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Modeling Uncertainty-Seeking Behavior Mediated by Cholinergic Influence on
Dopamine

Marwen Belkaid1,2,∗, Jeffrey L. Krichmar3,4

Abstract

Recent findings suggest that acetylcholine mediates uncertainty-seeking behaviors through its projection to
dopamine neurons – another neuromodulatory system known for its major role in reinforcement learning
and decision-making. In this paper, we propose a leaky-integrate-and-fire model of this mechanism. It
implements a softmax-like selection with an uncertainty bonus by a cholinergic drive to dopaminergic neu-
rons, which in turn influence synaptic currents of downstream neurons. The model is able to reproduce
experimental data in two decision-making tasks. It also predicts that: i) in the absence of cholinergic input,
dopaminergic activity would not correlate with uncertainty, and that ii) the adaptive advantage brought
by the implemented uncertainty-seeking mechanism is most useful when sources of reward are not highly
uncertain. Moreover, this modeling work allows us to propose novel experiments which might shed new light
on the role of acetylcholine in both random and directed exploration. Overall, this study contributes to a
more comprehensive understanding of the role of the cholinergic system and, in particular, its involvement
in decision-making.
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1. Introduction

Animals constantly face uncertainty due to noisy
and incomplete information about the environment.
From the information-processing perspective, un-
certainty is typically considered a burden, an issue
that has to be resolved for the animal to behave
correctly (Cohen et al., 2007; Rao, 2010). In the
framework of reinforcement learning, for example,
to allow optimal exploitation and outcome maxi-
mization, agents must explore the environment and
gather information about action–outcome contin-
gencies (Sutton & Barto, 1998; Rao, 2010).
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The neural mechanisms driving the decision to
perform actions with uncertain outcomes are still
poorly understood. In contrast, the processes by
which individuals learn to perform successful ac-
tions have been extensively studied. Notably, the
dopaminergic system is thought to play a key role
in these processes, both in the learning related and
in the motivation related aspects (Schultz, 2002;
Berridge, 2012; Berke, 2018). Moreover, studies
have reported dopaminergic activities that are cor-
related with the uncertainty of reward (Fiorillo
et al., 2003; Linnet et al., 2012).

Another neuromodulatory system which has been
largely implicated in the processing of novelty and
uncertainty is the cholinergic system. For instance,
Yu & Dayan (2005) suggested that acetylcholine
(ACh) suppresses top-down, expectation-driven in-
formation relative to bottom-up, sensory-induced
signals in situations of expected uncertainty, i.e.
when expectations are known to be unreliable. Ad-
ditionally, Hasselmo (1999, 2006) proposed that
the level of ACh in the hippocampus determines
whether it is encoding new information or consol-
idating old memories. The cholinergic system also
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interacts with the dopaminergic system. In partic-
ular, there are cholinergic projections onto neurons
in the ventral tegmental area (VTA), one of the two
major sources of dopamine (DA) in the brain (Avery
& Krichmar, 2017; Scatton et al., 1980). In a recent
study, Naudé et al. (2016) provided evidence that
these projections might mediate the motivation to
select uncertain actions.

The softmax rule, where the probability of choos-
ing an action is a function of its estimated value,
is generally thought to be a good model of hu-
man (Daw et al., 2006) and animal (Cinotti et al.,
2019) decision-making. But Naudé et al. (2016)
showed that the decisions made by wild-type (WT)
mice exhibited an uncertainty-seeking bias and fol-
lowed a softmax function which included an uncer-
tainty bonus. In contrast, mice lacking the nico-
tinic acetylcholine receptors on the dopaminergic
neurons in VTA showed less uncertainty-seeking be-
haviors and their decisions rather followed the stan-
dard softmax rule.

In neural networks, decision-making processes
are generally modeled using competition mecha-
nisms (Rumelhart & Zipser, 1985; Carpenter &
Grossberg, 1988). Such mechanisms can consti-
tute a neural implementation of the softmax rule.
In particular, Krichmar (2008) proposed a model
where neurotransmitters act upon different synap-
tic currents to modulate the network’s sensitivity
to differences in input values, much like the tem-
perature parameter in the softmax model (Sutton
& Barto, 1998). In this paper, we propose a new
version of this model using leaky-integrate-and-fire
neurons and an additional uncertainty bonus. We
use this model, in comparison with three alterna-
tive models, to verify a set of hypotheses about how
cholinergic projections to dopaminergic neurons in
VTA mediate uncertainty-seeking. We then per-
form additional simulations to assess the interest of
such a mechanism for animals foraging in volatile
environments. These simulations suggest that ACh
affects behavior by translating uncertainty into a
source of motivation thus driving exploratory be-
haviors.

2. Background

2.1. Dopamine

Dopamine (DA) is involved in decision-making
through its role in reward processing and motiva-
tion (Schultz, 2002; Berridge, 2012). The largest

group of dopaminergic neurons is found in the ven-
tral tegmental area (VTA) (Scatton et al., 1980).
It projects to the basal ganglia (BG), in particu-
lar to the striatum, but also to the frontal cortex.
The substantia nigra is also an important source of
dopamine in the BG.

