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THE PERIODIC ORBITS OF A DYNAMICAL SYSTEM ASSOCIATED

WITH A FAMILY OF QRT-MAPS

GUY BASTIEN AND MARC ROGALSKI

Abstract. We study the QRT-maps associated with the family of biquadratic curves

Cd(K) with equations x2y2 − dxy − 1 + K(x2 + y2) = 0. With the Prime Number The-

orem and the geometry of elliptic cubics we determine the periods of periodic orbits of

the dynamical systems defined by these QRT-maps, and prove sensitivity to its initial

conditions.

1. Introduction

We consider the family of real biquadratic curves Cd(K) (that is algebraic curves which

are of degree 2 in x and y) with equations

(1) x2y2 − dxy − 1 +K(x2 + y2) = 0,

where d > 0 and K ∈ R. Note that these curves are symmetric with respect the two

diagonals. With this family we associate the family of QRT-maps geometrically defined

by the following way, for d fixed: let (x, y) ∈ R2 \ {(0, 0)} be a point, we consider the

curve Cd(K) which passes through this point; then the horizontal line through this point

cuts the curve at a point (X, y), and the vertical line passing through this last point cuts

again the curve at the point (X,Y ) (some of these points may be at infinity). The map

(x, y) 7→ (X,Y ) is the QRT-map Td associated with the parameter d. This type of maps

was defined in [18], motivated by problems of physics, and studied in many papers: see

in particular [14], [18], [15] and [16] for general results, [2] to [12] and [22] for particular

studies, and [13] for another point of view. For [2] to [12], we present in Appendix 3 a

summary of their approach and their relations with the present paper.

The explicit expression of the map Td can be obtained in the following way: the value of

K for the curve that passes through the point (x, y) is

(2) K =
1 + dxy − x2y2

x2 + y2
,

so that we have

(3) xX =
Ky2 − 1

y2 +K
and yY =

KX2 − 1

X2 +K

Key words and phrases. QRT-maps, periods, dynamical systems.
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for this value of K (use the product of the roots of the quadratic equations). For (x, y) ∈
R2 \ {(0, 0)}, the computation gives

(4) X =
dy3 − x(1 + y4)

(1 + y4) + xdy
, and then Y =

dX3 − y(1 +X4)

(1 +X4) + ydX
.

Of course, the map Td leaves globally invariant each of the curves Cd(K). For studying

the restriction of Td to these curves, we will make some birational transformations in order

to change Cd(K) in a Weierstrass elliptic cubic Γd(K) of the form Y 2 = 4X3 − g2X − g3,

the map Td on Cd(K) being conjugated to the addition of a fixed point for the classical

chord-tangent law on Γd(K), which is also conjugated to a rotation on the unit circle (via

Weierstrass function). This first step will use some tools of algebraic geometry of elliptic

cubic curves.

Then we search the rotation number θd(K) of this rotation, what we denote “the rotation

number of Td on Cd(K)”. Of course, when this number is an irreducible rational
p

q
, then Td

will be q-periodic on Cd(K). Our goal is to find all the possible periods q. For this, we will

prove that the rotation number is a continuous function of K, and determine an interval I

where varies this number. So we have to find irreducible ratios
p

q
∈ I. It is in this step that

we will use the Prime Number Theorem.

Moreover, we will prove that the dynamical system has a form of sensitivity to initial

conditions, as in previous papers (see for instance [7], [8]).

2. The results and the plan of proofs

The essential results are the two following ones.

Theorem 1. (1) For any d > 0 and K 6= 0, the map Td|Cd(K) is conjugated to a rotation

on the unit circle. Moreover, both those levels K 6= 0 for wich all the initial conditions give

rise to trajectories that fill densely Cd(K); and those levels for which this curve is filled by

periodic points (with the same period), are dense. In consequence, the periodic points for

Td are dense in R2, and also the non-periodic ones.

(2) For every d > 0, there exists an integer N(d) such that every integer n ≥ N(d) is a

minimal period of some point for the QRT-map Td.

(3) Every integer n ≥ 3 is the minimal period for Td of some initial point for some d.

(4) There is no point of period 2, nor real finite fixed point, but it is possible to extend

continuously Td to (0, 0), with image (0, 0).

Theorem 2. The dynamical system associated with the QRT-map Td has a form of sensi-

tivity to initial conditions. More precisely:

(1) for every 0 < K1 < K2, there exists a constant kd(K1,K2) > 0 such that for every

K ∈ [K1,K2], for every point M0 ∈ Cd(K) and every neighbourhood V of M0 there exists a
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point M1 ∈ V such that d
(
Tnd (M1), Tnd (M0)

)
≥ kd(K1,K2) for an infinite values of n (we

denote this property as “uniform sensitivity”);

(2) for K < 0, for every point M0 of Cd(K) there exists a constant kd(M0) such that for every

neighbourhood V of M0 there exists a point M1 ∈ V such that d
(
Tnd (M1), Tnd (M0)

)
≥ kd(M0)

for an infinite values of n (here we speak on “pointwise sensitivity”).

So it remains a problem:

Problem. Is there uniform sensitivity to initial conditions for K ∈ [K1,K2], if the condition

K1 < K2 < 0 holds ?

For proving the previous two assertions, the following one plays a great rôle.

Proposition 3. The limits of the rotation number θd(K) when K tends to +∞, to −∞,

or to 0, are respectively 1
2 , 1

2 and `(d) :=
1

π
arctan

√
1 +

4

d2
, which is a function of d

decreasing between 1
2 and 1

4 .

In Section 3, we study some general properties of the curves Cd(K) and of the QRT-map

Td (with a substitution of a new parameter m to the parameter K), prove some parts of

theorem 1, and define and study the first rational transformations of Cd(K) into elliptic

cubic curves.

In Part 4, we make successive other rational transformations on the curve obtained in

Section 3, with the aim to obtain the classical Weierstrass form for this curve.

In Section 5 we explain for being complete (as in [8] or [20]), why, with Weierstrass’

function, the map Td(K) is conjugated to a rotation on the unit circle. We use Weierstrass’

function for determining an expression of the rotation number θd(K) as the ratio of two

integrals, and prove proposition 3.

In Part 6 we prove theorem 1, with the aid of a refinement of the prime number theorem.

In Part 7 we establish theorem 2, with arguments which soon are for some of them in [7],

and for some others in [3] and in [8]. The two cases K > 0 and K < 0 requires different

types of arguments.

We finish with an Appendix 1 on the 4 and 6-periodic orbits, an Appendix 2 on the forms

of the curves Cd(K), and an Appendix 3 on a summary of previous results on QRT-maps.

