N. Buchtova and T. Budtova, Cellulose aero-, cryo-and xerogels: towards understanding 543 of morphology control, Cellulose, vol.23, issue.4, pp.2585-2595, 2016.

I. Burgert, Exploring the micromechanical design of plant cell walls, American journal of 545 botany, vol.93, issue.10, pp.1391-1401, 2006.

J. R. Capadona, K. Shanmuganathan, D. J. Tyler, S. J. Rowan, and C. Weder, Stimuli-547 Responsive Polymer Nanocomposites Inspired by the Sea Cucumber Dermis, Science, vol.548, issue.5868, pp.1370-1374, 2008.

M. Chau, K. J. De-france, B. Kopera, V. R. Machado, S. Rosenfeldt et al., , p.550

S. Förster, E. D. Cranston, and T. Hoare, Composite hydrogels with tunable 551 anisotropic morphologies and mechanical properties, Chemistry of Materials, vol.28, issue.10, pp.3406-3415, 2016.

G. Chu, D. Qu, E. Zussman, and Y. Xu, Ice-assisted assembly of liquid crystalline 554 cellulose nanocrystals for preparing anisotropic aerogels with ordered structures, Chemistry of Materials, vol.555, issue.9, pp.3980-3988, 2017.

D. J. Cosgrove, Growth of the plant cell wall, Nature reviews molecular cell biology, vol.6, issue.11, p.850, 2005.

D. J. Cosgrove, Re-constructing our models of cellulose and primary cell wall assembly. 559 Current opinion in plant biology, vol.22, pp.122-131, 2014.

S. Coulibaly, A. Roulin, S. Balog, M. V. Biyani, E. J. Foster et al., , p.561

C. Weder, Reinforcement of optically healable supramolecular polymers with 562 cellulose nanocrystals, Macromolecules, vol.47, issue.1, pp.152-160, 2013.

A. Dammak, B. Quémener, E. Bonnin, C. Alvarado, B. Bouchet et al., , p.564

B. Cathala, Exploring architecture of xyloglucan cellulose nanocrystal complexes 565 through enzyme susceptibility at different adsorption regimes, Biomacromolecules, vol.16, issue.2, pp.589-596, 2015.

R. Dash, Y. Li, and A. J. Ragauskas, Cellulose nanowhisker foams by freeze casting. 568 Carbohydrate polymers, vol.88, pp.789-792, 2012.

A. De-belder and K. Granath, Preparation and Properties of Fluorescein-Labelled Dextrans. 570 Carbohydrate Research, vol.30, pp.375-378, 1973.

K. J. De-france, T. Hoare, and E. D. Cranston, Review of Hydrogels and Aerogels 572 Containing Nanocellulose, Chemistry of Materials, vol.29, issue.11, pp.4609-4631, 2017.

S. Deville, Freeze-casting of porous ceramics: a review of current achievements and issues, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01785741

, Advanced Engineering Materials, vol.10, issue.3, pp.155-169

S. Deville, Freeze-casting of porous biomaterials: structure, properties and opportunities, Materials, vol.576, issue.3, pp.1913-1927, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01785756

S. Deville, E. Saiz, R. K. Nalla, and A. P. Tomsia, Freezing as a path to build complex 578 composites, Science, issue.5760, pp.515-518, 2006.

S. Deville, E. Saiz, and A. P. Tomsia, Freeze casting of hydroxyapatite scaffolds for bone 580 tissue engineering, Biomaterials, vol.27, issue.32, pp.5480-5489, 2006.

A. E. Donius, A. Liu, L. A. Berglund, and U. G. Wegst, Superior mechanical performance 582 of highly porous, anisotropic nanocellulose-montmorillonite aerogels prepared by freeze 583 casting, Journal of the mechanical behavior of biomedical materials, vol.37, pp.88-99, 2014.

V. Favier, H. Chanzy, and J. Cavaille, Polymer nanocomposites reinforced by cellulose 585 whiskers, Macromolecules, vol.28, issue.18, pp.6365-6367, 1995.

J. Fricke and T. Tillotson, Aerogels: production, characterization, and applications. Thin 587 solid films, vol.297, pp.212-223, 1997.

M. Fumagalli, F. Sanchez, S. M. Boisseau, and L. Heux, Gas-phase esterification of 589 cellulose nanocrystal aerogels for colloidal dispersion in apolar solvents, Soft Matter, vol.590, issue.47, pp.11309-11317, 2013.

F. Ghorbani, H. Nojehdehian, and A. Zamanian, Physicochemical and mechanical 592 properties of freeze cast hydroxyapatite-gelatin scaffolds with dexamethasone loaded 593 PLGA microspheres for hard tissue engineering applications, Materials Science, vol.594, pp.208-220, 2016.