There is strong evidence of the role of dopamine
in the learning of the value of actions, stimuli
and states of the environment. In this context,
Schultz and colleagues hypothesized that the ac-
tivity of DA neurons encoded a reward prediction
error (Schultz, 2002). Indeed, phasic dopaminer-
gic activities show strong correlations with an er-
ror in the prediction of conditioned stimuli after
Pavlovian learning. Other theoretical accounts sug-
gested that dopamine might signal the value of ac-
tions (Howe et al., 2013; Berke, 2018). Berridge
and colleagues claimed that DA is essential for “in-
centive salience” and “wanting”, i.e. for motivation
(Berridge & Kringelbach, 2008; Berridge, 2012).
For instance, DA deprived rats were unable to gen-
erate the motivation arousal necessary for inges-
tive behavior and could starve to death although
they were able to move and eat (Ungerstedt, 1971).
However, dopamine has also been suggested to sig-
nify novelty, which may be related to an uncertainty
signal (Kakade & Dayan, 2002; Redgrave & Gur-
ney, 2006). In summary, the dopaminergic system
seems to implement a series of mechanisms that re-
inforce and favor stimuli and actions that have been
rewarding in the past, or that may be of interest in
the future.

2.2. Acetylcholine
Acetylcholine (ACh) originates from various

structures in the brain: the laterodorsal tegmen-
tal (LDT) and the pedunculopontine tegmental
(PPT) mesopontine nuclei projecting to the VTA
and other nuclei in the brainstem, basal forebrain
and basal ganglia (Mena-Segovia, 2016); the medial
septal nucleus mainly targets the hippocampus; and
the nucleus basalis in the basal forebrain mainly
acts on the neocortex (Baxter & Chiba, 1999). In
addition, striatal interneurons provide an internal
source of ACh in the BG.

ACh has been largely implicated in the process-
ing of novelty and uncertainty. Significant research
highlighted this role in the septo-hippocampal
cholinergic system for instance. In this case, nov-
elty detection increases the level of septal ACh:
novel patterns elicit little recall which reduces hip-
pocampal inhibition of the septum and allows ACh
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neurons to discharge (Meeter et al., 2004). In ad-
dition, Hasselmo (1999, 2006) proposed that high
and low levels of ACh in the hippocampus – during
active waking on the one hand, and quiet waking
and slow-wave sleep on the other hand – respec-
tively allow encoding new information and facilitate
memory consolidation. Similarly, higher activity of
the cholinergic neurons in the tegmentum and nu-
cleus basalis have been shown to be associated with
cortical activation during waking and paradoxical
sleep (Jones, 2005) – a sleep phase physiologically
similar to waking states. Thus, various computa-
tional models of the cholinergic system have fo-
cused on its role in learning and memory (Hasselmo,
2006; Pitti & Kuniyoshi, 2011; Carrere & Alexan-
dre, 2015; Grossberg, 2017).

A complementary theory was developed by Yu
& Dayan (2005) suggesting that acetylcholine sup-
presses top-down, expectation-driven information
relative to bottom-up, sensory-induced signals in
situations of expected uncertainty, i.e. when expec-
tations are known to be unreliable. To illustrate
their theory, the authors modeled the so-called Pos-
ner task. Posner (1980) proposed this paradigm
to study attentional processes. Typically, a cue is
presented to the participants, followed by a target
stimulus. Posner (1980) showed that individuals re-
sponded more rapidly and accurately on correctly
cued trials (i.e. cue on the same side as the target)
than on incorrectly cued trials (i.e. cue on oppo-
site side). The difference in response time between
valid and invalid trials was termed the validity effect
(VE). The model proposed by Yu & Dayan (2005)
reproduced the results obtained by Phillips et al.
(2000) which showed in rat experiments that the
VE varied inversely with the level of ACh which
was manipulated pharmacologically. Additionally,
ACh has been hypothesized to set the threshold for
noadrenergic signaling of unexpected uncertainty
(Yu & Dayan, 2005) which calls for more explo-
ration by counterbalancing DA-driven exploitation
(Cohen et al., 2007).

2.3. Model Hypotheses
Based on the experimental evidence, we de-

signed our model to study the influence of cholin-
ergic and dopaminergic neuromodulation on the
decision-making process. To do so, the above men-
tioned literature allowed us to derive the following
set of hypotheses:
• H1) dopamine encodes the estimated value
(Berridge, 2012; Berke, 2018),

• H2) dopamine modulates the decision-making
network such as to implement a softmax-like rule
(Daw et al., 2006; Krichmar, 2008; Cinotti et al.,
2019),
• H3) acetylcholine encodes the estimated uncer-
tainty (Yu & Dayan, 2005),
• H4) acetylcholine increases dopamine firing
(Naudé et al., 2016, 2018),
• H5) acetylcholine introduces an uncertainty bonus
in the softmax-like decision rule (Naudé et al.,
2016).
To account for the difference between wild type
(WT) mice and mice in which nicotinic acethyl-
choline receptors in dopamine neurons were re-
moved (KO), as reported by Naudé et al. (2016), we
defined two variants of the neuromodulation com-
ponent: the WT and KO variants.