3. The QRT-map and its invariant curves, first transformations

First, we present in the following figures some types of the curves Cd(K), when K 6= 0.

In fact we represent the sets where x2y2 − dxy − 1 +K(x2 + y2) < 0, the curve itself is the

boundary of this set.
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Figure 1: The curve Cd(K) for K > 0.

Figure 2: The curve Cd(K) for K > 0 small.
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Figure 3: The curve Cd(K) for K < 0.

Next we present the figure of the surface S: z = Gd(x, y) :=
1 + dxy − x2y2

x2 + y2
.

Figure 4: The surface z = Gd(x, y).

For studying the curves Cd(K), which are the projections of the horizontal sections of

the surface z = Gd(x, y), we search the critical points of S and the limits of Gd(x, y) when

(x, y) → 0 and (x, y) tends to the point at infinity of the plane. We have the following

result.

Lemma 4. (1) The surface S has no critical point;

(2) Gd(x, y)→ +∞ when (x, y)→ (0, 0);
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(3) inf Gd(x, y) = −∞ on the plane, but on the axes lim
x2+y2→+∞

Gd(x, y) = 0.

Proof. Only the first point is not evident. The partial derivatives of Gd are

−dyx2 + dy3 − 2xy4 − 2x = 0,

−dxy2 + dx3 − 2yx4 − 2y = 0.

By equaling the two values of d given by these equations we obtain (x2 − y2)[x2(1 + y4) +

y2(1 + x4)] = 0, and so we have x = y or x = −y. In each case, by putting these values in

the first equation, we find −u(1 + u4) = 0 (where u := x, y = ±u), and this is impossible.

With the previous results it is possible to prove the following results on the curves Cd(K)

(see details in Appendix 2).

Lemma 5. If K > 0 the curve Cd(K) is an oval which is bounded and connected;

if K = 0, Cd(K) is the union of the two hyperbolas with equations xy =
d

2
±
√

1 +
d2

4
;

if K < 0, the curve Cd(K) has four connected but non bounded branches, with two vertical

asymptotes x = ±
√
−K and two horizontal asymptotes y = ±

√
−K.

It is also easy, from formulas (3) or (4), to find the equation of the locus Ed of the points

where X is infinite: on a curve Cd(K), with K < 0, there is exactly two points where the

curve cuts its horizontal asymptotes. The set Ed is the curve with equation:

(5) dxy + 1 + y4 = 0.

If we put K = −L2, we have a parametric equation for Ed:

(6) x = −1 + L4

εdL
, y = εL with ε = ±1 :

There are the coordinates of the points where Cd(−L2) cuts its horizontal asymptotes. At

these points M0 and M1, X given by formulas (3) or (4) is infinite in horizontal direction.

So, for extending the map Td we shall introduce the extension of the curve Cd(K) in the

projective real plane, with in particular the infinite points H in horizontal direction and

V in vertical direction. We shall see that these points are singular points with distinct

tangents (see Lemma 6), the horizontal and vertical asymptotes of the curve. In fact, we

can give a symbolic representation in the projective real plane of this curve in Figure 5,

where t = 0 is the line at infinity, when we take homogenous coordinates (x, y, t) for Cd(K).

Of course we have also an extension of Cd(K) in the complex projective plane. When

K > 0, the asymptotes which are the tangents at the points H and V , are complex and

distinct. Note that when K = 0, they are real but not distinct. For more simplicity we

keep the same notation for the curve Cd(K) and its different extensions.
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Figure 5: The real projective representation of Cd(K) when K < 0.

So it is not difficult to see that we can extend by continuity Td so that Td(M0) = Td(M1) =

H.

The reader can see himself the analogous results when Y is infinite, that is when the

horizontals of points N0 and N1 of Cd(K) cut again the curve at one of the two intersections

M ′0 and M ′1 of the vertical asymptotes with the curve.

Now we can see the algebraic nature of the curves Cd(K) when K 6= 0.

Lemma 6. When K 6= 0 the complex projective curve Cd(K) has only two singular points,

which are ordinary (with distinct tangents) and on the line at infinity: H and V . In this

case, Cd(K) is an elliptic curve.

Proof. (1) First we determine the singular points. We put f(x, y, t) := x2y2 − dt2xy − t4 +

Kt2(x2 + y2), compute f ′x, f
′
y, and the singular points are the solutions of f ′x = 0, f ′y = 0,

f = 0. First, we have the solution t = 0 with xy = 0, which gives the points H and V .

Now we suppose t = 1, and have to solve the equations f = 0, 2xy2 − dy+ 2Kx = 0 and

2yx2 − dx+ 2Ky = 0. The two last ones give (x− y)(2K − d− 2xy) = 0.

First we have the solution x = y := u, and the second equation gives u2 = d/2 −K; by

puting in f(u, u, 1) = 0, we find (d/2−K)2 + 1 = 0, and this is impossible.

So we have the equations −2xy+2K+d = 0 and 2xy2−dy+2Kx = 0. This give x = −y,

and 2x2 + 2K + d = 0. So we have the value of x2 and y2, and put them in f(x, y, 1) = 0.

We obtain −(K + d/2)2 − 1 = 0, and this is impossible.

Then, it is easy to compute the asymptotes of Cd(K) from its equation, for K 6= 0.

(2) For proving that the curve Cd(K) is elliptic if K 6= 0, we use the formula giving the

genus of the curve: g =
(δ − 1)(δ − 2)

2
−
∑
P

µp(µp − 1)

2
, where δ is the degree of the curve

(here δ = 4), and P is the set of singular points p, and µp their order. Here |P | = 2 and

the orders are 2. So we obtain g = 1, that is Cd(K) is elliptic.

But we have to verify that the curve is irreducible for using the previous formula giving

the genus (see [17]).

First, suppose that we have the identity x2y2−dxy−1+K(x2+y2) = (x+uy+v)f1(x, y).

If we make the division of the first member considered as a polynomial in x by x+ uy + v,
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we obtain the remainder

Ky2 − 1 + (uy + v)[uy3 + vy2 + (Ku+ d)y +Kv],

which is a polynomial in y. The vanishing of it for all y gives the successive relations

u = 0, v2 +K = 0, vd = 0, −1 = 0,

and this is impossible.

The only case which remains to study is if x2y2− dxy− 1 +K(x2 + y2) is the product of

two irreducible polynomials of degree 2. But this situation gives for the curve Cd(K) more

than two singular ordinary points (because K 6= 0), and this is not possible by the first part

of the proof.

So we can find a rational transformation which transforms Cd(K) in a regular cubic curve.

For this, we split the point (m,m) of Cd(K) on the diagonal, with m > 0. This point satisfies

the equation

(7) K =
d

2
+

1

2m2
− m2

2
.

