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Introduction

We consider the family of real biquadratic curves C d (K) (that is algebraic curves which are of degree 2 in x and y) with equations [START_REF] Appel | Principes de la théorie des fonctions elliptiques[END_REF] x 2 y 2 -dxy -1 + K(x 2 + y 2 ) = 0, where d > 0 and K ∈ R. Note that these curves are symmetric with respect the two diagonals. With this family we associate the family of QRT-maps geometrically defined by the following way, for d fixed: let (x, y) ∈ R 2 \ {(0, 0)} be a point, we consider the curve C d (K) which passes through this point; then the horizontal line through this point cuts the curve at a point (X, y), and the vertical line passing through this last point cuts again the curve at the point (X, Y ) (some of these points may be at infinity). The map (x, y) → (X, Y ) is the QRT-map T d associated with the parameter d. This type of maps was defined in [START_REF] Quispel | Integrable mappings and soliton equations[END_REF], motivated by problems of physics, and studied in many papers: see in particular [START_REF] Duistermaat | Discrete Integrable Systems[END_REF], [START_REF] Quispel | Integrable mappings and soliton equations[END_REF], [START_REF] Esch | 2OO1] The screenaver map: Dynamics on elliptic curves arising from polygonal folding[END_REF] and [START_REF] Jogia | An algebraic approach to integrable maps of the plane[END_REF] for general results, [START_REF] Bastien | On periodic solutions of 2-periodic Lyness' equations[END_REF] to [START_REF] Bastien | Behavior of orbits and periods of a dynamical system in R 2 * associated to a special QRT-map[END_REF] and [START_REF] Zeeman | Geometric unfolding of a difference equation[END_REF] for particular studies, and [START_REF] Cima | Studying discrete dynamical systems through differential equations[END_REF] for another point of view. For [START_REF] Bastien | On periodic solutions of 2-periodic Lyness' equations[END_REF] to [START_REF] Bastien | Behavior of orbits and periods of a dynamical system in R 2 * associated to a special QRT-map[END_REF], we present in Appendix 3 a summary of their approach and their relations with the present paper.

The explicit expression of the map T d can be obtained in the following way: the value of K for the curve that passes through the point (x, y) is (2) K = 1 + dxy -x 2 y 2 x 2 + y 2 , so that we have

(3) xX = Ky 2 -1 y 2 + K and yY = KX 2 -1 X 2 + K
for this value of K (use the product of the roots of the quadratic equations). For (x, y) ∈ R 2 \ {(0, 0)}, the computation gives (4) X = dy 3 -x(1 + y 4 ) (1 + y 4 ) + xdy , and then Y = dX 3 -y(1 + X 4 ) (1 + X 4 ) + ydX .

Of course, the map T d leaves globally invariant each of the curves C d (K). For studying the restriction of T d to these curves, we will make some birational transformations in order to change C d (K) in a Weierstrass elliptic cubic Γ d (K) of the form Y 2 = 4X 3 -g 2 X -g 3 , the map T d on C d (K) being conjugated to the addition of a fixed point for the classical chord-tangent law on Γ d (K), which is also conjugated to a rotation on the unit circle (via Weierstrass function). This first step will use some tools of algebraic geometry of elliptic cubic curves.

Then we search the rotation number θ d (K) of this rotation, what we denote "the rotation number of T d on C d (K)". Of course, when this number is an irreducible rational p q , then T d will be q-periodic on C d (K). Our goal is to find all the possible periods q. For this, we will prove that the rotation number is a continuous function of K, and determine an interval I where varies this number. So we have to find irreducible ratios p q ∈ I. It is in this step that we will use the Prime Number Theorem. Moreover, we will prove that the dynamical system has a form of sensitivity to initial conditions, as in previous papers (see for instance [START_REF] Bastien | A QRT-system of two order one homographic difference equations: conjugation to rotations, periods of periodic solutions, sensitiveness to initial conditions[END_REF], [START_REF] Bastien | On the Algebraic Difference Equations un+2 + un = ψ(un+1) in R, related to a Family of Elliptic Quartics in the Plane[END_REF]).

The results and the plan of proofs

The essential results are the two following ones.

Theorem 1. (1) For any d > 0 and K = 0, the map T d|C d (K) is conjugated to a rotation on the unit circle. Moreover, both those levels K = 0 for wich all the initial conditions give rise to trajectories that fill densely C d (K); and those levels for which this curve is filled by periodic points (with the same period), are dense. In consequence, the periodic points for T d are dense in R 2 , and also the non-periodic ones.

(2) For every d > 0, there exists an integer N (d) such that every integer n ≥ N (d) is a minimal period of some point for the QRT-map T d .

(3) Every integer n ≥ 3 is the minimal period for T d of some initial point for some d. (4) There is no point of period 2, nor real finite fixed point, but it is possible to extend continuously T d to (0, 0), with image (0, 0). Theorem 2. The dynamical system associated with the QRT-map T d has a form of sensitivity to initial conditions. More precisely:

(1) for every 0 < K 1 < K 2 , there exists a constant

k d (K 1 , K 2 ) > 0 such that for every K ∈ [K 1 , K 2 ], for every point M 0 ∈ C d (K) and every neighbourhood V of M 0 there exists a point M 1 ∈ V such that d T n d (M 1 ), T n d (M 0 ) ≥ k d (K 1 , K 2 )
for an infinite values of n (we denote this property as "uniform sensitivity");

(2) for K < 0, for every point M 0 of C d (K) there exists a constant k d (M 0 ) such that for every neighbourhood V of M 0 there exists a point

M 1 ∈ V such that d T n d (M 1 ), T n d (M 0 ) ≥ k d (M 0 )
for an infinite values of n (here we speak on "pointwise sensitivity").

So it remains a problem:

Problem. Is there uniform sensitivity to initial conditions for

K ∈ [K 1 , K 2 ], if the condition K 1 < K 2 < 0 holds ?
For proving the previous two assertions, the following one plays a great rôle. Proposition 3. The limits of the rotation number θ d (K) when K tends to +∞, to -∞, or to 0, are respectively In Section 3, we study some general properties of the curves C d (K) and of the QRT-map T d (with a substitution of a new parameter m to the parameter K), prove some parts of theorem 1, and define and study the first rational transformations of C d (K) into elliptic cubic curves.

In Part 4, we make successive other rational transformations on the curve obtained in Section 3, with the aim to obtain the classical Weierstrass form for this curve.

In Section 5 we explain for being complete (as in [START_REF] Bastien | On the Algebraic Difference Equations un+2 + un = ψ(un+1) in R, related to a Family of Elliptic Quartics in the Plane[END_REF] or [START_REF] Silverman | Rational points on elliptic curves[END_REF]), why, with Weierstrass' function, the map T d (K) is conjugated to a rotation on the unit circle. We use Weierstrass' function for determining an expression of the rotation number θ d (K) as the ratio of two integrals, and prove proposition 3.

