b′).

Proposition 3.4 (Theorem 2 in [9] ). The quadrinomial Xa + βXb + γXc + δ is
irreducible over Z[X], if and only if, its satisfies one of the following conditions :

1. (β, γ, δ) = (1, 1, 1) and abc ≡ 1 (mod 2)
2. (β, γ, δ) = (−1, 1, 1), b′ − c′ 6≡ 0 (mod 2a), b′ 6≡ 0 (mod 2b) and a′ − b′ 6≡ 0

(mod 2c)
3. (β, γ, δ) = (1,−1, 1), b′ − c′ 6≡ 0 (mod 2a), a′ − c′ 6≡ 0 (mod 2b) and c′ 6≡ 0

(mod 2c)
4. (β, γ, δ) = (1, 1,−1), a′ 6≡ 0 (mod 2a), b′ 6≡ 0 (mod 2b) and c′ 6≡ 0 (mod 2c)
5. (β, γ, δ) = (−1,−1,−1), a′ 6≡ 0 (mod 2a), a′−c′ 6≡ 0 (mod 2b) and a′−b′ 6≡

0 (mod 2c)
We call this class of suitable reduction quadrinomials ClassQuadrinomials,

and ClassQuadrinomials(n) is the set of such quadrinomials of degree n.

For example, E(X) = X2t7m+X2t5m+X2t3m+1 is a suitable PMNS reduction
quadrinomial.

3.5. Suitable PMNS reduction {−1, 1}trinomials
In this part we refer to a paper of W.H. Mills [17] and one of W. Ljunggren

[14]. The first one given criterion on quadrinomials and roots of unity, the second
one given an application to trinomials.
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Proposition 3.5. We note gcd(n,m) = d and n = d.n1, m = d.m1. If n1+m1 6≡ 0
mod 3 then the polynomial Xn + βXm + δ with δ, β ∈ {−1, 1} and n > 2m > 0 is
irreducible over Z[X].

The class of the suitable reduction trinomials verifying these criteria is named
ClassTrinomials, and ClassTrinomials(n) represents the set of the trinomials
of degree n.

Proof. Let us transform, like in [14], E(X) = Xn + βXm + δ in quadrinomial :

(Xn + βXm + δ) (Xn − δ) = X2n + βXn+m − βδXm − 1 = F (X).

Theorem 2 of [17], states that if F (X) = A(X)E(X) where every root of A(X)
and no roots of E(X) is root of unity then E(X) is irreducible except if there
exists r such that :
— (2n, n+m,m) = (8r, 7r, r) and (β, δ) = (1,−1) or (−1,−1),
— or, (2n, n+m,m) = (8r, 4r, 2r) and (β, δ) = (1,−1),
— or, (2n, n+m,m) = (8r, 6r, 4r) and (β, δ) = (−1,−1)
It is easy to check that there is no integer r which satifies any of these 3

constraints, hence we only have to verify that no roots of E(X) is a root of unity.
First notice that, because n = dn1 andm = dm1 with gcd(n1,m1) = 1, if λ is a root
of E(X) then λd is root of Xn1 +βXm1 + δ. Hence, if the roots of Xn1 +βXm1 + δ
are not roots of unity, then no root of E(X) = Xn + βXm + δ is a root of unity.

Let us assume that λ is a root of Xn1 +βXm1 + δ, which is also a root of unity,
then there exits t > 1 and k with gcd(k, t) = 1, such that :

λ = e
2ikπ
t = cos 2kπ

t
+ i sin 2kπ

t

Assume that β = 1, then{
cos(2n1kπ

t
) + cos(2m1kπ

t
) = 2 cos(kπ(n1+m1)

t
) cos(kπ(n1−m1)

t
) = −δ

sin(2n1kπ
t

) + sin(2m1kπ
t

) = 2 sin(kπ(n1+m1)
t

) cos(kπ(n1−m1)
t

) = 0

Last equality implies that sin(kπ(n1+m1)
t

) = 0 or cos(kπ(n1−m1)
t

) = 0. Since δ 6= 0,
first equation implies that cos(kπ(n1−m1)

t
) 6= 0, hence k(n1+m1)

t
is an integer. Since

gcd(k, t) = 1, t | (n1 + m1). This last result implies that first equation can be
reduced to

cos
(
kπ(n1 −m1)

t

)
= ±1

2
because δ = ±1.
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It means that

kπ(n1 −m1)
t

= j
π

3 , j = 1, 2, 4, 5 (mod 6)

Hence, t | 3(n1 −m1), since gcd (k, t) = 1
Assume that β = −1, the system becomes :{

cos(2n1kπ
t

)− cos(2m1kπ
t

) = −2 sin(kπ(n1+m1)
t

) sin(kπ(n1−m1)
t

) = −δ
sin(2n1kπ

t
)− sin(2m1kπ

t
) = 2 cos(kπ(n1+m1)

t
) sin(kπ(n1−m1)

t
) = 0

First equation implies that sin(kπ(n1−m1)
t

) 6= 0, hence the second equation gives
kπ(n1+m1)

t
= j π2 for j odd, which implies t | 2(n1 +m1). Since kπ(n1+m1)

t
= j π2 for j

odd, then first equation can be reduced to sin(kπ(n1−m1)
t

) = ±1
2 , which means that

kπ(n1 −m1)
t

= j
π

6 , j = 1, 5, 7, 11 (mod 12).