The Figure 6 shows the graph of the function m 7→ K: for m > 0, K decreases from +∞
to −∞.

The number md giving K = 0 is the positive solution of the equation:

(8) m4 − dm2 − 1 = 0,

easy to solve. The function m 7→ K is one-to-one, so we can take for parameter of the

family of curves Cd(K) (for d fixed) the number m > 0. We make this choice in the

following computations, with K 6= 0, that is m 6= md :=

√
d

2
+

√
1 +

d2

4
.

Figure 6: K function of m.

Now, the first transformation we use is φ1(x, y) = (X,Y ) defined, for (x, y) 6= (m,m)

and (x, y) 6= (−m,−m), by

(9) X =
x−m
xy −m2

, Y =
y −m
xy −m2

.
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In fact, it is easy to prove that the hyperbola Hm with equation xy = m2 cuts the curve

Cd(K) only at the points (m,m) and (−m,−m), for K given by (7). So we can consider φ1

defined on R2 \ Hm.

By some computations, one see that the inverse of φ1 is given by

(10) x =
1−mX

Y
, y =

1−mY
X

.

The pencil of horizontal lines, with equations y = C, becomes by the action of φ1 the

pencil of lines with equations 1−mY −CX = 0, that is the pencil of lines passing through

the point

(11) P =
(

0,
1

m

)
,

and the pencil of vertical lines becomes the one of lines passing through the point

(12) P ′ =
( 1

m
, 0
)
.

We calculate the equation of the image of Cd(K) by φ1, and see that it splits in this one

of the line D

(13) 1−m(X + Y ) = 0,

and in this one of the symmetric cubic curve A1
d(m)

(14) Km(X3 +Y 3)−KmXY (X+Y )−K(X2 +Y 2)+XY (d−2m2)+m(X+Y )−1 = 0,

where K is the function of m given in (7).

Now, we make another transformation φ2, by puting (U, V ) = φ2(X,Y ), that is

(15) X :=
U + V

2
, Y :=

U − V
2

.

We obtain the cubic curve A2
d(m) with equation

(16) V 2(KmU − a)− bU2 +mU − 1 = 0

where

(17) a =
K

2
+
d

4
− m2

2
=
d

2
+

1

4m2
− 3m2

4
, b =

K

2
− d

4
+
m2

2
=

1

4

(
m2 +

1

m2

)
(K being given by relation (7)).

By the transformation φ2 ◦ φ1 the pencils of horizontal and vertical lines become the

pencils of lines passing respectively through the points

(18) P1 =
( 1

m
,− 1

m

)
, P ′1 =

( 1

m
,

1

m

)
.

So, we have results about the curve A2
d(m) and the conjugate of Td on this curve.
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Proposition 7. (1) The curve A2
d(m) is symmetric with respect to the U -axis, V is defined

for U > λ0 if K > 0, and for U < λ0 if K < 0, where

(19) λ0 =
a

Km
=

3m4 − 2dm2 − 1

2m(m4 − dm2 − 1)
;

the curve has a vertical asymptote U = λ0 and two parabolic branches for U tending to

sign(K)∞ (see Figures 7);

(2) the map φ2 ◦ φ1 is a homeomorphism of Cd(K) \ {(m,m), (−m,−m)} on A2
d(m); when

(x, y)→ (m,m), then φ2 ◦φ1(x, y) tends to the infinite vertical point on the asymptote, and

when (x, y) → (−m,−m), then φ2 ◦ φ1(x, y) tends to to the horizontal point at infinity on

the parabolic branches of A2
d;

(3) the restriction of Td to Cd(K) \ {(m,m), (−m,−m)} is conjugated by φ2 ◦ φ1 to the

addition of the point P1 for the chord-tangent law +
P ′1

on A2
d whose the zero point is P ′1.

Proof. (1) We can write

(20) V 2 =
bU2 −mU + 1

KmU − a
,

and remark that bU2 −mU + 1 > 0 for every U ; so the result is easy with λ0 =
a

Km
.

(2) If we put A(m) =
3m4 − 2dm2 − 1

m(m4 + 1)
, some computations with Maple show that one has,

for x = m+u, y = m−u+A(m)u2 +O(u3) when u→ 0. So we see that U → A(m)
mA(m)−1 = λ0

when u→ 0, and V ∼ m4+1
m4−dm2−1

1
u →∞sign(u): this is the first part of point (2).

For the second part, some computations give that, if x = −m + u, then U ∼ m4 + 1

mK

1

u2

and V ∼ m4 + 1

2m2K

1

u
; this gives easily the result.

(3) The conjugation is obvious with the previous results about the pencils of lines and the

geometric definition of Td : by the alignment of a point M with P1, the line MP1 cuts

A2
d(m) at M1, and the line M1P

′
1 cuts A2

d(m) at the image of M by the conjugated of Td

by φ2 ◦ φ1. And this is exactly the addition of P1 to M for the law chord-tangent +
P ′1

on the

curve, whose zero is the point P ′1 (see [20] for the classical definition of this law).
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Figure 7: The curves A2
d(m)

4. Weierstrass form for the cubic curve A2
d(m)

We start now from the cubic curve A2
d(m) whose equation may be written

(21) V 2(KmU − a) = (bU2 −mU + 1).

We put KmU = Ũ , so that to take into account the sign of K, and obtain

V 2(Ũ − a) =
b

K2m2
Ũ2 − 1

K
Ũ + 1.

Now we multiply it by Ũ − a and put W := V (Ũ − a), and obtain a new curve A3
d(m) with

equation

(22) W 2 = (Ũ − a)
( b

K2m2
Ũ2 − 1

K
Ũ + 1

)
.

With this form, we have a cubic curve which is almost in Weierstrass form. We see that

the roots of the right hand member are simple. First, we introduce two notations: we put

(23) ∆ := m4 − dm2 − 1, Ω := 3m4 − 2dm2 − 1.

Lemma 8. The roots of the right hand member of (22), that is the abscissas of the inter-

section of A3
d(m) with the Ũ -axis are

(24) a = − Ω

4m2
, which is real, and

∆(−m2 ± i)
m4 + 1

, which are complex.

Their sum is

(25) α := a− 2m2∆

m4 + 1
= −(m4 + 1)Ω + 8m4∆

4m2(m4 + 1)
.
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We denote φ3 the map (U, V ) 7→ (Ũ ,W ). Now, it is classical (but not obvious) that the

map conjugated by φ2◦φ1 of Td on A2
d(m) is conjugated by φ3 to the addition of Q := φ3(P1)

for the chord-tangent law +
Q′

on the curve A3
d(m) whose zero point is Q′ := φ3(P ′1) (see[20]).