3. Methods

3.1. Bandit task
The experiment reported by Naudé et al. (2016)

was a 3-armed bandit task adapted for mice. The
setup was an open-field in which three target loca-
tions were associated with a certain probability of
rewards (Figure 1A), which was delivered through
intracranial self-stimulation (ICSS). Mice could not
receive two consecutive ICSS at the same location.
Thus, each time they were at a target location, they
had to choose the next target among the two re-
maining alternatives. As in a classical bandit task,
this is referred to as a gamble. Since the outcome
was binary (i.e. reward delivered or not), the ex-
pected uncertainty was represented by the variance
p(1− p) of Bernoulli distributions (Figure 1B).

Naudé et al. (2016) used this task to study
the influence of uncertainty on decision-making,
and more specifically on the dopaminergic ac-
tivity under the influence of cholinergic projec-
tions. Notably, they showed that while wild type
(WT) mice exhibited uncertainty-seeking behavior
in their task, such behaviors were suppressed in
mice with deleted nicotinic acetylcholine receptors
in the dopaminergic neurons in VTA (hereafter KO
mice).

3.2. Neural Network Model of Uncertainty Seeking
We modeled the decision-making process in-

volved in this task using an artificial neural net-
work (Figure 1C). This network had three chan-
nels, each corresponding to one of the targets. Simi-
lar to Krichmar (2008), the competition took place
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Figure 1: Bandit task and core model A) Task setup
used by Naudé et al. (2016). B) Expected reward and un-
certainty as a function of reward probability in this task.
C) Neural network model of decision-making. (see text for
description).

in a decision layer where neurons had lateral ex-
citatory and inhibitory connections (i.e. connec-
tions with neurons pertaining to the same layer)
in addition to extrinsic input from upstream lay-
ers. Indeed, Krichmar (2008) showed that this al-
lows switching between exploration and exploita-
tion modes more efficiently than with other models.
Neuromodulatory signals driven by the choliner-
gic and dopaminergic representative neurons mod-
ulated this competition. When the dopaminergic
activity was low, the low signal-to-noise ratio in de-
cision neurons leaves room for exploration. How-
ever, strong dopaminergic activity amplifies the ef-
ficacy of extrinsic input connections and those of
inhibitory interconnections in order to achieve ex-
ploitative decisions. This neuromodulation thus
implements a neuronal equivalent to the softmax
decision policy based on the value of the target.
Moreover, the cholinergic activity increased the fir-
ing of DA neurons and introduced an uncertainty
bias in the softmax-like neuromodulation of the
competition (as we shall explain in Section 3.2.1).
As a first step, the value and uncertainty signals are

manually provided to the model (see Section 3.2.1).
Then, we showed how these can be learned to allow
the system to adapt to changes in the environment
(see Section 3.5).

All neurons were leaky-integrate-and-fire (LIF)
neurons. The change in the membrane potential V
is represented as follows:

τ.
dV (t)

dt
= −V (t) + Vrest + Iin(t)R (1)

where τ is the time constant, Vrest is the resting
potential, R the resistance of the membrane, and
Iin the input current:

Iin(t) =Iext(t) + I0(t) (2)
with I0 ∼ N (µ0, σ0) (3)

where Iext and I0 are respectively extrinsic and
background input currents. The latter was modeled
as a Gaussian distribution N (µ0, σ0) and accounted
for spontaneous activities, as well as possible other
extrinsic inputs which were not specifically modeled
here. When the membrane potential was higher
than a threshold Vth, the neuron fired, i.e. the po-
tential rose to Vspike then decreased to Vrest and a
current Iout was transmitted to post-synaptic neu-
rons:

If V (t) > Vth then


V (t) = Vspike

V (t+ 1) = Vrest

Iout(t) = 1

(4)

A single trial of the experiment consisted of a
decision made between two target locations. For
simplicity, neurons of the target identification layer
(in blue in Figure 1A) were tuned such that they
fire every two iterations (a spike was followed by
a refractory period) with random initialization (i.e.
whether the first spike occurred at the first or sec-
ond iteration). Only the two target neurons corre-
sponding to the current options were activated in
each trial.

Similarly to the model used by Krichmar (2008),
the extrinsic input current of the decision neurons
Idecext (in green in Figure 1A) was defined as follows:
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Idecext (x, t) = w × (1 + η(x, t)).Itarout(x, t) (5)

+
∑
y 6=x

w × Idecout(y, t− dt)

−
∑
y 6=x

w × (1 + η(x, t)).Idecout(y, t− dt)

where x ∈ {A,B,C} corresponds to the gambling
options, w is a synaptic weight factor common to
all connections and η is a neuromodulation factor
which specifically targets upstream and inhibitory
connections to change the signal-to-noise ratio as
proposed by Krichmar (2008). We will define the η
term below.