Hence t | 6(n1 −m1).
To sum up if λ is a tth root of unity of Xn1 + βXm1 + δ with δ, β ∈ {−1, 1}

then :
(a) if β = 1, t | (n1 +m1) and t | 3(n1 −m1)
(b) if β = −1, t | 2(n1 +m1) and t | 6(n1 −m1)
The case (a) implies that if 3 - t then t | (n1−m1), thus t | 2n1 and t | 2m1, as

gcd(n1,m1) = 1 then t = 2 and λ = 1 or −1 is a root of E(X) which is impossible.
The case (b) implies that if 3 - t, then t | 2(n1 −m1), thus t = 4 then λ = i,

−i, 1 or −1 is a root of E(X) which is impossible.
Hence, if one root of E(X) is a root of unity then 3 divides t, and then n1+m1 ≡

0 mod 3.
Conclusion, if gcd(n1,m1) = 1 and n1 +m1 6≡ 0 mod 3 then Xn1 + βXm1 + δ

and Xn + βXm + δ are irreducible.

3.6. Cases of irreducibility of binomials Xn + c, c ∈ Z, |c| ≥ 2, over Z
Proposition 3.6. We note, c = ∏k

j=1 p
mj
j with pj pair-wise distinct prime num-

bers, and mj positive integers. If gcd(m1, . . . ,mk, n) = 1 then the polynomial Xn+c
with c ∈ Z, |c| ≥ 2, is irreducible over Z[X].

We call this class of suitable polynomials ClassBinomial, and, for n and c
satisfying this proposition, ClassBinomial(n, c) is the singleton {Xn + c}.
Proof. It is a direct application of the Corollary 1.2 of a paper due to Nicolae
Ciprian Bonciocat [6].
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3.7. Polynomials with bounds on the modules of their complex roots
The two propositions given in this part are inspired by the Perron irreducibility

criterium, which is proved thanks to Rouché’s theorem [5].

Proposition 3.7. For a fixed n ≥ 2, a prime µ, and P (X) = Xn +
n/2∑
i=1

εiX
i ± µ

with εi ∈ {−1, 0, 1}, if µ > 1+
n/2∑
i=1
|εi| then the polynomial P (X) is irreducible over

Z[X].

They represent the fifth class of suitable reduction polynomials. We call this
class ClassPrimeCst, and ClassPrimeCst(n, µ) represents all the polynomials of
this class with n ≥ 2 and µ a prime number .

Remark. If µ > n/2 + 1, then ClassPrimeCst(n, µ) contains 3n/2 elements (for

each εi three possibilities), else
µ−2∑
i=0

(
n/2
i

)
2i+1 elements.

Proof. Since µ > 1+
n/2∑
i=1
|εi|, then there exists δ > 1 such that µ > δn

1 +
n/2∑
i=1
|εi|

.
Let us consider C = {z ∈ C / |z| = δ}, P (X) = Xn +

n/2∑
i=1

εiX
i + εµ (εi ∈

{−1, 0, 1}, ε ∈ {−1, 1},), F (X) = εµ and G(X) = P (X)− F (X).

On C we have, |G(z)| ≤ δn

1 +
n/2∑
i=1
|εi|

 < µ = |F (z)|.

Since F (z) and G(z) are holomorphic functions, Rouché’s theorem states that
F (z) and P (z) = F (z)+G(z) have the same number of roots inside C. Hence P (z)
has no root inside C since F (z) is constant. In other words, any root α of P (z)
satisfies |α| ≥ δ > 1.

Assume now, that P (X) is reducible over Z [X]. Hence, P (X) = H(X)Q(X)
with H(X) and Q(X) two monic polynomials. Since |P (0)| = µ (a prime number),
we can assume that |H(0)| = µ and |Q(0)| = 1. Now ∏ |zi| = 1, where zi are all
the roots of Q(X). But the roots of Q(X) are also roots of P (X) which is not
possible since any root α of P (X) is such that |α| ≥ δ > 1.

Hence, P (X) is irreducible over Z [X].