Now, to pass from the form (22) to the canonical Weierstrass form A4
d(m) it suffices to

make an affine transformation φ4 on the variable Ũ and W . But for identifying the map T̃d

conjugated to Td by φ4 ◦ φ3 ◦ φ2 ◦ φ1, it is necessary to make a group isomorphism φ5 on

the curve A4
d(m), with the aim to send the point Q′ to the infinite vertical point ω of the

curve. This is similar to that is made in paper [7]. We recall that the new conjugated of

T̃d is now the map
˜̃
Td which is the addition of the point R := φ5 ◦ φ4(Q) for the classical

chord-tangent law +
ω

on the curve A4
d(m) whose zero point is ω (see in [7] a computational

proof, with Maple).

Figure 8: Addition of R on A4
d(m) for +

ω
.

So the goal is to find the point R, and to interpret the addition of R for +
ω

as a rotation.

For this, the following lemma is useful. We will see (in Part 5) that it gives the abscissa of

point R, if we take for D the curve A4
d(m) . The proof of this lemma is a simple computation

which we leave to the reader.

Lemma 9. Let M := (u, v) with v 6= 0 a point on a canonical cubic curve D with equation

Y 2 = 4X3 − g2X − g3.

Then the tangent at D in M cuts the curve at a point whose abscissa Υ is given by

(26) Υ =
(12u2 − g2

4v

)2
− 2u.

Now, we pass to the the interpretation of addition of R on A4
d(m) as a rotation. Before,

we assert a result which will be useful, and which is easy with formulas between (X,Y ) and

(Ũ ,W ).

Lemma 10. The map φ3 ◦ φ2 is a homeomorphism of A1
d(m) onto A3

d(m).
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5. An integral formula for the rotation number if K 6= 0

5.1. Weierstrass function and the integral formula. The map
˜̃
Td acts on the cubic

curve A4
d(m), and we will see that this action is conjugated to a rotation on the unit circle

T. For this, we parametrize the previous cubic in the affine complex plane by a Weierstrass

function. For the proofs to be complete, we reproduce here arguments which are in [8], and

are also in [1].

There exist two complex conjugated numbers denoted by 2ω1 and 2ω3 (with <(ω3) > 0),

which depend on d and K (or m), with the following properties (see Figure 9): if Λ is the

lattice in C defined by Λ = {2nω1 +2pω3|(n, p) ∈ Z2}, then the Weierstrass’ elliptic function

P is a meromorphic function defined on C \ Λ by

(27) P(z) :=
1

z2
+

∑
λ∈Λ\{0}

[ 1

(z − λ)2
− 1

λ2

]
;

it is doubly periodic (its periods are its poles: the points of Λ), and gives the following

parametrization of the entire cubic curve A4
d(m) (its real and complex points in the projec-

tive plane)

(28) X = P(z), Y = P ′(z).

The main properties of this parametrization are the following facts (see [1], [8]):

(1) it transforms the addition in C into the addition on A4
d(m) for its group law +

ω
;

(2) it passes to quotient into a homeomorphism of the topological group T2 ≈ C/Λ onto

the compact complex projective curve A4
d(m) which sends the quotient of segments [0, 2ω2]

(where ω2 = ω1 + ω3 is real) onto the compact projective real curve A4
d(m);

(3) one has the relations: P(ω2) = e2, the abscissa of the intersection E2 of the x-axis with

A4
d(m); (P(0),P ′(0)) = (P(2ω2),P ′(2ω2)) = ω, the vertical point at infinity on the curve;

P ′ < 0 on ]0, ω2[, P ′ > 0 on ]ω2, 2ω2[ (see figure 9).

Figure 9: The lattice Λ.

So, if we identify C/Λ to the set of points (e2iπu, e2iπv) of T2 ≈ (R/Z)2, the compact

projective real cubic A4
d(m) is group-homeomorphic to the diagonal ∆ = {(e2iπt, e2iπt)|0 ≤
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t ≤ 1} of T2. The parameters of E2 and ω are t = 1
2 and 0 or 1. But the point R of A4

d(m)

has then a well defined parameter θd(m) ∈]0, 1
2 [, and the addition of R to points of A4

d(m)

is traduced in ∆ by the map (e2iπt, e2iπt) 7→ (e2iπ(t+θd(m)), e2iπ(t+θd(m))). So we have proved

the following result.

Proposition 11. For d > 0 and m > 0 it exists a well-defined number θd(m) ∈]0, 1
2 [ such

that the restriction of the map Td to the curve Cd(K) is conjugated to a rotation of angle

2πθd(m) ∈]0, π[ onto the unit circle, for K and m linked by (7). So this number θd(m) is

the rotation number of the restriction of Td to Cd(K).

Corollary 12. If θd(m) is rational with the form p
q irreducible, then the restriction of Td

at Cd(K) is periodic, with minimal period q. When θd(m) is irrational, then the orbit of

every point of Cd(K) in the action of Td(K) is dense in Cd(K).

Now we can give the integral formula for θd(m). We start from the Weierstrass form of

the equation of the curve A4
d(m):

(29) Y 2 = F (X) := 4X3 − g2X − g3,

and denote e2, e1 and e3 the real root (abscissa of E2) and the complex conjugated roots of

the polynomial F . We use the classical formula giving the inversion of function P for real

values of the variable and the function (see [1]):

u =

∫ +∞

P(u)

dt√
F (t)

.

With the relations P(ω2) = e2 and P(2ω2 × θd(m)) = Υ , we obtain

(30) 2θd(m) =

∫ +∞
Υ

dt√
F (t)∫ +∞

e2
dt√
F (t)

,

where Υ is the abscissa of point R given by lemma 9.

Now we make the change of variable in the two integrals: t = e2 + s2, and obtain the

final result, by using the equality F (t) = 4(t− e2)(t− e1)(t− e3), with e3 = ē1, and putting

(31) z := e2 − e1.

Proposition 13. The rotation number is given by the following formula

(32) 2θd(m) =

∫ +∞√
Υ−e2

ds
|s2+z|∫ +∞

0
ds
|s2+z|

,

where z is the complex number given by (31) and Υ the abscissa of R.
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Remark that this formula proves easily that the map m 7→ θd(m) is continuous, because

the computations in section 4 prove that all the parameters Υ , e1, e2, e3, z are continuous

functions of m.

Now it is time to precise the transformations φ3, φ4 and φ5, and to evaluate the different

parameters which are useful for studying the limits of rotation number when K tends to

±∞ and to 0.