In Part 6 we prove theorem 1, with the aid of a refinement of the prime number theorem.

In Part 7 we establish theorem 2, with arguments which soon are for some of them in [START_REF] Bastien | A QRT-system of two order one homographic difference equations: conjugation to rotations, periods of periodic solutions, sensitiveness to initial conditions[END_REF], and for some others in [START_REF] Bastien | Global behavior of the solutions of Lyness' difference equation un+2un = un+1 + a[END_REF] and in [START_REF] Bastien | On the Algebraic Difference Equations un+2 + un = ψ(un+1) in R, related to a Family of Elliptic Quartics in the Plane[END_REF]. The two cases K > 0 and K < 0 requires different types of arguments.

We finish with an Appendix 1 on the 4 and 6-periodic orbits, an Appendix 2 on the forms of the curves C d (K), and an Appendix 3 on a summary of previous results on QRT-maps.

The QRT-map and its invariant curves, first transformations

First, we present in the following figures some types of the curves C d (K), when K = 0. In fact we represent the sets where x 2 y 2 -dxy -1 + K(x 2 + y 2 ) < 0, the curve itself is the boundary of this set. For studying the curves C d (K), which are the projections of the horizontal sections of the surface z = G d (x, y), we search the critical points of S and the limits of G d (x, y) when (x, y) → 0 and (x, y) tends to the point at infinity of the plane. We have the following result.

Lemma 4. (1)

The surface S has no critical point;

(2) G d (x, y) → +∞ when (x, y) → (0, 0);

(3) inf G d (x, y) = -∞ on the plane, but on the axes lim

x 2 +y 2 →+∞ G d (x, y) = 0.
Proof. Only the first point is not evident. The partial derivatives of G d are -dyx 2 + dy 3 -2xy 4 -2x = 0, -dxy 2 + dx 3 -2yx 4 -2y = 0.

By equaling the two values of d given by these equations we obtain (x 2 -y 2 )[x 2 (1 + y 4 ) + y 2 (1 + x 4 )] = 0, and so we have x = y or x = -y. In each case, by putting these values in the first equation, we find -u(1 + u 4 ) = 0 (where u := x, y = ±u), and this is impossible.

With the previous results it is possible to prove the following results on the curves C d (K) (see details in Appendix 2). if K < 0, the curve C d (K) has four connected but non bounded branches, with two vertical asymptotes x = ± √ -K and two horizontal asymptotes y = ± √ -K.

It is also easy, from formulas (3) or (4), to find the equation of the locus E d of the points where X is infinite: on a curve C d (K), with K < 0, there is exactly two points where the curve cuts its horizontal asymptotes. The set E d is the curve with equation: [START_REF] Bastien | A biquadratic system of two order one difference equations: periods, chaotic behavior of the associated dynamical system[END_REF] dxy + 1 + y 4 = 0.

If we put K = -L 2 , we have a parametric equation for E d :

(6) x = - 1 + L 4 εdL , y = εL with ε = ±1 :
There are the coordinates of the points where C d (-L 2 ) cuts its horizontal asymptotes. At these points M 0 and M 1 , X given by formulas (3) or ( 4) is infinite in horizontal direction. So, for extending the map T d we shall introduce the extension of the curve C d (K) in the projective real plane, with in particular the infinite points H in horizontal direction and V in vertical direction. We shall see that these points are singular points with distinct tangents (see Lemma 6), the horizontal and vertical asymptotes of the curve. In fact, we can give a symbolic representation in the projective real plane of this curve in Figure 5, where t = 0 is the line at infinity, when we take homogenous coordinates (x, y, t) for C d (K).

Of course we have also an extension of C d (K) in the complex projective plane. When K > 0, the asymptotes which are the tangents at the points H and V , are complex and distinct. Note that when K = 0, they are real but not distinct. For more simplicity we keep the same notation for the curve C d (K) and its different extensions. So it is not difficult to see that we can extend by continuity T d so that

T d (M 0 ) = T d (M 1 ) = H.
The reader can see himself the analogous results when Y is infinite, that is when the horizontals of points N 0 and N 1 of C d (K) cut again the curve at one of the two intersections M 0 and M 1 of the vertical asymptotes with the curve. Now we can see the algebraic nature of the curves C d (K) when K = 0. Lemma 6. When K = 0 the complex projective curve C d (K) has only two singular points, which are ordinary (with distinct tangents) and on the line at infinity: H and V . In this case, C d (K) is an elliptic curve.

Proof.

(1) First we determine the singular points. We put f (x, y, t) := x 2 y 2 -dt 2 xy -t 4 + Kt 2 (x 2 + y 2 ), compute f x , f y , and the singular points are the solutions of f x = 0, f y = 0, f = 0. First, we have the solution t = 0 with xy = 0, which gives the points H and V . Now we suppose t = 1, and have to solve the equations f = 0, 2xy 2 -dy + 2Kx = 0 and 2yx 2 -dx + 2Ky = 0. The two last ones give (x -y)(2K -d -2xy) = 0.

First we have the solution x = y := u, and the second equation gives u 2 = d/2 -K; by puting in f (u, u, 1) = 0, we find (d/2 -K) 2 + 1 = 0, and this is impossible.

So we have the equations -2xy +2K +d = 0 and 2xy 2 -dy +2Kx = 0. This give x = -y, and 2x 2 + 2K + d = 0. So we have the value of x 2 and y 2 , and put them in f (x, y, 1) = 0. We obtain -(K + d/2) 2 -1 = 0, and this is impossible.

Then, it is easy to compute the asymptotes of C d (K) from its equation, for K = 0.

(2) For proving that the curve C d (K) is elliptic if K = 0, we use the formula giving the genus of the curve:

g = (δ -1)(δ -2) 2 - P µ p (µ p -1) 2 
, where δ is the degree of the curve (here δ = 4), and P is the set of singular points p, and µ p their order. Here |P | = 2 and the orders are 2. So we obtain g = 1, that is C d (K) is elliptic. But we have to verify that the curve is irreducible for using the previous formula giving the genus (see [START_REF] Perrin | Géométrie algébrique[END_REF]).

First, suppose that we have the identity x 2 y 2 -dxy -1+K(x 2 +y 2 ) = (x+uy +v)f 1 (x, y). If we make the division of the first member considered as a polynomial in x by x + uy + v, we obtain the remainder

Ky 2 -1 + (uy + v)[uy 3 + vy 2 + (Ku + d)y + Kv],
which is a polynomial in y. The vanishing of it for all y gives the successive relations

u = 0, v 2 + K = 0, vd = 0, -1 = 0,
and this is impossible.