As for selection neurons (in orange in Fig-
ure 1A), the extrinsic input current was simply
Iselext(x, t) = Idecout(x, t). This layer implemented a
winner-takes-all readout of the decision. The first
spike corresponded to the network’s decision.

3.2.1. WT variant
The ability to learn the reward probability and

maximize the outcome is thought to be mediated
by the dopaminergic system. Thus, in our model,
DA activity was a function of the targets value
v(x) representing the reward probability. In ad-
dition to the motivation to maximize reward by
choosing the target with highest reward probability,
Naudé et al. (2016) observed an uncertainty-driven
motivation in WT mice. They showed that this
uncertainty-seeking behavior was dependent upon
the cholinergic projections to DA neurons, which
also modulate the dopaminergic activity. Since
the expected uncertainty is thought to be encoded
by ACh neurons, in our model, ACh activity was
determined by the reward uncertainty u(x) which
we represented as the variance of a Bernouilli dis-
tribution v(x)(1 − v(x)) (Figure 1B). We defined
Iu =

∑
x∈(O) u(x) as an input current generated by

the overall expected uncertainty in the current trial,
and Iv =

∑
x∈(O) v(x) as an input current gener-

ated by the overall expected rewards in the current
trial. Thus, the activity in neuromodulation net-
work was determined by the following equations:

IACh
ext (t) = Iu (6)

IDA
ext (t) = Iv + IACh

out (t) (7)

η(x, t) = IDA
out (t)(v(x) + u(x)) (8)

Introducing the output current of the ACh neu-
ron as an input to the DA neuron is consistent with
the increase of dopaminergic activity observed in
the presence cholinergic receptors (Graupner et al.,
2013; Naudé et al., 2016). Altering connection
weights differently for different targets was justified
by existing evidence of the sensitivity to local value
(Daw et al., 2006) and uncertainty (Naudé et al.,
2016) of specific options/actions.

In the bandit task, v(x) and u(x) of each target
were manually fixed for simplicity. But in the for-
aging task, these variables were estimated by the
model (see Section 3.5).

3.2.2. KO variant
Naudé et al. (2016) showed that uncertainty-

seeking was removed in KO mice. These mice’s de-
cisions were rather exploitative, similarly to a clas-
sical softmax policy. Thus, in this variant of the
model, the cholinergic effect on decision was elimi-
nated and the dopaminergic activity only depended
on reward probabilities:

IDA
ext (t) = Iv (9)

η(x, t) = IDA
out (t)v(x) (10)

It is worth noting that equations (8) and (10) in-
troduce only a small difference in the amplitude of
the η signal between the WT and the KO variants.
The ratio was 1:1.25 because v varied between 0 and
1 while u varied between 0 and 0.25 (see Figure
1B). For simplicity, we chose not to compensate
for this difference (e.g. using a gain factor of 1.25).
The only effect would be to increase the propensity
to make exploitative decisions with the KO vari-
ant; thus reinforcing rather than contradicting our
point.

3.3. Alternative models
The proposed model assumed hypotheses H1, H2,

H3, H4 and H5 listed above. To test the limits of
this model, we implemented three alternative mod-
els – all including a WT and a KO variant – selec-
tively introducing changes in the neuromodulation
circuit to challenge these assumption.

Alternative model 1. Acetylcholine has been re-
ported to increase the firing rate of dopamine neu-
rons (Naudé et al., 2016, 2018). In this model, we
tested whether this feature alone could account for
the difference between WT and KO animals (i.e.
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independently from uncertainty). Thus, ACh was
set to fire at a similar rate as previously using a con-
stant input. But, uncertainty was not processed by
ACh or DA. Hence, there was no difference in the
neuromodulation term between the WT and KO
variants, both using the form in Equation (10). The
only difference between the WT and KO variants
was whether ACh activated DA. This alternative
model challenged H3 and H5.

Alternative model 2. Dopamine has also been hy-
pothesized to signal uncertainty (Fiorillo et al.,
2003; Linnet et al., 2012). In this model, we tested
whether the difference between WT and KO animal
could be captured if DA neurons alone encoded un-
certainty along with value. As in Alternative model
1, the ACh neuron also has a constant input inde-
pendent from reward uncertainty. However, uncer-
tainty is processed by the DA neuron. Hence, there
was no difference in the neuromodulation term be-
tween the WT and KO variants, both used the form
in Equation (8). The only difference between the
WT and KO variants is again whether ACh acti-
vates DA:

IDA
ext (t) =

{
(Iv + Iu)/2 + IACh

out (t), if WT
(Iv + Iu)/2, if KO

(11)

Dividing by 2 compensated for the difference in am-
plitude with the other models. This alternative
model challenges H1, H2, H3 and H5.