5.2. Limits of the rotation number when K → +∞, K → −∞, K → 0: proof of

proposition 3. First we precise the map φ4.

The curve A3
d(m) has for equation

(33) W 2 =
m4 + 1

∆2
Ũ3 +

Ω(m4 + 1) + 8m4∆

4m2∆2
Ũ2 +

Ω + 2∆

2∆
Ũ +

Ω

4m2
,

or

(34) W 2 = λŨ3 + µŨ2 + νŨ + ρ.

Then, α being the sum of the roots of the second member of (34) (given by (25)), the affine

transformation φ4 is (Ũ ,W ) 7→ (X,Y ) given by

(35) X =
µ

12
+
λ

4
Ũ , Y =

λ

4
W.

So by action of φ4 we pass to the Weierstrass cubic curve A4
d(m) whose equation is Y 2 =

4X3 − g2X − g3. The images of P1 and P ′1 by φ4 ◦ φ3 are

(36) Q1 = (q,−r), and Q′1 = (q, r),

which are on the same vertical line, with

q :=
5m8 − 4dm6 − 6m4 + 4dm2 + 5

48m2∆2

r :=
(m4 + 1)2

16m3∆2
.

(37)

And the conjugated of Td by φ4 ◦φ3 ◦φ2 ◦φ1 is the addition of Q1 for the chord-tangent law

+
Q′1

on A4
d(m) with zero element Q′1. To pass to the classical chord-tangent law +

ω
, where ω

is the point at infinity in vertical direction on A4
d(m), we make the group isomorphism φ5

defined on A4
d(m) by

(38) M 7→M +
Q′1

ω.

It is not difficult to see that the image of point Q1 by φ5 is the point R where the tangent

at the curve in Q′1 cuts again the curve. So its abscissa Υ is given by formula (26), where

u and v are the coordinates of Q′1 given by (36) and (37).
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Figure 10: Building of point R

And the final conjugated
˜̃
Td of Td is now the addition of R for the classical chord-tangent

law +
ω

on A4
d(m) (see Figure 8), which is conjugated to the rotation of angle 2πθd(m) as

explained in 5.2.

Now, we can compute, with the aid of Maple, the parameters in the integral formula

given in Proposition 13 : Υ , e2 and z (and also other useful parameters):

Lemma 14. One has

g2 =
P16(m)

192m4∆4
,

e2 =
m8 − 2dm6 − 6m4 + 2dm2 + 1

24m2∆2
,

e1 = −m
8 − 2dm6 − 6m4 + 2dm2 + 1

48m2∆2
− i

4∆
,

Υ =
2m8 − 4dm6 + (3d2 − 12)m4 + 4dm2 + 2

48m2∆2
,√

Υ − e2 =
dm

4|∆|
,

z =
m8 − 2dm6 − 6m4 + 2dm2 + 1

16m2∆2
+

i

4∆
,

(39)

where

P16(m) = m16 − 4dm14 + · · ·+ 4dm2 + 1.(40)

Corollary 15. The map m 7→ θd(m)
[
resp. K 7→ θd(K)

]
is analytic on ]0,+∞[\{md}[

resp. on R \ {0}
]
.

Now we can find the limits of the rotation number, from formula (32) in Proposition 13.

(a) Limit when m→ +∞
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We have √
Υ − e2 =

c(m)

m3
, where c(m)→ d

4
,

Re(z) =
a(m)

m2
, where a(m)→ 1

16
,

Im(z) =
b(m)

m4
, where b(m)→ 1

4
,

(41)

and also

(42) |s2 + z| =
√(

s2 +
a(m)

m2

)2
+
b(m)2

m8
.

We can write

(43) 2θd(m) = 1−

∫ c(m)

m3

0
ds
|s2+z|∫ +∞

0
ds
|s2+z|

.

In the ratio of the two integrals, we shall show that the numerator tends to 0 and the

denominator is greater than a number D > 0.

We have

∫ c(m)

m3

0

ds

|s2 + z|
≤ c(m)

m3

1√(
a(m)
m2

)2
+ b(m)2

m8

=
1

m

c(m)d(m)

a(m)
, where d(m) → 1

when m→ +∞, and this ratio tends to 0.

Now, if a(m) ≤ A, b(m) ≤ B and if m ≥ 10, the denominator of (43) is minorized by∫ +∞

0

ds√(
s2 + A

102

)2
+ B2

108

≥
∫ +∞

0

ds

s2 + A
102

+ B
104

:= D > 0.

Then lim
m→+∞

θd(m) =
1

2
.

(b) Limit when m→ 0

We have

z =
a′(m)

m2
+ b′(m)i, where a′(m)→ 1

16
and b′(m)→ 1

4
,√

Υ − e2 = mc′(m), where c′(m)→ d

4
.

(44)

So we have also

(45) |s2 + z| =
√(

s2 +
a′(m)

m2

)2
+ b′(m)2.

In the ratio of the two integrals of formula (43), we majorize the numerator∫ mc′(m)

0

ds

|s2 + z|
≤ mc′(m)

1√(
a′(m)
m2

)2
+ b(m)2

= mc′(m)
m2

a′(m)
d′(m),

where d′(m)→ 1 when m→ 0; and this tends to 0 with m.
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Now we minor the denominator by∫ +∞

0

ds√(
s2 + A

m2

)2
+B2

≥
∫ +∞

0

ds

s2 + A
m2 +B

,

where A is a constant larger than a′(m) and B is a constant larger than b′(m). So the

denominator is minored by

∫ +∞

0

m2ds

m2s2 +A+Bm2
=

∫ +∞

0

dt

t2 +A+Bm2

=
1√

A+Bm2
arctan

t√
A+Bm2

]+∞

0
≥ π

2
√
A+B

> 0

if m ≤ 1. Then θd(m)→ 1
2 when m→ 0.

(c) Limit when m→ md (K → 0)

We put u := m−md. When m → md =
√

d
2 + 1

2

√
d2 + 4 we have, with some computa-

tions

√
Υ − e2 =

γ(m)

|u|
,

z =
α(m)

u2
+ i

β(m)

u
,

|s2 + z| =
√(

s2 +
α(m)

u2

)2
+
β(m)2

u2

(46)

where

lim
u→0

α(m) =
1

64
,

lim
u→0

β(m) =
1

8md

√
d2 + 4

,

lim
u→0

γ(m) =
d

8
√
d2 + 4

.