The only case which remains to study is if

x 2 y 2 -dxy -1 + K(x 2 + y 2 )
is the product of two irreducible polynomials of degree 2. But this situation gives for the curve C d (K) more than two singular ordinary points (because K = 0), and this is not possible by the first part of the proof.

So we can find a rational transformation which transforms C d (K) in a regular cubic curve. For this, we split the point (m, m) of C d (K) on the diagonal, with m > 0. This point satisfies the equation ( 7)

K = d 2 + 1 2m 2 - m 2 2 .
The Figure 6 shows the graph of the function m → K: for m > 0, K decreases from +∞ to -∞.

The number m d giving K = 0 is the positive solution of the equation: In fact, it is easy to prove that the hyperbola H m with equation xy = m 2 cuts the curve C d (K) only at the points (m, m) and (-m, -m), for K given by ( 7). So we can consider φ 1 defined on R 2 \ H m . By some computations, one see that the inverse of φ 1 is given by

(10) x = 1 -mX Y , y = 1 -mY X .
The pencil of horizontal lines, with equations y = C, becomes by the action of φ 1 the pencil of lines with equations 1 -mY -CX = 0, that is the pencil of lines passing through the point ( 11)

P = 0, 1 m ,
and the pencil of vertical lines becomes the one of lines passing through the point

(12) P = 1 m , 0 .
We calculate the equation of the image of C d (K) by φ 1 , and see that it splits in this one of the line D

(13) 1 -m(X + Y ) = 0,
and in this one of the symmetric cubic curve

A 1 d (m) (14) Km(X 3 +Y 3 )-KmXY (X +Y )-K(X 2 +Y 2 )+XY (d-2m 2 )+m(X +Y )-1 = 0,
where K is the function of m given in [START_REF] Bastien | A QRT-system of two order one homographic difference equations: conjugation to rotations, periods of periodic solutions, sensitiveness to initial conditions[END_REF]. Now, we make another transformation φ 2 , by puting (U,

V ) = φ 2 (X, Y ), that is (15) X := U + V 2 , Y := U -V 2 .
We obtain the cubic curve A 2 d (m) with equation

(16) V 2 (KmU -a) -bU 2 + mU -1 = 0 where (17) a = K 2 + d 4 - m 2 2 = d 2 + 1 4m 2 - 3m 2 4 , b = K 2 - d 4 + m 2 2 = 1 4 m 2 + 1 m 2
(K being given by relation ( 7)). By the transformation φ 2 • φ 1 the pencils of horizontal and vertical lines become the pencils of lines passing respectively through the points ( 18)

P 1 = 1 m , - 1 m , P 1 = 1 m , 1 m .
So, we have results about the curve A 2 d (m) and the conjugate of T d on this curve.

Proposition 7. (1)

The curve A 2 d (m) is symmetric with respect to the U -axis, V is defined for U > λ 0 if K > 0, and for U < λ 0 if K < 0, where

(19) λ 0 = a Km = 3m 4 -2dm 2 -1 2m(m 4 -dm 2 -1) ;
the curve has a vertical asymptote U = λ 0 and two parabolic branches for U tending to sign(K)∞ (see Figures 7); (2) the map

φ 2 • φ 1 is a homeomorphism of C d (K) \ {(m, m), (-m, -m)} on A 2 d (m); when (x, y) → (m, m), then φ 2 • φ 1 (x,
y) tends to the infinite vertical point on the asymptote, and when (x, y) → (-m, -m), then φ 2 • φ 1 (x, y) tends to to the horizontal point at infinity on the parabolic branches of

A 2 d ; (3) the restriction of T d to C d (K) \ {(m, m), (-m, -m)} is conjugated by φ 2 • φ 1 to the addition of the point P 1 for the chord-tangent law + P 1 on A 2 d whose the zero point is P 1 . Proof. (1) We can write (20) V 2 = bU 2 -mU + 1 KmU -a ,
and remark that bU 2 -mU + 1 > 0 for every U ; so the result is easy with λ 0 = a Km .

(

) If we put A(m) = 3m 4 -2dm 2 -1 m(m 4 + 1) 2 
, some computations with Maple show that one has,

for x = m+u, y = m-u+A(m)u 2 +O(u 3 ) when u → 0. So we see that U → A(m) mA(m)-1 = λ 0 when u → 0, and V ∼ m 4 +1 m 4 -dm 2 -1 1 u → ∞sign(u): this is the first part of point (2).
For the second part, some computations give that, if

x = -m + u, then U ∼ m 4 + 1 mK 1 u 2 and V ∼ m 4 + 1 2m 2 K 1 u
; this gives easily the result.

(3) The conjugation is obvious with the previous results about the pencils of lines and the geometric definition of T d : by the alignment of a point M with P 1 , the line M P 1 cuts A 2 d (m) at M 1 , and the line M 1 P 1 cuts A 2 d (m) at the image of M by the conjugated of T d by φ 2 • φ 1 . And this is exactly the addition of P 1 to M for the law chord-tangent + P 1 on the curve, whose zero is the point P 1 (see [START_REF] Silverman | Rational points on elliptic curves[END_REF] for the classical definition of this law). We put KmU = U , so that to take into account the sign of K, and obtain

V 2 ( U -a) = b K 2 m 2 U 2 - 1 K U + 1.
Now we multiply it by U -a and put W := V ( U -a), and obtain a new curve A 3 d (m) with equation ( 22)

W 2 = ( U -a) b K 2 m 2 U 2 - 1 K U + 1 .
With this form, we have a cubic curve which is almost in Weierstrass form. We see that the roots of the right hand member are simple. First, we introduce two notations: we put

(23) ∆ := m 4 -dm 2 -1, Ω := 3m 4 -2dm 2 -1.
Lemma 8. The roots of the right hand member of [START_REF] Zeeman | Geometric unfolding of a difference equation[END_REF], that is the abscissas of the intersection of A 3 d (m) with the U -axis are

(24) a = - Ω 4m 2
, which is real, and

∆(-m 2 ± i) m 4 + 1 , which are complex.
Their sum is

(25) α := a - 2m 2 ∆ m 4 + 1 = - (m 4 + 1)Ω + 8m 4 ∆ 4m 2 (m 4 + 1)
.