L. J. Gibson and M. F. Ashby, Cellular solids: structure and properties, 1999.

W. Gindl and J. Keckes, Drawing of self-reinforced cellulose films, Journal of Applied 598 Polymer Science, vol.103, issue.4, pp.2703-2708, 2007.

K. M. Hakansson, A. B. Fall, F. Lundell, S. Yu, C. Krywka et al., , p.600

M. Wittberg, L. P. Wagberg, L. Soderberg, and L. D. , Hydrodynamic alignment 601 and assembly of nanofibrils resulting in strong cellulose filaments, Nature, vol.602, issue.5, 2014.

J. Han, C. Zhou, Y. Wu, F. Liu, and Q. Wu, Self-assembling behavior of cellulose 604 nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal 605 structure, and surface charge, Biomacromolecules, vol.14, issue.5, pp.1529-1540, 2013.

L. Heath and W. Thielemans, Cellulose nanowhisker aerogels, Green Chemistry, vol.12, issue.8, pp.607-1448, 2010.

J. Hermans, P. Hermans, D. Vermaas, and A. Weidinger, Quantitative evaluation of 609 orientation in cellulose fibres from the X-ray fibre diagram, Recueil des Travaux 610 Chimiques des Pays-Bas, vol.65, pp.427-447, 1946.

C. Jiménez-saelices, B. Seantier, Y. Grohens, and I. Capron, Thermal Superinsulating 612 Materials Made from Nanofibrillated Cellulose-Stabilized Pickering Emulsions, ACS 613 applied materials & interfaces, vol.10, pp.16193-16202, 2018.

D. Kam, M. Chasnitsky, C. Nowogrodski, I. Braslavsky, T. Abitbol et al., Direct Cryo Writing of Aerogels via 3D Printing of Aligned Cellulose 616 Nanocrystals Inspired by the, Plant Cell Wall. Colloids and Interfaces, vol.615, issue.2, p.46, 2019.

M. A. Karaaslan, M. A. Tshabalala, D. J. Yelle, and G. Buschle-diller, Nanoreinforced 618 biocompatible hydrogels from wood hemicelluloses and cellulose whiskers. Carbohydrate 619 polymers, vol.86, pp.192-201, 2011.

K. H. Kim, Y. Oh, and M. F. Islam, Graphene coating makes carbon nanotube aerogels 621 superelastic and resistant to fatigue, Nature Nanotechnology, vol.7, issue.9, pp.562-566, 2012.

D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors et al., , 2011.

, Nanocelluloses: a new family of nature-based materials, Angewandte Chemie International 624 Edition, vol.50, issue.24, pp.5438-5466

T. Köhnke, T. Elder, H. Theliander, and A. J. Ragauskas, Ice templated and cross-linked 626 xylan/nanocrystalline cellulose hydrogels, Carbohydrate polymers, vol.100, pp.24-30, 2014.

T. Köhnke, A. Lin, T. Elder, H. Theliander, and A. J. Ragauskas, Nanoreinforced xylan-628 cellulose composite foams by freeze-casting, Green Chemistry, vol.14, issue.7, pp.1864-1869, 2012.

I. Kvien and K. Oksman, Orientation of cellulose nanowhiskers in polyvinyl alcohol, 2007.

, Applied Physics a-Materials Science & Processing, vol.87, issue.4, pp.641-643

R. Lakes, Materials with structural hierarchy, Nature, vol.361, issue.6412, p.511, 1993.

J. Lee and Y. Deng, The morphology and mechanical properties of layer structured 633 cellulose microfibril foams from ice-templating methods, Soft Matter, vol.7, issue.13, pp.6034-6040, 2011.

P. Lopez-sanchez, J. Cersosimo, D. Wang, B. Flanagan, J. R. Stokes et al., , 2015.

, Poroelastic mechanical effects of hemicelluloses on cellulosic hydrogels under 636 compression, Plos one, vol.10, issue.3, p.122132

D. Lourdin, J. Peixinho, J. Breard, B. Cathala, E. Leroy et al., Concentration 638 driven cocrystallisation and percolation in all-cellulose nanocomposites, Cellulose, vol.23, issue.1, pp.639-529, 2016.

P. Munier, K. Gordeyeva, L. Bergström, and A. B. Fall, Directional freezing of 641 nanocellulose dispersions aligns the rod-like particles and produces low-density and robust 642 particle networks, Biomacromolecules, vol.17, issue.5, pp.1875-1881, 2016.