(47)

So, in |s2 + z| given in (46), we put in factor 1
u4

in the two integrals of formula (32); then

we change of variable by putting s|u| = t; after simplification, we obtain

(48) 2θd(m) =

∫ +∞
γ(m)

dt√(
t2+α(m)

)2
+u2β(m)2∫ +∞

0
dt√(

t2+α(m)
)2

+u2β(m)2

.
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The limits of the integrands are easy, and we obtain by Lebesgue’s theorem, as limit of

2θd(m) when m→ md, that is when u→ 0, the quantity

8
[

arctan 8t
]+∞

d

8
√

d2+4

8
[

arctan 8t
]+∞

0

.

In fine, we have

(49) lim
K→0

θd(K) =
arctan

√
1 + 4

d2

π
.

Of course, the function `(d) :=
√

1 + 4
d2

decreases from +∞ to 1 when d varies. So

lim
K→0

θd(K) varies between 1
4 and 1

2 when d varies. So we have proved Proposition 3.

Corollary 16. The two maps m 7→ θd(m) and K 7→ θd(K) are not constant on every open

interval of their domain.

Proof. From corollary 15, these functions are analytical, and their limits on the boundary

of the intervals are distinct, so there are not constant on every open interval.

It is now easy to prove the following fact, id est the point (1) of Theorem 1 (see [3]

or use the previous corollary).

Proposition 17. The set of periodic points is dense in R2; the set of points whose orbit

is dense in the curve Cd(K) which passes through them is also dense in R2 (then these two

sets form a partition of R2 \ {(0, 0)}∪Cd(0), each of these sets is an union of invariant and

disjoint elliptic curves).

6. The possible minimal periods of the QRT-map : proof of theorem 1

We know that the map θ : (d,K) 7→ θd(K) is continuous. We shall study its image, first

for d > 0 fixed, and then for d > 0 and K ∈ R.

For d fixed, the image of θd contains the interval

(50) Id :=
] 1

π
arctan

√
1 +

4

d2
,
1

2

[
=
]
`(d),

1

2

[
.

So we shall find irreducible ratios q
n ∈ Id. First, we search only this numbers with q a

prime number not factor of the integer n. So we will find q ∈ nId =
]
n`(d),

n

2

[
.

We use a refinement of the prime number theorem (PNT), which says that if x ≥ 52, the

number π(x) of prime numbers not greater than x satisfies

(51)
x

lnx
≤ π(x) ≤ x

lnx

(
1 +

3

2 lnx

)
;



20 GUY BASTIEN AND MARC ROGALSKI

For this result, due to Rosser and Schoenfeld, we refer to [21].

We use also an optimal majorization of G. Robin for the cardinal ω(x) of the set of

distinct prime factors of the integer x (see [19]):

(52) ω(x) ≤ 1.38402
lnx

ln(lnx)
.

Now we use the same method as in [3]: if n ≥ 52, the cardinal of the set of integers q

relatively prime with n and strictly between n`(d) and n
2 is at least

n
2 − 1

ln(n2 − 1)
− n`(d)

ln(n`(d))

(
1 +

3

2 ln(n`(d))

)
− 1.38402

lnn

ln(lnn)
.

So, if the function

(53) hd(n) :=
n
2 − 1

ln(n2 − 1)
− n`(d)

ln(n`(d))

(
1 +

3

2 ln(n`(d))

)
− 1.38402

lnn

ln(lnn)
− 1

is positive, then n will be a minimal period of Td.

Proof of part (2) of Theorem 1

The principal part of the asymptotic development of the function hd when n → +∞ is
n

lnn

(
1
2 − `(d)

)
. But 1

2 − `(d) > 0, so hd(n) > 0 if n ≥ N(d) for some integer N(d) > 0: it

was our goal !

For instances, when we take d =
√

2, then `(d) = 1
π
π
3 = 1

3 , and if we find by some

computations a number N such that h√2(n) > 0 for n ≥ N we shall conclude that N(
√

2) ≤
N . If we use a computer for looking to the graph of the function h√2(n), we see that it is

negative for n = 780 and positive for n ≥ 781, so we see that N(
√

2) ≤ 781. We shall see

in the next proof a method for improve this sort of result (see remark 19).

Proof of part (3) of Theorem 1

The image of function θ, when d > 0 and K ∈ R vary, contains I =
⋃
d>0

Id =
]1

4
,
1

2

[
, so

we put h(n) = h+∞(n). First, we prove that every n ≥ 7 is a minimal period for some d

and some K. Then we shall study the small values of n. The type of reasoning we use in

this part is soon in [3].

We report the proof of the following lemma after this one of Theorem 1, points (3) and

(4).

Lemma 18. The function h is positive for n ≥ 265.

We put Jn :=]n4 ,
n
2 [, and remark that if n ∈ [x, 264], then

]264

4
,
x

2

[
⊂

⋂
x≤n≤264

Jn. We

search such an x as small as possible, with a prime number q in the interval ]264
4 , x2 [. We

have 264
4 = 66, and the smallest prime greater than 66 is q = 67. So we take x

2 = 68. For

this choice , and for n ∈ [136, 264], we have q ∈]66, 68[. So q
n ∈]1

4 ,
1
2 [, with q prime. But in

[136, 264] we must exclude the multiples of q = 67, that is only 201. But it is easy to show
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that 97
201 is irreducible and in ]1

4 ,
1
2 [. So every integer n ∈ [136, 264] is a minimal period for

some K and some d.

Now we shall make the same reasoning from the integer 135 instead of 264. We find that

every n ∈ [76, 135] \ {111} is a minimal period (with q = 37), but also the number 111,

because 53
111 ∈]1

4 ,
1
2 [.

We continue, and obtain that every n in the following successive sets are minimal periods:

[40, 75] \ {57}, [24, 39] \ {33}, [16, 23] \ {21}, [12, 15] \ {15}, [8, 11] \ {9}.

But the exceptional numbers 57, 33, 21, 15, 9 are easily minimal periods.

In fine, because 1
3 ,

2
5 and 3

7 ∈]1
4 ,

1
2 [, 3, 5 and 7 are also minimal periods.

We will see the case of the numbers 4 and 6 in an appendix: there are minimal periods

for some d and some K.

Remark 19. From the numerical result N(
√

2) ≤ 781, the same method gives N(
√

2) ≤ 11

and the fact that 5, 7, 8, 9 are minimal periods for T√2. The cases of 3, 4, 6 and 10 remain

to study.

Proof of part (4) of Theorem 1

Of course, from formulas (4), it is clear that if (x, y) → (0, 0) then X → 0 and then

Y → 0 : we can extend continuously Td to the point (0, 0), with value the point (0, 0).