We denote φ 3 the map (U, V ) → ( U , W ). Now, it is classical (but not obvious) that the map conjugated by φ 2 •φ 1 of T d on A 2 d (m) is conjugated by φ 3 to the addition of Q := φ 3 (P 1 ) for the chord-tangent law + Q on the curve A 3 d (m) whose zero point is Q := φ 3 (P 1 ) (see [START_REF] Silverman | Rational points on elliptic curves[END_REF]). Now, to pass from the form [START_REF] Zeeman | Geometric unfolding of a difference equation[END_REF] to the canonical Weierstrass form A 4 d (m) it suffices to make an affine transformation φ 4 on the variable U and W . But for identifying the map T d conjugated to T d by φ 4 • φ 3 • φ 2 • φ 1 , it is necessary to make a group isomorphism φ 5 on the curve A 4 d (m), with the aim to send the point Q to the infinite vertical point ω of the curve. This is similar to that is made in paper [START_REF] Bastien | A QRT-system of two order one homographic difference equations: conjugation to rotations, periods of periodic solutions, sensitiveness to initial conditions[END_REF]. We recall that the new conjugated of For this, the following lemma is useful. We will see (in Part 5) that it gives the abscissa of point R, if we take for D the curve A 4 d (m) . The proof of this lemma is a simple computation which we leave to the reader. Lemma 9. Let M := (u, v) with v = 0 a point on a canonical cubic curve D with equation

Y 2 = 4X 3 -g 2 X -g 3 .
Then the tangent at D in M cuts the curve at a point whose abscissa Υ is given by

(26) Υ = 12u 2 -g 2 4v 2 -2u.
Now, we pass to the the interpretation of addition of R on A 4 d (m) as a rotation. Before, we assert a result which will be useful, and which is easy with formulas between (X, Y ) and ( U , W ).

Lemma 10. The map φ 3 • φ 2 is a homeomorphism of A 1 d (m) onto A 3 d (m).
5. An integral formula for the rotation number if K = 0 5.1. Weierstrass function and the integral formula. The map T d acts on the cubic curve A 4 d (m), and we will see that this action is conjugated to a rotation on the unit circle T. For this, we parametrize the previous cubic in the affine complex plane by a Weierstrass function. For the proofs to be complete, we reproduce here arguments which are in [START_REF] Bastien | On the Algebraic Difference Equations un+2 + un = ψ(un+1) in R, related to a Family of Elliptic Quartics in the Plane[END_REF], and are also in [START_REF] Appel | Principes de la théorie des fonctions elliptiques[END_REF].

There exist two complex conjugated numbers denoted by 2ω 1 and 2ω 3 (with (ω 3 ) > 0), which depend on d and K (or m), with the following properties (see Figure 9): if Λ is the lattice in C defined by Λ = {2nω 1 +2pω 3 |(n, p) ∈ Z 2 }, then the Weierstrass' elliptic function P is a meromorphic function defined on C \ Λ by ( 27)

P(z) := 1 z 2 + λ∈Λ\{0} 1 (z -λ) 2 - 1 λ 2 ;
it is doubly periodic (its periods are its poles: the points of Λ), and gives the following parametrization of the entire cubic curve A 4 d (m) (its real and complex points in the projective plane) (28)

X = P(z), Y = P (z).
The main properties of this parametrization are the following facts (see [START_REF] Appel | Principes de la théorie des fonctions elliptiques[END_REF], [START_REF] Bastien | On the Algebraic Difference Equations un+2 + un = ψ(un+1) in R, related to a Family of Elliptic Quartics in the Plane[END_REF]): (1) it transforms the addition in C into the addition on A 4 d (m) for its group law + 

(29) Y 2 = F (X) := 4X 3 -g 2 X -g 3 ,
and denote e 2 , e 1 and e 3 the real root (abscissa of E 2 ) and the complex conjugated roots of the polynomial F . We use the classical formula giving the inversion of function P for real values of the variable and the function (see [START_REF] Appel | Principes de la théorie des fonctions elliptiques[END_REF]):

u = +∞ P(u) dt F (t) .
With the relations P(ω 2 ) = e 2 and P(2ω

2 × θ d (m)) = Υ , we obtain (30) 2θ d (m) = +∞ Υ dt √ F (t) +∞ e 2 dt √ F (t)
, where Υ is the abscissa of point R given by lemma 9. Now we make the change of variable in the two integrals: t = e 2 + s 2 , and obtain the final result, by using the equality F (t) = 4(t -e 2 )(t -e 1 )(t -e 3 ), with e 3 = ē1 , and putting (31) z := e 2 -e 1 .

Proposition 13. The rotation number is given by the following formula

(32) 2θ d (m) = +∞ √ Υ -e 2 ds |s 2 +z| +∞ 0 ds |s 2 +z|
, where z is the complex number given by (31) and Υ the abscissa of R.

Remark that this formula proves easily that the map m → θ d (m) is continuous, because the computations in section 4 prove that all the parameters Υ , e 1 , e 2 , e 3 , z are continuous functions of m. Now it is time to precise the transformations φ 3 , φ 4 and φ 5 , and to evaluate the different parameters which are useful for studying the limits of rotation number when K tends to ±∞ and to 0. 5.2. Limits of the rotation number when K → +∞, K → -∞, K → 0: proof of proposition 3. First we precise the map φ 4 .

The curve A 3 d (m) has for equation

(33) W 2 = m 4 + 1 ∆ 2 U 3 + Ω(m 4 + 1) + 8m 4 ∆ 4m 2 ∆ 2 U 2 + Ω + 2∆ 2∆ U + Ω 4m 2 , or (34) W 2 = λ U 3 + µ U 2 + ν U + ρ.
Then, α being the sum of the roots of the second member of (34) (given by ( 25)), the affine transformation φ 4 is ( U , W ) → (X, Y ) given by ( 35)

X = µ 12 + λ 4 U , Y = λ 4 W.
So by action of φ 4 we pass to the Weierstrass cubic curve A 4 d (m) whose equation is Y 2 = 4X 3 -g 2 X -g 3 . The images of P 1 and P 1 by φ 4 • φ 3 are (36) Q 1 = (q, -r), and Q 1 = (q, r), which are on the same vertical line, with

q := 5m 8 -4dm 6 -6m 4 + 4dm 2 + 5 48m 2 ∆ 2 r := (m 4 + 1) 2 16m 3 ∆ 2 . ( 37 
)
And the conjugated of

T d by φ 4 • φ 3 • φ 2 • φ 1 is the addition of Q 1 for the chord-tangent law + Q 1 on A 4 d (m) with zero element Q 1 .
To pass to the classical chord-tangent law + ω , where ω is the point at infinity in vertical direction on A 4 d (m), we make the group isomorphism φ 5 defined on A 4 d (m) by ( 38)

M → M + Q 1 ω.
It is not difficult to see that the image of point Q 1 by φ 5 is the point R where the tangent at the curve in Q 1 cuts again the curve. So its abscissa Υ is given by formula (26), where u and v are the coordinates of Q 1 given by ( 36) and (37). 

g 2 = P 16 (m) 192m 4 ∆ 4 , e 2 = m 8 -2dm 6 -6m 4 + 2dm 2 + 1 24m 2 ∆ 2 , e 1 = - m 8 -2dm 6 -6m 4 + 2dm 2 + 1 48m 2 ∆ 2 - i 4∆ , Υ = 2m 8 -4dm 6 + (3d 2 -12)m 4 + 4dm 2 + 2 48m 2 ∆ 2 , Υ -e 2 = dm 4|∆| , z = m 8 -2dm 6 -6m 4 + 2dm 2 + 1 16m 2 ∆ 2 + i 4∆ , (39) 
where

P 16 (m) = m 16 -4dm 14 + • • • + 4dm 2 + 1. (40) Corollary 15. The map m → θ d (m) resp. K → θ d (K) is analytic on ]0, +∞[\{m d } resp. on R \ {0} .
Now we can find the limits of the rotation number, from formula (32) in Proposition 13. 

and also (42)

|s 2 + z| = s 2 + a(m) m 2 2 + b(m) 2 m 8 . We can write (43) 2θ d (m) = 1 - c(m) m 3 0 ds |s 2 +z| +∞ 0 ds |s 2 +z| .
In the ratio of the two integrals, we shall show that the numerator tends to 0 and the denominator is greater than a number D > 0.