M. Pääkkö, J. Vapaavuori, R. Silvennoinen, H. Kosonen, M. Ankerfors et al., , p.644

L. A. Berglund and O. Ikkala, Long and entangled native cellulose I nanofibers 645 allow flexible aerogels and hierarchically porous templates for functionalities, Soft Matter, vol.646, issue.12, pp.2492-2499, 2008.

Z. Pan, H. Nishihara, S. Iwamura, T. Sekiguchi, A. Sato et al., , p.648

,. Yang, Cellulose nanofiber as a distinct structure-directing agent for 649 xylem-like microhoneycomb monoliths by unidirectional freeze-drying, ACS nano, vol.10, issue.12, pp.650-10689, 2016.

A. Saxena, T. J. Elder, S. Pan, and A. J. Ragauskas, Novel nanocellulosic xylan composite 652 film, Composites Part B: Engineering, vol.40, issue.8, pp.727-730, 2009.

H. V. Scheller and P. Ulvskov, Hemicelluloses. Annual review of plant biology, p.61, 2010.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., , p.655

C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White et al., , p.656

K. Tomancak, P. Cardona, and A. , Fiji: an open-source platform for biological-657 image analysis, Nature Methods, vol.9, issue.7, pp.676-682, 2012.

H. Sehaqui, N. E. Mushi, S. Morimune, M. Salajkova, T. Nishino et al., , 2012.

, Cellulose Nanofiber Orientation in Nanopaper and Nanocomposites by Cold Drawing. 660 ACS applied materials & interfaces, vol.4, pp.1043-1049

H. Sehaqui, M. Salajková, Q. Zhou, and L. A. Berglund, Mechanical performance tailoring 662 of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions, vol.6, pp.1824-1832, 2010.

A. J. Svagan, P. Jensen, S. V. Dvinskikh, I. Furó, and L. A. Berglund, Towards tailored 665 hierarchical structures in cellulose nanocomposite biofoams prepared by freezing/freeze-666 drying, Journal of Materials Chemistry, vol.20, issue.32, pp.6646-6654, 2010.

A. Szepes, J. Ulrich, Z. Farkas, J. Kovács, and P. Szabó-révész, Freeze-casting technique 668 in the development of solid drug delivery systems, Chemical Engineering and Processing, vol.46, issue.3, pp.230-238, 2007.

M. Talantikite, A. Gourlay, S. Gall, and B. Cathala, Influence of Xyloglucan Molar 671 Mass on Rheological Properties of Cellulose Nanocrystal/Xyloglucan Hydrogels, Journal 672 of Renewable Materials, vol.7, issue.12, pp.1381-1390, 2019.

J. G. Torres-rendon, F. H. Schacher, S. Ifuku, and A. Walther, Mechanical Performance 674 of Macrofibers of Cellulose and Chitin Nanofibrils Aligned by Wet-Stretching: A Critical 675 Comparison, Biomacromolecules, vol.15, issue.7, pp.2709-2717, 2014.

A. Villares, C. Moreau, A. Dammak, I. Capron, and B. Cathala, Kinetic aspects of the 677 adsorption of xyloglucan onto cellulose nanocrystals, Soft Matter, vol.11, issue.32, pp.6472-6481, 2015.

B. Wicklein, A. Kocjan, G. Salazar-alvarez, F. Carosio, G. Camino et al., , p.679

L. Bergström, Thermally insulating and fire-retardant lightweight anisotropic 680 foams based on nanocellulose and graphene oxide, Nature Nanotechnology, vol.10, issue.3, p.277, 2015.

X. Xu, F. Liu, L. Jiang, J. Zhu, D. Haagenson et al., Cellulose 682 nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and 683 effects as polymer reinforcing agents, ACS applied materials & interfaces, vol.5, issue.8, pp.2999-684, 2013.

X. Yang, E. Bakaic, T. Hoare, and E. D. Cranston, Injectable polysaccharide hydrogels 686 reinforced with cellulose nanocrystals: morphology, rheology, degradation, and 687 cytotoxicity, Biomacromolecules, vol.14, issue.12, pp.4447-4455, 2013.

X. Yang and E. D. Cranston, Chemically cross-linked cellulose nanocrystal aerogels with 689 shape recovery and superabsorbent properties, Chemistry of Materials, vol.26, issue.20, pp.6016-6025, 2014.

K. Yin, P. Divakar, and U. G. Wegst, Freeze-casting porous chitosan ureteral stents for 691 improved drainage, Acta biomaterialia, vol.84, pp.231-241, 2019.

Z. Zhang and X. Liu, Control of ice nucleation: freezing and antifreeze strategies, Chemical Society Reviews, vol.693, issue.18, pp.7116-7139, 2018.