Now, we prove that there is no fixed point (excepted (0, 0)). From relations (4), the

equality (X,Y ) = (x, y) gives

(I) : x(1 + y4 + dxy) + x(1 + y4)− dy3 = 0,

(II) : y(1 + x4 + dxy) + y(1 + x4)− dx3 = 0.
(54)

We make the equation y× (I)−x× (II) = 0, and obtain (x4− y4)(2xy− d) = 0. First we

suppose y = εx, with ε = ±1, and then x 6= 0. With (II) we obtain, by simplifying by εx,

the relation 2(1 + x4) = 0, which is impossible. Then, we suppose 2xy = d, and substitute

y by d
2x in (II). We obtain 1 + d2

4 = 0, and this is impossible.

In fine, with the symmetries of the curve Cd(K), it is easy to see geometrically that if

Td is 2-periodic on the curve, then the point (m,m) of the curve has for image the point

(−m,−m). With relations (4) we find (by addition) the relation m(1 + m4) = 0, which is

impossible.

Proof of Lemma 18.

We first prove that, by choosing k = 0.1 and A = 1000, the function

(55) gk(x) = k
x

lnx
− 1.38402

lnx

ln(lnx)
− 1

is increasing on the interval [A,+∞[. It will result that gk(x) ≥ gk(A) > 8 on this interval.

We put u = lnx, so that gk(x) = g̃k(u) = 0.1
eu

u
− 1.38402

u

lnu
− 1. But we have, for
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u ≥ 3 ln 10 > 6.9,

(56) g̃′k(u) = 0.1
eu(u− 1)

u2
− 1.38402

lnu− 1

ln2 u
≥ 0.1

5.9eu

u2
− 1.38402

lnu
≥ 11 > 0.

Now, we put x
lnx in factor in the quantity

x
2 − 1

ln(x2 − 1)
−

x
4

ln x
4

(
1 +

3

2 ln x
4

)
,

and prove by minoration that for x ≥ 1000 this quantity is greater than 0.1012 x
lnx .

So the function h is minored by 0.1012 x
lnx − 1.38402 lnx

ln(lnx) − 1 ≥ g0.1(x) ≥ 8 > 0 on

[1000,+∞[.

For n ∈ [265, 999] we use a computer.

7. Sensitivity to initial conditions: proof of theorem 2

First, we prove the following result.

Lemma 20. If K 6= 0, then the map φ4 ◦ φ3 ◦ φ2 ◦ φ1 is an homeomorphism of Cd(K) \
(−m,−m) on A4

d(K), and when M → ω on A4
d(K), then (φ4 ◦ φ3 ◦ φ2 ◦ φ1)−1(M) →

(−m,−m).

Proof. If (x, y) are the variables on Cd(K) and (X,Y ) the variables on A4
d(K), then it is

easy to see that we have

X =
µ

12
+
λ

4
mK

x+ y − 2m

xy −m2
,

Y =
λ

4

x− y
xy −m2

[
mK

x+ y − 2m

xy −m2
− a
]
.

(57)

And with maple one see that we have

x = −m P (m)X2 +Q(m)X +R(m)Y + S(m)

P (m)X2 +Q1(m)X +R1(m)Y + S1(m)
,

y = −mP (m)X2 +Q2(m)X +R2(m)Y + S2(m)

P (m)X2 +Q3(m)X +R3(m)Y + S3(m)

(58)

where P,Q, . . . S3 are polynomials in m whose coefficients depend on d, with

(59) P = 1152m4(m4 − dm2 − 1)4,

which is positive when K 6= 0.

So we have just to find the limit of (x, y) when X →∞, with Y ∼ ±2X3/2 (because the

equation of A4
d(K) is Y 2 = 4X3 − g2X − g3). And the result is obvious.

We have also the following lemma
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Lemma 21. When a point M on Cd(K), with K 6= 0, tends to the point (m,m), then

φ4 ◦ φ3 ◦ φ2 ◦ φ1(M) tends to the summit E2 = (X0, 0) of the cubic A4
d(K), with

(60) X0 =
m8 − 2dm6 − 6m4 + 2dm2 + 1

24m2(m4 − dm2 − 1)2
.

The proof is simple with an elementary computation from formulas (57), and using the

limits of variables Ũ and W linked by (22).

In fine, we use an argument which is in [7], and which is a modification of a result in [3]:

Lemma 22. When K → K0, then X = PK(t.2ω2(K)) → PK0(t.2ω2(K0)) uniformly for

t ∈ [ε, 1− ε], where 0 < ε < 1
2 , and the same result is true for Y which is the derivative P ′K

on the same point.

(1) The sensitivity for K > 0 : proof of Theorem 2(1)

Let be 0 < K1 < K2. We represent in the following figures two domains: Γ(K1,K2) =

[K1,K2]×T, which is the set of parameters (K,α) of the second domain C(K1,K2). There

is a one-to-one continuous map Φ from Γ(K1,K2) onto C(K1,K2) (one look at PK as it was

defined on the diagonal circle of T2 by is double periodicity: see part 5.1). The continuity

of Φ results of Lemmas 20 and 22.

Figure 11: The set Γ(K1,K2)

But Φ is an homeomorphism of the two domains, because they are compact sets.

Now it is known that the dynamical system (K,α) 7→ (K,α + θd(K)) has uniform sen-

sitivity to initial conditions with a constant δ if δ ∈]0, 1
2 [ (see [7], Proposition 25). So it

is clear that Φ is uniformly continuous, and so the dynamical system (C(K1,K2), Td) has

η-sensitivity to initial conditions for some constant η > 0, function of K1 and K2: it is

Theorem 2(1).

(2) The sensitivity for K < 0 : proof of Theorem 2(2)

In this case, the problem is more difficult, because the correspondant domain C(K1,K2)

is not compact, and if we make the domain compact in projective coordinates with the

infinite points H and V , the correspondant map Φ were not well defined, because it is not

difficult to show that then a point M in Cd(K) tends to H or to V , then φ4 ◦φ3 ◦φ2 ◦φ1(M)

tends to the infinite point ω of the cubic curve A4
d(K). So we prove only the pointwise

sensitivity to initial conditions, as defined in Theorem 2(2).
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Figure 12: The set C(K1,K2) for K > 0

Figure 13: The set C(K1,K2) for K < 0

For proving the pointwise sensitivity to initial conditions, the method is the same as in [3],

with the same exception as in [8], because the Lemma 22 excludes the point ω of the cubic

curveA4
d(K). From Lemma 20, we can see that all the points of C(K1,K2)\{(−m,−m)|K ∈

[K1,K2]} have pointwise sensitivity to initial conditions. But it is the case of the points

(m,m) for K ∈ [K1,K2], and by symmetry the points (−m,−m) have also pointwise

sensitivity to initial conditions: it is the point (2) of Theorem 2.