We have

c(m) m 3 0 ds |s 2 + z| ≤ c(m) m 3 1 a(m) m 2 2 + b(m) 2 m 8 = 1 m c(m)d(m) a(m)
, where d(m) → 1 when m → +∞, and this ratio tends to 0. (

) 44 
So we have also (45)

|s 2 + z| = s 2 + a (m) m 2 2 + b (m) 2 .
In the ratio of the two integrals of formula (43), we majorize the numerator

mc (m) 0 ds |s 2 + z| ≤ mc (m) 1 a (m) m 2 2 + b(m) 2 = mc (m) m 2 a (m) d (m),
where d (m) → 1 when m → 0; and this tends to 0 with m.

Now we minor the denominator by

+∞ 0 ds s 2 + A m 2 2 + B 2 ≥ +∞ 0 ds s 2 + A m 2 + B ,
where A is a constant larger than a (m) and B is a constant larger than b (m). So the denominator is minored by

+∞ 0 m 2 ds m 2 s 2 + A + Bm 2 = +∞ 0 dt t 2 + A + Bm 2 = 1 √ A + Bm 2 arctan t √ A + Bm 2 +∞ 0 ≥ π 2 √ A + B > 0 if m ≤ 1. Then θ d (m) → 1 2 when m → 0. (c) Limit when m → m d (K → 0) We put u := m -m d . When m → m d = d 2 + 1 2 √ d 2 + 4
we have, with some computations

Υ -e 2 = γ(m) |u| , z = α(m) u 2 + i β(m) u , |s 2 + z| = s 2 + α(m) u 2 2 + β(m) 2 u 2 (46) 
where

lim u→0 α(m) = 1 64 , lim u→0 β(m) = 1 8m d √ d 2 + 4 , lim u→0 γ(m) = d 8 √ d 2 + 4 . (47) 
So, in |s 2 + z| given in (46), we put in factor 1 u 4 in the two integrals of formula (32); then we change of variable by putting s|u| = t; after simplification, we obtain

(48) 2θ d (m) = +∞ γ(m) dt t 2 +α(m) 2 +u 2 β(m) 2 +∞ 0 dt t 2 +α(m) 2 +u 2 β(m) 2 .
The limits of the integrands are easy, and we obtain by Lebesgue's theorem, as limit of 2θ d (m) when m → m d , that is when u → 0, the quantity 8 arctan 8t Proof. From corollary 15, these functions are analytical, and their limits on the boundary of the intervals are distinct, so there are not constant on every open interval.

It is now easy to prove the following fact, id est the point (1) of Theorem 1 (see [START_REF] Bastien | Global behavior of the solutions of Lyness' difference equation un+2un = un+1 + a[END_REF] or use the previous corollary). Proposition 17. The set of periodic points is dense in R 2 ; the set of points whose orbit is dense in the curve C d (K) which passes through them is also dense in R 2 (then these two sets form a partition of R 2 \ {(0, 0)} ∪ C d (0), each of these sets is an union of invariant and disjoint elliptic curves).

The possible minimal periods of the QRT-map : proof of theorem 1

We know that the map θ : (d, K) → θ d (K) is continuous. We shall study its image, first for d > 0 fixed, and then for d > 0 and K ∈ R.

For d fixed, the image of θ d contains the interval (50)

I d := 1 π arctan 1 + 4 d 2 , 1 2 = (d), 1 2 . 
So we shall find irreducible ratios q n ∈ I d . First, we search only this numbers with q a prime number not factor of the integer n. So we will find q

∈ nI d = n (d), n 2 .
We use a refinement of the prime number theorem (PNT), which says that if x ≥ 52, the number π(x) of prime numbers not greater than x satisfies (51)

x ln x ≤ π(x) ≤ x ln x 1 + 3 2 ln x ;
u ≥ 3 ln 10 > 6.9, (56)

g k (u) = 0.1 e u (u -1) u 2 -1.38402 ln u -1 ln 2 u ≥ 0.1 5.9e u u 2 - 1.38402 ln u ≥ 11 > 0.
Now, we put x ln x in factor in the quantity First, we prove the following result.

Lemma 20. If K = 0, then the map φ 4 • φ 3 • φ 2 • φ 1 is an homeomorphism of C d (K) \ (-m, -m) on A 4 d (K), and when M → ω on A 4 d (K), then (φ 4 • φ 3 • φ 2 • φ 1 ) -1 (M ) → (-m, -m).
Proof. If (x, y) are the variables on C d (K) and (X, Y ) the variables on A 4 d (K), then it is easy to see that we have

X = µ 12 + λ 4 mK x + y -2m xy -m 2 , Y = λ 4 x -y xy -m 2 mK x + y -2m xy -m 2 -a . (57) 
And with maple one see that we have

x = -m P (m)X 2 + Q(m)X + R(m)Y + S(m) P (m)X 2 + Q 1 (m)X + R 1 (m)Y + S 1 (m) , y = -m P (m)X 2 + Q 2 (m)X + R 2 (m)Y + S 2 (m) P (m)X 2 + Q 3 (m)X + R 3 (m)Y + S 3 (m) (58) 
where P, Q, . . . S 3 are polynomials in m whose coefficients depend on d, with (59)

P = 1152m 4 (m 4 -dm 2 -1) 4 ,
which is positive when K = 0. So we have just to find the limit of (x, y) when X → ∞, with Y ∼ ±2X 3/2 (because the equation of

A 4 d (K) is Y 2 = 4X 3 -g 2 X -g 3 ).
And the result is obvious. We have also the following lemma Lemma 21. When a point M on C d (K), with K = 0, tends to the point (m, m), then

φ 4 • φ 3 • φ 2 • φ 1 (M ) tends to the summit E 2 = (X 0 , 0) of the cubic A 4 d (K), with (60) 
X 0 = m 8 -2dm 6 -6m 4 + 2dm 2 + 1 24m 2 (m 4 -dm 2 -1) 2 .
The proof is simple with an elementary computation from formulas (57), and using the limits of variables U and W linked by [START_REF] Zeeman | Geometric unfolding of a difference equation[END_REF].