Alternative model 3. The softmax rule is gener-
ally thought to be a good model of decision-making
in vivo(Daw et al., 2006; Krichmar, 2008; Cinotti
et al., 2019). In this alternative model, we tested
whether the uncertainty bonus was superfluous. In
other words, whether the difference between WT
and KO animals can be observed solely with the
increase of dopamine firing driven by uncertainty-
dependent cholinergic activity. Thus, ACh projec-
tions only increase DA firing rate but do not add
an uncertainty bonus. Hence, there is again no dif-
ference in the neuromodulation term between the
WT and KO variants, both used the form in Equa-
tion (10). The only difference between the WT
and KO variants was whether ACh activates DA.
This model challenges H5; it differs from Alterna-
tive model 1 in that ACh firing is not driven by a
constant input but rather by the estimated uncer-
tainty of reward.

3.4. Foraging task
Naudé et al. (2016) did an additional experiment

with a dynamic setup simulating a volatile envi-
ronment. More specifically, in each session, two of
the targets were rewarding 100% of time while the
remaining one was not. The non-rewarding target
changed from one session to another (Figure 4A),
which required that animals detect the change of
rule and learn the new reward probabilities.

3.5. Learning task statistics
In Equations (6 - 10), the expected reward proba-

bility v and uncertainty u for each target were man-
ually fixed. But to model the dynamic foraging
task, these statistics about the environment out-
comes could no longer be hardwired and had to be
learned by trial-and-error.

To learn the expected reward probabilities, we
used the Rescorla-Wagner rule (Rescorla &Wagner,
1972):

dv(x, t)

dt
= αδ(x, t) (12)

with δ(x, t) = r(t)− v(x, t) (13)

where r is the reward function, equal to 1 when a
reward is obtained, and to 0 otherwise.

Additionally, the reward uncertainty could be
estimated as follows (Balasubramani et al., 2014;
Naudé et al., 2016):

du(x, t)

dt
= α(δ2(x, t)− u(x, t)) (14)

The hyperparameter α was set to 0.1.

3.6. Model fitting
The hyperparameters τ , Vspike, Vth, Vrest, µ0 and

σ0 were common to all neurons and were set man-
ually so as to determine the dynamics of the net-
work (see values in Table 1). The values of Rach

and Rda, i.e. the membrane resistance in ACh
and DA neurons respectively, was accordingly set
to match the mean firing rate reported by Naudé
et al. (2018). For ACh neurons, there was less data
available and the reported frequencies are highly
variable (for example, Mena-Segovia et al. (2008)
report firing rates from 1Hz to 30Hz in the peduncu-
lopontine nucleus). Therefore, we did not attempt
to fit a specific spike rate. However, we found the
firing rate obtained by our model to be within an
acceptable range (see Figure 2C).
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The values of Rdec, Rsel and w, i.e. respectively
the membrane resistance in the decision and the
selection layers and the baseline synaptic weight
in the lateral connection within the decision layer,
were optimized using a grid search (see ranges listed
in Table 1) to fit the proportion of exploitative
choices observed by Naudé et al. (2016) in WT and
KO mice. The models’ results were averaged over
30 runs comprising 300 trials each and the fitness
score S was calculated as follows:

S = 100−
(∑

g∈G
|XWT

mice(g)−XWT
model(g)|

+
∑
g∈G
|XKO

mice(g)−XKO
model(g)

)
/6 (15)

where X is the average proportion of exploitative
choices and G is the set of gambles. Thus, the score
computed the similarity between the results of a
model and the data by subtracting the average dis-
tance – over the three gambles with both WT and
KO variants – from a theoretical upper bound of
100.

4. Results

4.1. Bandit task

In this task reported by Naudé et al. (2016), an-
imals had to make binary choices (called gambles)

Hyperparameter Value
τ 20
Vspike 5
Vth 1
Vrest −2
µ0 0.15
σ0 0.05
Rach 60
Rda 5.5

Hyperparameter Range Step
Rdec [10, 60] 1
Rsel [5, 16] 1
w [0, 1] 0.05

Table 1: Hyperparameter values (when set) and
ranges (when optimized). The hyperparameters τ ,
Vspike, Vth, Vrest, µ0 and σ0 were chosen manually. Rach

and Rda were set to fit experimentally observed firing rates
of DA neurons. Rdec, Rsel and w were optimized through a
grid search.
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modelmice
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Figure 2: The proposed model reproduces mice be-
havior A) Schematic illustration of the task setup and the
three possible gambles. B) Example of spike trains gener-
ated by the model. C)Mean firing rate produced by the WT
and KO versions of the model. D) Percentage of exploitative
transitions (i.e. choosing the option with the highest reward
probability) in each gamble. WT and KO mice (Left) had
distinct profiles, which the WT and KO variants (Right)
were able to reproduce. E) Percentage of targets selection
as a function of their reward probability. The model (Right)
also reproduced the repartition of choices exhibited by mice
(Left). F) Dwell time (i.e. time to decision) was also similar
between targets with our model (Right), like in mice (Left).
Mice results were plotted with data from Naudé et al. (2016).
N=30 runs were used to plot the model’s results.
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Figure 3: Alternative models fail to fully reproduce mice behavior A) Schematic illustration of the differences
in the neuromodulatory component between the core model and the three alternative models. B) Percentage of exploitative
transitions. C) Percentage of targets selection as a function of their reward probability across gambles. In B) and C), the
alternative models did not fit the profiles observed in WT and KO mice. N=30 runs were used to plot the results of each
model.