8. Appendix 1: 4 and 6 are minimal periods

(a) We will find a necessary and sufficient condition for 4 being a minimal period.
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Let V and H be the involutions defined by vertical [resp. horizontal] alignment of two

points on the same curve Cd(K), so that we have Td = V ◦ H and T−1
d = H ◦ V (excepted

for the points M0, M1, N0, N1).

From Proposition 11 or Corollary 12, we see that Td is 4-periodic on Cd(K) if and only if

(with an exception that we will see later) A0 := (m,m) is 4-periodic for Td (m is given by

relation (7)), or the same condition for B0 := (−m,−m). The condition T 4
d (A0) = A0 can

be written

(61) V ◦ H ◦ V ◦ H(A0) = H ◦ V ◦ H ◦ V(A0).

But these two points are symmetric with respect to the diagonal (because the curve is

symmetric). So they can be equal if and only if they are both equal to A0 or to B0. If they

are equal to A0, we would have T 2
d (A0) = A0, and Td would be 2-periodic, which is false.

So we must have the equality

(62) Td(A0) = T−1
d (B0).

If we put Td(A0) = (X,Y ) and T−1
d (B0) = (X1, Y1), the condition (61) is X −X1 = 0 and

Y − Y1 = 0, and the easy (with Maple) computation gives

(63) d =

√
2(K2 + 1)√
K2 − 1

.

As an example, for d = 5 and K = 3, T5 is 4-periodic on the curve C5(3).

An exception happens when the two denominators (which are the same ones) of X −X1

and Y − Y1 are 0, that is when

(64) m12 − 5dm10 + 3(d2 + 1)m8 − (d3 − 2d)m6 + 3(d2 + 1)m4 + 3dm2 + 1 = 0.

But it is easy to see that relations (64) and (62) are incompatible. So this exception is not

a curve on which Td is 4-periodic.

It is also interesting to note that the condition that H(A0) = N0, so that Y =∞, id est

Td(A0) = V , is exactly the relation (61), and by symmetry it is also the relation for having

T−1
d (B0) = H. So we find again the previous exception.

(b) Now we will find a condition for 6 being a minimal period.

With the same reasoning we find that the condition is

(65) (V ◦ H)3◦(A0) = (H ◦ V)3◦(A0),

so that, by symmetry, these to points must be equal to A0 or to B0. If it would A0, Td

would be 3-periodic, and 6 would not be minimal. So the good condition is

(66) T 2
d (A0) = T−1

d (B0).
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It is now easy, with the use of Maple, and by computing T 2
d (A0) = (X2, Y2), to find the

condition for 6 being a minimal period (at least, it is a sufficient condition)

(67) K2d4 − (K4 − 1)(K2 + 1)d2 + 3(K2 + 1)4 = 0,

which gives easily d as a function of K

(68) d =
(K2 + 1)

√
K2 − 1±

√
K4 − 14K2 + 1

K
√

2
.

As an example, for d = 4
√

3 + 2
√

3 and K = 2 +
√

3, we obtain a curve on which 6 is a

minimal period.

9. Appendix 2: on the forms of the curves Cd(K) (proof of lemma 5)

The plan of proof of Lemma 5 is simple :

(1) The curves are starlike with respect the point (0, 0) : we put x = ρu and y = ρv, with

a unit vector (u, v). If uv 6= 0 we have with equation of Cd(K) a quadratic equation in ρ2

with a unique positive solution, so ρ = ±α: the curve is starlike. If uv = 0, ρ = ± 1√
K

if

K > 0, and if K ≤ 0 and uv = 0, there is no solution: the curves Cd(K) does not cut the

axes.

(2) There is no double point in finite distance (see Lemma 6).

(3) If K > 0, one see the inclusion Cd(K) ⊂ B
(

(0, 0),

√
1+d2/4
K

)
: one has x2 + y2 =

1 + dxy − x2y2

K
≤ 1 + d2/4

K
. So, from the three previous points, one see that the curves are

homeomorphic to circles for K > 0.

(4) If K < 0, it is easy to find the asymptotes of the curve Cd(K).

10. Appendix 3: Previous particular results of the authors about QRT-maps

The invention of QRT-maps was originally in [18], for physical reasons, and the essential

exemple was on [22], but these papers were not easy to find. So the first papers ([3], [11] and

[4]) were slightly different. They studied the now called “symmetric special QRT-maps”,

where the family of biquadratic curves C(K) with equations Q1(x, y) − KQ2(x, y) = 0

were symmetric with respect the diagonal, and with Q2(x, y) = xy; and the QRT-map was

defined by the following way: if C(K) is the curve passing through the point M , we cut it in

M1 by the horizontal line which contains M , and then T (M) is the symmetric of M1 with

respect the diagonal (it is on C(K)).

These cases correspond to the study of difference equations of the form

(69) un+2un =
au2

n+1 + bun+1 + c

du2
n+1 + eun+1 + f

.

In [8] we studied the case of difference equations un+2 +un = ψ(un+1) which is associated

with “symmetric QRT-maps” defined by families of the forms Q1(x, y) +K = 0.
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In each of these papers, we determine the possible periods of periodic orbits, prove

the density of periodic points and not periodic points, and a form of sensitivity to initial

conditions.

In the other works, we studied classical QRT-maps, associated with a couple of difference

equations of the form un+1un = f(vn), vn+1vn = g(un+1). We give some examples :

[7] un+1un = c+
d

vn
, vn+1vn = c+

d

vn+1
with curves xy(x+ y) + xy + d−Kxy = 0.

[5] un+1un = v2
n−bvn+c, vn+1vn = u2

n+1−aun+1+c with curves x2+y2−ax−by+c−Kxy = 0.

[6] un+1un = avn + b, vn+1vn = un+1 +
b

un+1
with curves xy2 + x2 + ay + b−Kxy = 0.

In [2] we studied the 2-periodic Lyness’ equation un+2un = un+1 +an, with an 2-periodic.

In [12] we study the particular case of the dynamical systems (x, y) 7→ Td(x, y) = (X,Y )

given by

(X,Y ) =
(1

x

dy2 − 20y + 16

y2 − 5y + d
,

1

y

dX2 − 20X + 16

X2 − 5X + d

)
,

with curves Cd(K) equations of them are

x2y2 − 5xy(x+ y) + d(x2 + y2)− 20(x+ y) + 16−Kxy = 0.

In the present paper we begin study of non-special QRT-dynamical systems, associated

with QRT-families of curves with equations Q1(x, y)−KQ2(x, y) = 0 with Q2(x, y) not of

the form xy.

In fine, in [9] and [10] we present examples of QRT-families of degree four, but such that

each of the curves of the family has genus zero, and studied the correspondent dynamical

systems.
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