In fine, we use an argument which is in [START_REF] Bastien | A QRT-system of two order one homographic difference equations: conjugation to rotations, periods of periodic solutions, sensitiveness to initial conditions[END_REF], and which is a modification of a result in [START_REF] Bastien | Global behavior of the solutions of Lyness' difference equation un+2un = un+1 + a[END_REF]:

Lemma 22. When K → K 0 , then X = P K (t.2ω 2 (K)) → P K 0 (t.2ω 2 (K 0 )) uniformly for t ∈ [ε, 1 -ε],
where 0 < ε < 1 2 , and the same result is true for Y which is the derivative P K on the same point.

(1) The sensitivity for K > 0 : proof of Theorem 2(1) Let be 0 < K 1 < K 2 . We represent in the following figures two domains: Γ(K 1 , K 2 ) = [K 1 , K 2 ] × T, which is the set of parameters (K, α) of the second domain C(K 1 , K 2 ). There is a one-to-one continuous map Φ from Γ(K 1 , K 2 ) onto C(K 1 , K 2 ) (one look at P K as it was defined on the diagonal circle of T 2 by is double periodicity: see part 5.1). The continuity of Φ results of Lemmas 20 and 22. But Φ is an homeomorphism of the two domains, because they are compact sets. Now it is known that the dynamical system (K, α) → (K, α + θ d (K)) has uniform sensitivity to initial conditions with a constant δ if δ ∈]0, 1 2 [ (see [START_REF] Bastien | A QRT-system of two order one homographic difference equations: conjugation to rotations, periods of periodic solutions, sensitiveness to initial conditions[END_REF], Proposition 25). So it is clear that Φ is uniformly continuous, and so the dynamical system (C(K 1 , K 2 ), T d ) has η-sensitivity to initial conditions for some constant η > 0, function of K 1 and K 2 : it is Theorem 2(1).

(2) The sensitivity for K < 0 : proof of Theorem 2 [START_REF] Bastien | On periodic solutions of 2-periodic Lyness' equations[END_REF] In this case, the problem is more difficult, because the correspondant domain C(K 1 , K 2 ) is not compact, and if we make the domain compact in projective coordinates with the infinite points H and V , the correspondant map Φ were not well defined, because it is not difficult to show that then a point M in C d (K) tends to H or to V , then φ 4 • φ 3 • φ 2 • φ 1 (M ) tends to the infinite point ω of the cubic curve A 4 d (K). So we prove only the pointwise sensitivity to initial conditions, as defined in Theorem 2(2). For proving the pointwise sensitivity to initial conditions, the method is the same as in [START_REF] Bastien | Global behavior of the solutions of Lyness' difference equation un+2un = un+1 + a[END_REF], with the same exception as in [START_REF] Bastien | On the Algebraic Difference Equations un+2 + un = ψ(un+1) in R, related to a Family of Elliptic Quartics in the Plane[END_REF], because the Lemma 22 excludes the point ω of the cubic curve A 4 d (K). From Lemma 20, we can see that all the points of C(K 1 , K 2 )\{(-m, -m)|K ∈ [K 1 , K 2 ]} have pointwise sensitivity to initial conditions. But it is the case of the points (m, m) for K ∈ [K 1 , K 2 ], and by symmetry the points (-m, -m) have also pointwise sensitivity to initial conditions: it is the point (2) of Theorem 2.

8. Appendix 1: 4 and 6 are minimal periods (a) We will find a necessary and sufficient condition for 4 being a minimal period.

Let V and H be the involutions defined by vertical [resp. horizontal] alignment of two points on the same curve C d (K), so that we have

T d = V • H and T -1 d = H • V (excepted for the points M 0 , M 1 , N 0 , N 1 ).
From Proposition 11 or Corollary 12, we see that T d is 4-periodic on C d (K) if and only if (with an exception that we will see later) A 0 := (m, m) is 4-periodic for T d (m is given by relation ( 7)), or the same condition for B 0 := (-m, -m). The condition T 4 d (A 0 ) = A 0 can be written

(61) V • H • V • H(A 0 ) = H • V • H • V(A 0 ).
But these two points are symmetric with respect to the diagonal (because the curve is symmetric). So they can be equal if and only if they are both equal to A 0 or to B 0 . If they are equal to A 0 , we would have T 2 d (A 0 ) = A 0 , and T d would be 2-periodic, which is false. So we must have the equality

(62) T d (A 0 ) = T -1 d (B 0 ). If we put T d (A 0 ) = (X, Y ) and T -1 d (B 0 ) = (X 1 , Y 1 )
, the condition (61) is X -X 1 = 0 and Y -Y 1 = 0, and the easy (with Maple) computation gives

(63) d = √ 2(K 2 + 1) √ K 2 -1 .
As an example, for d = 5 and K = 3, T 5 is 4-periodic on the curve C 5 (3). An exception happens when the two denominators (which are the same ones) of X -X 1 and Y -Y 1 are 0, that is when

(64) m 12 -5dm 10 + 3(d 2 + 1)m 8 -(d 3 -2d)m 6 + 3(d 2 + 1)m 4 + 3dm 2 + 1 = 0.
But it is easy to see that relations (64) and (62) are incompatible. So this exception is not a curve on which T d is 4-periodic.

It is also interesting to note that the condition that With the same reasoning we find that the condition is

H(A 0 ) = N 0 , so that Y = ∞, id est T d (A 0 ) = V ,
(65) (V • H) 3• (A 0 ) = (H • V) 3• (A 0 ),
so that, by symmetry, these to points must be equal to A 0 or to B 0 . If it would A 0 , T d would be 3-periodic, and 6 would not be minimal. So the good condition is

(66) T 2 d (A 0 ) = T -1 d (B 0 ).
It is now easy, with the use of Maple, and by computing T 2 d (A 0 ) = (X 2 , Y 2 ), to find the condition for 6 being a minimal period (at least, it is a sufficient condition)

(67) K 2 d 4 -(K 4 -1)(K 2 + 1)d 2 + 3(K 2 + 1) 4 = 0, which gives easily d as a function of K (68) d = (K 2 + 1) K 2 -1 ± √ K 4 -14K 2 + 1 K √ 2 .
As an example, for d = 4 3 + 2 √ 3 and K = 2 + √ 3, we obtain a curve on which 6 is a minimal period. 9. Appendix 2: on the forms of the curves C d (K) (proof of lemma 5)

The plan of proof of Lemma 5 is simple : (1) The curves are starlike with respect the point (0, 0) : we put x = ρu and y = ρv, with a unit vector (u, v). If uv = 0 we have with equation of C d (K) a quadratic equation in ρ 2 with a unique positive solution, so ρ = ±α: the curve is starlike. If uv = 0, ρ = ± 1 √ K if K > 0, and if K ≤ 0 and uv = 0, there is no solution: the curves C d (K) does not cut the axes.