among the remaining two out of three target loca-
tions that were set to deliver rewards with probabil-
ities P = 25%, 50% and 100% respectively (Figure
2A). We modeled this decision-making process with
a neural network (Figure 1C). The hyperparam-
eters determining the dynamics of the model were
first manually set to match the mean firing rate
reported by Naudé et al. (2018) in DA neurons
in vivo (Figure 2B and C). The remaining hy-
perparameters of the model were optimized to fit
the proportion of exploitative choices observed by
Naudé et al. (2016) in WT and KO mice (Figure
2D). As a result, the model reproduced experimen-

tal data (Figure 2D). Notably, the two groups had
distinct profiles, which corresponded to an uncer-
tainty bonus and a standard softmax decision rule,
respectively.

Interestingly, the WT and KO variants also re-
produced the repartition of choices among targets
(i.e. overall percentage of times each target was
selected across trials) that was observed by Naudé
et al. (2016) (Figure 2E). As with the softmax
rule, KO mice and the corresponding model se-
lected targets proportionally to their probability of
reward whereas WT mice and the corresponding
model exhibited a bias in favor of uncertainty in
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the case of reward probability 50%. Additionally,
like in mice, there was no difference between the
targets in terms of dwell time (i.e. time to make
a decision, calculated in the model as the time of
the first spike in the trial). In other words, there
was no effect of the reward probability on the deci-
sion time (H = 4.70, p = 0.09, Kruskal-Wallis test;
Figure 2F). Importantly, these two criteria (repar-
tition of choices and dwell time) were not explicitly
optimized by the model fitting procedure.

To further validate our model, we tested three
alternative models that introduced two types of
changes in the neuromodulatory component: i) un-
certainty could be either encoded by dopamine di-
rectly (alt2) or not taken into account at all (alt1),
ii) if uncertainty was not encoded by DA, the soft-
max rule was used for both WT and KO variants
(alt1 and alt3), iii) the absence of ACh receptors on
DA only affected the latter’s firing, but not the neu-
romodulatory effect (all alternative models; sum-
marized in Figure 3A, refer to ‘Methods’ for more
detailed explanation). Upon optimization, none of
the alternative models were able to fully fit the be-
havioral data. Indeed, the fitness scores (calculated
using Equation (15)) for these alternative models
were significantly lower than our model’s (model
versus alt1, t(29) = 3.38, p = 0.0013, model ver-
sus alt2, t(29) = 5.63, p = 10−6, model versus alt3,
t(29) = 3.35, p = 0.0014, t-test; Table 2). Fit-
ness scores quantified the ability of the WT and
KO variants of a model to fit the proportion of
exploitative transitions made by the corresponding
group of mice. Lower scores can be explained by
the fact that WT variants of the alternative models
did not follow the same linear increase from gamble
1 to 3 in terms of exploitative transitions (Figure
3B). Also, the slope of the repartition is higher for
alt1 than with the proposed model and the data for
example (see Figure 3C). Moreover, qualitatively,
the differences in exploitative transitions and prob-
ability of selection of each target between the WT
and KO variants were smaller than with our model
(Figure 3B and C).

4.2. Foraging task

We also tested our model in a foraging task where
only two of the targets were rewarding. The non-
rewarding target changed from one session to an-
other (Figure 4A). In such a volatile environ-
ment, animals must detect the changes in reward
probabilities and adapt their decisions accordingly.

Rdec Rsel w Score
model 12 12 0.7 96.19
alt 1 59 5 1 94.95∗∗

alt 2 43 7 0.6 94.72∗∗∗

alt 3 10 13 0.8 95.06∗∗

Table 2: Model fitting results. Optimized parameters
and fitness scores. All models have the same number of pa-
rameters. The proposed model has the highest score. Rdec

and Rsel are the membrane resistance in the decision layer
and the selection layer respectively. Stars indicate the results
of a t-test comparison between the model’s score to each of
the alternative models’ score: ** p < 0.01, *** p < 0.001.