Proposition 3.8. For a fixed n ≥ 2, and P (X) = Xn +
n/2∑
i=2

εiX
i + a1X ± 1 with
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εi ∈ {−1, 0, 1} and a1 ∈ Z∗. If |a1| > 2 +
n/2∑
i=2
|εi| then the polynomial P (X) is

irreducible over Z[X].

We call this class ClassPerron, and ClassPerron(n, a1) represents all the po-
lynomials of this class with n ≥ 2, a1 ∈ Z∗.
Remark. If |a1| > n/2 + 1, then ClassPerron(n, a1) contains 2× 3n/2−1 elements,

else
|a1|−3∑
i=0

(
n/2− 1

i

)
2i+1 elements.

Proof. The proof is similar to the previous one. From |a1| > 2 +∑n/2
i=2 |εi|, we can

deduce that there exists δ > 1 such that |a1| > δn
(
2 +∑n/2

i=2 |εi|
)
. Then, from

Rouché’s theorem, P (z) and F (z) = a1z have the same number of roots inside
C = {z ∈ C / |z| = δ}. Hence P (z) has only one root whose module is strictly less
than δ.

Now is P (X) is reducible over Z [X], then P (X) = H(X)Q(X), with H(X)
and Q(X) two monic polynomials and |H(0)| = |G(0)| = 1. Hence H(z) has at
least one root zH such that |zH | ≤ 1 and G(z) has at least one root zG such that
|zG| ≤ 1. It means that P (z) has at least two roots inside C, which is not possible.

Hence, P (X) is irreducible over Z [X].

4. Number of PMNS from the roots of their reduction polynomial mo-
dulo p

In this section, we determine for each class, the reduction polynomials which
have one or more roots γ in Z/pZ. The number of its roots in Z/pZ defines the
number of possible PMNS.

As we need to present several compact PMNS with an efficient arithmetic
on representations from a prime p and a number of digits n, finding relevant
reduction polynomials is crucial. Now that we have described classes of irreducible
polynomials with specific reduction properties, we need to identify for a prime
p which ones have at least one root in Z/pZ, and if possible, how many. We
begin with a presentation of two special cases where the reduction polynomials
are cyclotomics or binomials, then we propose a method in the general case, that
works for any irreducible integer polynomials.

4.1. Number of PMNS with a cyclotomic reduction polynomial
Proposition 4.1. Let p > 2 a prime number, and an integer m ≥ 3 such that
m | (p − 1) then the cyclotomic polynomial Φm(X) | (Xp−1 − 1) and Φm(X) has
ϕ(m) roots over Z/pZ.
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Proof. We have, (Xp−1 − 1) =
∏

ξi∈(Z/pZ)∗
(X − ξi) =

∏
d|(p−1)

Φd(X).

Thus Φm(X) |
∏

ξi∈(Z/pZ)∗
(X − ξi), and Φm(X) has ϕ(m) (its degree) roots over

Z/pZ

We apply Proposition 4.1 to the different cyclotomic polynomial of the class
ClassCyclo(n) introduced in Proposition 3.3.

Corollary 4.1. Let p prime, n ≥ 2 such that n = 2i3j, with i, j ∈ N.
• If i > 0, j = 0, and (2n) divides (p− 1), and E(X) = Φ2n(X) = Xn + 1,
• If i = 1, j ≥ 0, and (3n / 2) divides (p − 1), and E(X) = Φ 3n

2
(X) =

Xn +X
n
2 + 1 ,

• If i ≥ 1, j ≥ 0, and (3n) divides (p−1), and E(X) = Φ3n(X) = Xn−X n
2 +1,

then, there exist n PMNS (p, n, γi, ρ)E(X) , with γi one of the n distinct roots
modulo p of E(X) .

Example 4.1. Construction PMNS from a cyclotomic reduction polynomial for
p = 2256.3157.115 + 1 coded on 512 bits.
— E(X) = X8 + 1, from the height roots, the best ρ is obtained with Corollary

2.1 and Corollary 2.2., and is 66 bits long.
— E(X) = X6 + X3 + 1, from the six roots, the best ρ is obtained two times

with LLL, else with Corollary 2.1 and Corollary 2.2, and is 87 bits long.
— E(X) = X6−X3+1, from the six roots, the best ρ is obtained with Corollary

2.1 and Corollary 2.2, and is 87 bits long.

4.2. Number of PMNS with reduction binomials Xn + c, c ∈ Z, |c| ≥ 2
Proposition 4.2. Let E(X) = Xn + c an element of ClassBinomial(n, c) (Pro-
position 3.6). Let g a generator of (Z/pZ)× and y such that gy ≡ −c mod p.

If gcd(n, p−1) divides y, then, E(X) = Xn+c has gcd(n, p−1) different roots.

Remark. If gcd(n, p− 1) = 1 then E(X) = Xn + c is guanrantee to have one root.