(2) There is no double point in finite distance (see Lemma 6).

(3) If K > 0, one see the inclusion C d (K) ⊂ B (0, 0), 1+d 2 /4 K : one has x 2 + y 2 = 1 + dxy -x 2 y 2 K ≤ 1 + d 2 /4 K . So, from the three previous points, one see that the curves are homeomorphic to circles for K > 0. (4) If K < 0, it is easy to find the asymptotes of the curve C d (K).

Appendix 3: Previous particular results of the authors about QRT-maps

The invention of QRT-maps was originally in [START_REF] Quispel | Integrable mappings and soliton equations[END_REF], for physical reasons, and the essential exemple was on [START_REF] Zeeman | Geometric unfolding of a difference equation[END_REF], but these papers were not easy to find. So the first papers ( [START_REF] Bastien | Global behavior of the solutions of Lyness' difference equation un+2un = un+1 + a[END_REF], [START_REF] Bastien | On some algebraic difference equation un+2un = Ψ(un+1) in R + * , related to families of conics or cubics: generalization of the Lyness' equation[END_REF] and [START_REF] Bastien | On the algebraic difference equation un+2un = ψ(un+1) in R + * related to a family of elliptic quartics in the plane[END_REF]) were slightly different. They studied the now called "symmetric special QRT-maps", where the family of biquadratic curves C(K) with equations Q 1 (x, y) -KQ 2 (x, y) = 0 were symmetric with respect the diagonal, and with Q 2 (x, y) = xy; and the QRT-map was defined by the following way: if C(K) is the curve passing through the point M , we cut it in M 1 by the horizontal line which contains M , and then T (M ) is the symmetric of M 1 with respect the diagonal (it is on C(K)).

These cases correspond to the study of difference equations of the form (69) u n+2 u n = au 2 n+1 + bu n+1 + c du 2 n+1 + eu n+1 + f .

In [START_REF] Bastien | On the Algebraic Difference Equations un+2 + un = ψ(un+1) in R, related to a Family of Elliptic Quartics in the Plane[END_REF] we studied the case of difference equations u n+2 + u n = ψ(u n+1 ) which is associated with "symmetric QRT-maps" defined by families of the forms Q 1 (x, y) + K = 0.

In each of these papers, we determine the possible periods of periodic orbits, prove the density of periodic points and not periodic points, and a form of sensitivity to initial conditions.

In the other works, we studied classical QRT-maps, associated with a couple of difference equations of the form u n+1 u n = f (v n ), v n+1 v n = g(u n+1 ). We give some examples : [START_REF] Bastien | A QRT-system of two order one homographic difference equations: conjugation to rotations, periods of periodic solutions, sensitiveness to initial conditions[END_REF] 

u n+1 u n = c + d v n , v n+1 v n = c + d v n+1
with curves xy(x + y) + xy + d -Kxy = 0.

[5] u n+1 u n = v 2 n -bv n +c, v n+1 v n = u 2 n+1 -au n+1 +c with curves x 2 +y 2 -ax-by+c-Kxy = 0.

[6] u n+1 u n = av n + b, v n+1 v n = u n+1 + b u n+1

with curves xy 2 + x 2 + ay + b -Kxy = 0.

In [START_REF] Bastien | On periodic solutions of 2-periodic Lyness' equations[END_REF] we studied the 2-periodic Lyness' equation u n+2 u n = u n+1 + a n , with a n 2-periodic.

In [START_REF] Bastien | Behavior of orbits and periods of a dynamical system in R 2 * associated to a special QRT-map[END_REF] we study the particular case of the dynamical systems (x, y) → T d (x, y) = (X, Y ) given by (X, Y ) = In the present paper we begin study of non-special QRT-dynamical systems, associated with QRT-families of curves with equations Q 1 (x, y) -KQ 2 (x, y) = 0 with Q 2 (x, y) not of the form xy.

In fine, in [START_REF] Bastien | QRT-familmies of degree four biquadratic curves each of them has genus zero, associated dynamical systems[END_REF] and [START_REF] Bastien | Dynamical systems associated to QRT families of degree four biquadratic curves whose each curve is of genus zero[END_REF] we present examples of QRT-families of degree four, but such that each of the curves of the family has genus zero, and studied the correspondent dynamical systems.
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 1 Figure 1: The curve C d (K) for K > 0.

Figure 2 :

 2 Figure 2: The curve C d (K) for K > 0 small.

Figure 3 :

 3 Figure 3: The curve C d (K) for K < 0. Next we present the figure of the surface S: z = G d (x, y) := 1 + dxy -x 2 y 2 x 2 + y 2 .

Figure 4 :

 4 Figure 4: The surface z = G d (x, y).

Lemma 5 . 2

 52 If K > 0 the curve C d (K) is an oval which is bounded and connected; if K = 0, C d (K) is the union of the two hyperbolas with equations xy = d

Figure 5 :

 5 Figure 5: The real projective representation of C d (K) when K < 0.

( 8 ) m 4 - 2

 842 dm 2 -1 = 0, easy to solve. The function m → K is one-to-one, so we can take for parameter of the family of curves C d (K) (for d fixed) the number m > 0. We make this choice in the following computations, with K = 0, that is m = m d := d

Figure 6 :

 6 Figure 6: K function of m. Now, the first transformation we use is φ 1 (x, y) = (X, Y ) defined, for (x, y) = (m, m) and (x, y) = (-m, -m), by

Figure 7 :

 7 Figure 7: The curves A 2 d (m)

T

  d is now the map T d which is the addition of the point R := φ 5 • φ 4 (Q) for the classical chord-tangent law + ω on the curve A 4 d (m) whose zero point is ω (see in [7] a computational proof, with Maple).

Figure 8 :

 8 Figure 8: Addition of R on A 4 d (m) for + ω . So the goal is to find the point R, and to interpret the addition of R for + ω as a rotation.

  it passes to quotient into a homeomorphism of the topological group T 2 ≈ C/Λ onto the compact complex projective curve A 4 d (m) which sends the quotient of segments [0, 2ω 2 ] (where ω 2 = ω 1 + ω 3 is real) onto the compact projective real curve A 4 d (m); (3) one has the relations: P(ω 2 ) = e 2 , the abscissa of the intersection E 2 of the x-axis with A 4 d (m); (P(0), P (0)) = (P(2ω 2 ), P (2ω 2 )) = ω, the vertical point at infinity on the curve; P < 0 on ]0, ω 2 [, P > 0 on ]ω 2 , 2ω 2 [ (see figure 9).