We initially tested a setup in which rewarding tar-
gets had 100% probability as in the original ex-
periments (Naudé et al., 2016). In line with the
experimental results, we found that the KO vari-
ant had a lower foraging efficacy (i.e. global re-
ward rate) than the WT variant (WT versus KO:
t(29) = −3.92, p = 0.0002, t-test; (Figure 4B). We
split the sessions in half to analyze the model’s be-
havior more closely (Figure 4C). The WT and KO
variants had similar failure rates (i.e. proportion
of unrewarded choices) in the beginning of sessions
(WT versus KO, U = 4249.0, p = 0.566, Mann-
Whitney test), and both significantly reduced their
failure rates at the end of session (beginning versus
end of session for WT, T = 854.5, p = 6.10−11, for
KO, T = 854.5, p = 5.10−5, Wilcoxon test). How-
ever, the rate of failure was significantly lower at the
end of session for the WT variant (WT versus KO,
U = 5695.5, p = 2.10−6, Mann-Whitney test), sug-
gesting that the KO variant adapted more slowly
to condition changes.

To assess how robust this effect was on foraging
efficacy, we further tested similar setups where re-
ward probability in the two rewarding targets were
lower (but still equal) resulting in higher uncer-
tainty: p=90%, 75% and 50% probability of re-
ward corresponding to mid-low, mid-high and high
uncertainty. The model successfully estimated the
expected reward probability v and uncertainty u
(Figure 4D; see Equations (12 - 14)). While the
foraging efficacy was still higher for the WT vari-
ant with reward probability 90% (WT versus KO:
t(29) = −4.64, p = 2.10−5, t-test; Figure 4E), the
difference was no longer significant with a probabil-
ity of 75% (WT versus KO: t(29) = −1.89, p = 0.06,
t-test; Figure 4E) and 50% (WT versus KO:
t(29) = −1.73, p = 0.08, t-test; Figure 4E).

Overall, these results demonstrated the impor-
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Reward probability = 1.; uncertainty = 0.

Reward probability = .9; uncertainty = 0.09

Reward probability = .75; uncertainty = 0.1875

Reward probability = .5; uncertainty = 0.25
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E
***

***

n.s.

n.s.

WT KO

Figure 4: Model’s results and predictions in the
foraging task. A) Schematic illustration of the dynamic
setup consisting of three sessions. Full circles indicate the
two rewarding targets and empty circles indicate the non-
rewarding target. B) Higher foraging efficacy with the WT
variant than KO variant. Efficacy is defined as the success
rate, i.e. the average proportion of rewarded choices. C)
Failure rate (i.e. proportion of unrewarded choices) in the
beginning and in the end of sessions shows a decrease for
both WT and KO variants but is lower for WT. D) Reward
probability v and uncertainty u were correctly estimated by
the model throughout sessions. Dashed lines indicate the
correct values. E) The model predicts that the difference
in foraging efficacy between WT and KO mice vanishes in
situations where the reward uncertainty is high. *** p <
0.001, n.s. not significant at p > 0.05. N=30 runs.

tance of the uncertainty-seeking behaviors me-
diated by the cholinergic projections to VTA
dopaminergic neurons. But they also suggest that
the scope of such an adaptively advantageous mech-
anism may be limited to situations where the un-
certainty is relatively low. This is because despite
the uncertainty-driven exploration, it is difficult to
find the most rewarding target when the associ-
ated probability is low. This highlights the possible
effect of environmental conditions on the studied
decision-making mechanism.

5. Discussion

Prominent theories about the role of acetyl-
choline hold that it helps control the balance be-
tween the storage and update of memory (Has-
selmo, 1999) and between top-down expectation-
driven and bottom-up stimulus-driven attention
(Yu & Dayan, 2005; Cohen et al., 2007; Avery
et al., 2012). Accordingly, most computational
models of this neuromodulator at the functional
level focus on memory and attention related func-
tions (Hasselmo, 2006; Pitti & Kuniyoshi, 2011;
Carrere & Alexandre, 2015; Grossberg, 2017; Yu
& Dayan, 2005; Avery et al., 2012). In this pa-
per, we targeted another aspect of the cholinergic
action which was highlighted in recent experimen-
tal studies (Naudé et al., 2016, 2018). These studies
suggest that, through their projections to dopamin-
ergic neurons in the ventral tegmental area, meso-
pontine cholinergic neurons promote exploratory
uncertainty-seeking behaviors. In other words, that
the neuromodulator participates in the process by
which individuals decide to perform actions associ-
ated with uncertain outcomes.

We modeled this process using a decision-making
neural network under the influence of cholinergic
and dopaminergic modulation based on hypotheses
drawn from the literature. We used representative
LIF neurons, which allowed us to tie neuromodula-
tion to realistic spike rates and to introduce intra-
and inter-trial variability. Yet, keeping the model
relatively minimal allowed us to systematically test
the plausibility of the non-trivial idea which is cen-
tral in this study: that the exploration bonus is
indirectly applied through the cholinergic effect on
dopaminergic activity. We evaluated the model in
two decision-making tasks – bandit task and forag-
ing task – and successfully reproduced the behav-
ioral results reported by Naudé et al. (2016).
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The model fit the experimental data from the
bandit task better than three alternative models,
which differed in the expression of the neuromodu-
lation component. Qualitatively, these alternative
models exhibit a smaller difference between the WT
and the KO variants (see Figure 3B and 3C) than
reported in the data from Naudé et al. (2016). Both
variants (WT and KO) exhibit a softmax-like be-
havior with a marked linear relation between the
reward probability of a target and the probability of
choosing it (see Figure 3C). These qualitative dif-
ferences are captured and summarized by the signif-
icantly higher fitness scores of the proposed model
in comparison with the alternative ones (see Table
2).