Proof. Let X0 a solution of E(X) = 0 (mod p). Then there exists x0 such that,
X0 ≡ gx0 (mod p) and gn.x0 ≡ −c ≡ gy (mod p). In other words, n.x0 ≡ y
(mod p− 1).

Now, let δ = gcd(n, p− 1), a classical result in modular arithmetic states that
this linear equation admits δ solutions iff δ divides y, each solution being equal to
x0 + jp′ where j ∈ {0, . . . , δ − 1} and (p− 1) = δp′.
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Example 4.2. For p = 40993, 5 is a generator of (Z/40993Z)∗ Let n = 4 and
E(X) = X4 + c. For c = 2, we can find y = 33788, such that −c = 5y mod p.
Since gcd(1, n) = 1, from Prop 4.2 E(X) is irreducible. Morerover, gcd(n, p−1) = 4
divides y, hence four PMNS can be generated from E(X). For c′ = −2, we can
find y′ = 13292 and gcd(n, p − 1) = 4 divides y′ giving once again four possible
PMNS.

4.3. Number of PMNS in the general case
In this part, we propose a general method to count the minimum number of

PMNS we can reach from a prime p and any irreducible polynomial in Z[X].
We use the fact that the computation of gcd(Xp − X,E(X)) mod p can be

done, in a reasonable time, in two steps :
1. we computeXp mod E(X) mod p with a square and multiply exponentiation

algorithm, and we compute F (X) = Xp −X mod E(X) mod p,
2. then, we evaluate gcd(F (X), E(X)) mod p with polynomials of degrees lower

or equal to n.
The first step represents at most log(p) squares and multiplications, and the second
step represents at most n iterations of the Euclidean algorithm. The roots are
found by factorising the polynomial gcd(F (X), E(X)) mod p. Some examples of
factorization algorithms can be found in [19].

Proposition 4.3. Let p prime, n > 2, E(X) a polynomial of degree n and irre-
ducible in Z[X], and D(X) = gcd(Xp−X,E(X)) mod p, there exists deg(D(X))
Polynomial Modular Number Systems (p, n, γi, ρ)E(X).

Proof. The proof is trivial considering, when p is prime, that the roots of Xp−X
mod p are the p elements of Z/pZ.

Remark. Proposition 4.1 can be considered as a corollary of this Proposition 4.3.

Example 4.3. We consider p = 7826474692469460039387400099999297 and E(X) =
X5 +X2 + 1.

Then, Xp mod E(X) = 7322126259420098177093985099094624 X4

+1727826215301243349042222461135262 X3

+3438841897608126971004523506864410 X2

+7372958503626664659096728485020295 X
+4167285606168530025180293516680876

Thus, gcd(Xp mod E(X)−X,E(X)) mod p
= X2 + 1305849998419067291000337897705258 X
+1793073000954204546034194068098826
= (X + 6157699039557809270671068895070912)
(X + 2974625651330718059716669102633643)
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Hence, we obtain two roots of E(X) mod p :
γ1 = 1668775652911650768716331204928385
γ2 = 4851849041138741979670730997365654

4.4. Example giving all the possible PMNS for a given p
This example is obtained with SageMath subroutines.

For p = 57896044618658097711785492504343953926634992332820282019728792003956566811073
a 256-bits prime, and n = 9.

We consider PMNS B = (p, n, γ, ρ)E such that :
— E(X) = Xn + akX

k + · · ·+ a1X + a0 ∈ Z[X], with n ≥ 2 and k ≤ n
2 ,

— coefficients |ai| ≤ 1 for 1 ≤ i ≤ k and |a0| ≤ 3
— ρ ≤ 231

The number of PMNS B = (p, n, γ, ρ)E that can be built for different polyno-
mials verifying the criteria is equal to 354.

Most of the time, the best ρ is obtained first by LLL (266 times) or BKZ (46),
some are due to Corollary 2.1 (10) or with Corollary 2.2 (28), or Proposition 2.3
(4) with a short vector.

5. Conclusion

In this paper, we have shown with Theorem 2.1, the link between the existence
of a PMNS and the Euclidean lattice generated by its reduction polynomial and
its modulo. We thus have a bound on the size of the digits corresponding to the
covering radius. Then, Theorem 2.2 gives us a bound which can be easily calculate
from the norm 1 of the lattice. This second theorem has led us to consider PMNS
defined by an irreducible polynomial. In this case, it is easy to define a base of the
lattice that can be associated to the PMNS (Proposition 2.3, Corollaries 2.1 and
2.2). These theorems, propositions and corollaries allowed us to produce PMNS
with specific reduction polynomials allowing efficient reductions and whose roots
give the radices of these systems. Now, we have the opportunity to offer for a given
modulo p a wide variety of PMNS.
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