Figure 9 :

 9 Figure 9: The lattice Λ. So, if we identify C/Λ to the set of points (e 2iπu , e 2iπv ) of T 2 ≈ (R/Z) 2 , the compact projective real cubic A 4 d (m) is group-homeomorphic to the diagonal ∆ = {(e 2iπt , e 2iπt )|0 ≤

Figure 10 :

 10 Figure 10: Building of point R

  (a) Limit when m → +∞ We have Υ -e 2 = c(m) m 3 , where c(m)

m 2 +Υ -e 2 =

 22 Now, if a(m) ≤ A, b(m) ≤ B and if m ≥ 10, the denominator of (43) is minorized by b (m)i, where a (m) mc (m), where c (m) → d 4 .

  Of course, the function (d) := 1 + 4 d 2 decreases from +∞ to 1 when d varies. So lim K→0 θ d (K) varies between 1 4 and 1 2 when d varies. So we have proved Proposition 3. Corollary 16. The two maps m → θ d (m) and K → θ d (K) are not constant on every open interval of their domain.

Figure 11 :

 11 Figure 11: The set Γ(K 1 , K 2 )

Figure 12 :Figure 13 :

 1213 Figure 12: The set C(K 1 , K 2 ) for K > 0

  is exactly the relation (61), and by symmetry it is also the relation for having T -1 d (B 0 ) = H. So we find again the previous exception. (b) Now we will find a condition for 6 being a minimal period.

1 x dy 2 -20y + 16 y 2 -5y + d , 1 y dX 2 -20X + 16 X 2 -

 222162 5X + d , with curves C d (K) equations of them are x 2 y 2 -5xy(x + y) + d(x 2 + y 2 ) -20(x + y) + 16 -Kxy = 0.

For this result, due to Rosser and Schoenfeld, we refer to [START_REF] Tenenbaum | Introduction à la théorie analytique et probabiliste des nombres[END_REF].

We use also an optimal majorization of G. Robin for the cardinal ω(x) of the set of distinct prime factors of the integer x (see [START_REF] Robin | Estimation de la fonction de Tchebychef Θ sur le k-ième nombre premier et grandes valeurs de ω(n) nombre de diviseurs premiers de n[END_REF]):

(52) ω(x) ≤ 1.38402 ln x ln(ln x) .

Now we use the same method as in [START_REF] Bastien | Global behavior of the solutions of Lyness' difference equation un+2un = un+1 + a[END_REF]: if n ≥ 52, the cardinal of the set of integers q relatively prime with n and strictly between n (d) and n 2 is at least

So, if the function

is positive, then n will be a minimal period of T d .

Proof of part (2) of Theorem 1

The principal part of the asymptotic development of the function h d when n → +∞ is

for some integer N (d) > 0: it was our goal ! For instances, when we take

, and if we find by some computations a number N such that h √ 2 (n) > 0 for n ≥ N we shall conclude that N ( √ 2) ≤ N . If we use a computer for looking to the graph of the function h √ 2 (n), we see that it is negative for n = 780 and positive for n ≥ 781, so we see that N ( √ 2) ≤ 781. We shall see in the next proof a method for improve this sort of result (see remark [START_REF] Robin | Estimation de la fonction de Tchebychef Θ sur le k-ième nombre premier et grandes valeurs de ω(n) nombre de diviseurs premiers de n[END_REF].

Proof of part (3) of Theorem 1

The image of function θ, when d > 0 and K ∈ R vary, contains I = d>0

we put h(n) = h +∞ (n). First, we prove that every n ≥ 7 is a minimal period for some d and some K. Then we shall study the small values of n. The type of reasoning we use in this part is soon in [START_REF] Bastien | Global behavior of the solutions of Lyness' difference equation un+2un = un+1 + a[END_REF]. We report the proof of the following lemma after this one of Theorem 1, points (3) and (4). J n . We search such an x as small as possible, with a prime number q in the interval ] 264 4 , x 2 [. We have 264 4 = 66, and the smallest prime greater than 66 is q = 67. So we take x 2 = 68. For this choice , and for n ∈ [136, 264], we have q ∈]66, 68[. So q n ∈] 1 4 , 1 2 [, with q prime. But in [136,264] we must exclude the multiples of q = 67, that is only 201. But it is easy to show that 97 201 is irreducible and in ] 1 4 , 1 2 [. So every integer n ∈ [136, 264] is a minimal period for some K and some d. Now we shall make the same reasoning from the integer 135 instead of 264. We find that every n ∈ [76, 135] \ {111} is a minimal period (with q = 37), but also the number 111, because 53 111 ∈] 1 4 , 1 2 [. We continue, and obtain that every n in the following successive sets are minimal periods: But the exceptional numbers 57, 33, 21, 15, 9 are easily minimal periods.

In fine, because 1 3 , 2 5 and 3 7 ∈] 1 4 , 1 2 [, 3, 5 and 7 are also minimal periods. We will see the case of the numbers 4 and 6 in an appendix: there are minimal periods for some d and some K.

Remark 19. From the numerical result N ( √ 2) ≤ 781, the same method gives N ( √ 2) ≤ 11 and the fact that 5, 7, 8, 9 are minimal periods for T √ 2 . The cases of 3, 4, 6 and 10 remain to study.

Proof of part (4) of Theorem 1

Of course, from formulas (4), it is clear that if (x, y) → (0, 0) then X → 0 and then Y → 0 : we can extend continuously T d to the point (0, 0), with value the point (0, 0). Now, we prove that there is no fixed point (excepted (0, 0)). From relations (4), the equality (X, Y ) = (x, y) gives (I) : x(1 + y 4 + dxy) + x(1 + y 4 ) -dy 3 = 0, (II) : y(1 + x 4 + dxy) + y(1 + x 4 ) -dx 3 = 0.

(54)

We make the equation y × (I) -x × (II) = 0, and obtain (x 4 -y 4 )(2xy -d) = 0. First we suppose y = εx, with ε = ±1, and then x = 0. With (II) we obtain, by simplifying by εx, the relation 2(1 + x 4 ) = 0, which is impossible. Then, we suppose 2xy = d, and substitute y by d 2x in (II). We obtain 1 + d 2 4 = 0, and this is impossible. In fine, with the symmetries of the curve C d (K), it is easy to see geometrically that if T d is 2-periodic on the curve, then the point (m, m) of the curve has for image the point (-m, -m). With relations (4) we find (by addition) the relation m(1 + m 4 ) = 0, which is impossible.

Proof of Lemma 18.

We first prove that, by choosing k = 0.1 and A = 1000, the function We put u = ln x, so that g k (x) = g k (u) = 0.1 e u u -1.38402 u ln u -1. But we have, for IMJ-PRG, Sorbonne Université and CNRS Email address: guy.bastien@imj-prg.fr IMJ-PRG, Sorbonne Université and CNRS Email address: marc.rogalski@imj-prg.fr@imj-prg.fr