Overall, our results support the notion that
the cholinergic influence on dopamine mediates
uncertainty-seeking behaviors. Moreover, the
model makes testable predictions: i) the correlation
of dopaminergic activity with reward uncertainty as
reported by Fiorillo et al. (2003) should not be ob-
served in the absence of the cholinergic influence on
DA neurons; ii) the adaptive advantage brought by
the implemented uncertainty-seeking mechanism is
most useful when sources of reward are not highly
uncertain.

Our model of cholinergic modulations differs from
those existing in the literature in that it studies
acetylcholine’s interplay with another neuromod-
ulator (namely dopamine) and the subsequent ef-
fect on decision-making circuit when uncertainty
varies locally (i.e. for each action). Indeed, to
our knowledge, previous studies rarely addressed
the case where different options have different levels
of uncertainty. For example, in the works by Yu &
Dayan (2005) and Avery et al. (2012), uncertainty
is computed globally for each trial. Additionally,
these studies modeled the relation between acetyl-
choline and norepinephrine, but not dopamine. On
the other hand, Zannone et al. (2018) addressed
the interplay between acetylcholine and dopamine.
However, the role of acetylcholine in their model
is to perform a systematic exploration, suppress-
ing unrewarded choices to accelerate the discov-
ery of the reward. Their study did not specifi-
cally investigate the effect of uncertainty. Addi-
tionally, only one source of reward was provided
during each trial in their simulations. Therefore,
our model provides a novel and complementary ac-
count with respect to previous studies by investi-
gating uncertainty-seeking behavior driven by the
cholinergic and dopaminergic effect on decisions be-

tween competing options associated with different
levels of uncertainty.

How animals generate variable decisions and
manage the exploitation–exploration dilemma (i.e.
choosing between predictably rewarding actions
and other uncertain and suboptimal options) is still
poorly understood. It has been suggested that
humans rely on two types of exploratory behav-
iors (Wilson et al., 2014): directed exploration in
which uncertain actions are purposely chosen for
the sake of information-gathering; and random ex-
ploration where actions are selected regardless of
their predicted outcome. Our model formally de-
scribes how these two exploratory processes can be
implemented: the former via the uncertainty bonus
driven by the cholinergic influence on dopamine and
the latter through a global decrease of dopaminer-
gic modulation of decisions which results in lower
selectivity and higher sensitivity to noise. This
model could thus be tested against other experi-
mental data to further assess the validity of this
formal description.

Moreover, some models suggest that the striatal
cholinergic interneurons modulate the level of noise
during action selection in the basal ganglia (Stocco,
2012). This implies a key role of acetylcholine, not
only in directed exploration as we show in this pa-
per, but also in random exploration. We believe
that new experimental studies are required which
specifically investigate this possible dual implica-
tion of acetylcholine in exploratory processes. For
instance, using tasks that leverage both random
and directed exploration, lentiviral expression could
selectively target cholinergic receptors in the stria-
tum and in VTA to evaluate their respective in-
volvement in these behaviors as well as possible
interdependences. Furthermore, it is still unclear
whether the cholinergic receptors in VTA dopamine
neurons are required for learning the uncertainty
bonus or solely for operating the bonus during ac-
tion selection. These two alternatives could be
differentiated experimentally via genetic-chemical
manipulations rendering the cholinergic receptors
light-controllable (Durand-de Cuttoli et al., 2018).
If the receptors are switched off during the ini-
tial sessions in which animals learn the statistics
of reward delivery, and then switched on again, we
should be able to observe whether the uncertainty
seeking behavior appears rapidly or requires addi-
tional learning.

This work is a step toward a more comprehensive
understanding of the implication of the dopamin-

11



ergic and cholinergic systems in decision-making.
It highlights their role in motivation and the ex-
ecution of decisions. More effort is yet needed to
further disentangle these neural mechanisms. For
instance, more realistic neuron models could offer
a complementary insight into the learning process
(Deperrois et al., 2019). It has also been suggested
that to be able to account for both learning and
motivation related processes, it is important to dis-
tinguish dopamine cell firing from local dopamine
release on dopamine terminals (Berke, 2018). Thus,
a more detailed model of the decision-making net-
work might be necessary to fully capture the role
and functioning of the neuromodulators in these
processes. By showing how ACh might drive un-
certainty seeking behavior through its influence on
DA, the present model is a first step in that direc-
tion.
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