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Abstract. We discuss the design of Mopsa, an ongoing effort to de-
sign a novel semantic static analyzer by abstract interpretation. Mopsa
strives to achieve a high degree of modularity and extensibility by con-
sidering value abstractions for numeric, pointer, objects, arrays, etc. as
well as syntax-driven iterators and control-flow abstractions uniformly
as domain modules, which offer a unified signature and loose coupling,
so that they can be combined and reused at will. Moreover, domains can
dynamically rewrite expressions, which simplifies the design of relational
abstractions, encourages a design based on layered semantics, and en-
ables domain reuse across different analyses and different languages. We
present preliminary applications of Mopsa analyzing simple programs
in subsets of the C and Python programming languages, checking them
for run-time errors and uncaught exceptions.

Keywords: Static analysis · Program verification · Abstract interpre-
tation · Tool design

1 Introduction

Static analysis aims at inferring automatically the behavior of programs in or-
der to prove correctness properties. Abstract interpretation [4], a theory of the
approximation of program semantics, helps in designing semantic-based static
analyses with formal guarantees: they are sound, in that every property proved
by the analyzer indeed holds; but incomplete, in that not all true properties of
the program are inferred (due to incompleteness, it may fail to establish that
a correct program is correct). One view we hold here, is that an abstract inter-
preter is an interpreter in the usual sense of a program interpreter computing
some output and defined by induction on language syntax, except that:

1. it computes a collecting semantics, that collects all possible program execu-
tions along all execution paths, for all possible inputs;
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int main(int argc, char *argv[]) {

int i = 0;

for (char **p = argv; *p; p++) {

l: printf("%s\n", strlen(*p)); // valid string

i++; // no overflow

}

return 0;

}

Fig. 1. Example C program analyzed by Mopsa

Numeric:
argc ∈ [1, maxint]
size(argv) = argc + 1
size(@) ∈ [1, maxsize]
0 ≤ offset(p) ≤ size(argv)− 1
offset(p) = i

Memory:

variables: argc, argv, p, i
summary block: @

Pointers:
argv[0 . . . argc− 1] 7→ {@}
argv[argc] 7→ {NULL}
p 7→ {argv}

Strings:

∃k ∈ [0 . . . size(@)− 1] : @[k] = 0

Fig. 2. Invariants inferred at label l for the program of Fig. 1

2. at an abstract level, that forgets semantic details and performs simplifications
to achieve an efficient computation in a compact machine representation —
a classic example is keeping variable bounds, forgetting which values are
reachable within these bounds and any relationship between variable values.

An attractive feature of abstract interpretation is the existence of a variety of
such abstract domains of interpretation, which target different kinds of proper-
ties and various trade-offs between cost, precision, and expressiveness. Abstract
interpretation has led in the last two decades to several static analysis tools used
in industry: PolySpace, Astrée [13], Sparrow [19], Julia [20], Frama-C [9], Infer
[3], etc. We present here our work in progress designing Mopsa [17], a Mod-
ular Open Platform for Static Analysis programmed in OCaml. Mopsa differs
from existing tools by its highly extensible, modular design, which allows easily
defining and combining heterogeneous abstractions, and reusing them to analyze
widely different programming languages, such as C and Python.

As a simple example, consider the small C program in Fig. 1, that prints the
length of its command-line arguments, a NULL-terminated array of 0-terminated
strings. Mopsa is able to prove that the string manipulation does not cause any
dereference error and there is no arithmetic overflow. This is established by
a combination of collaborating abstractions, as illustrated in Fig. 2: a memory
abstraction partitions the memory into variables (argc, argv, . . . ) and summary



blocks (@) representing possibly unbounded collections of dynamically allocated
blocks (here, the command-line arguments pointed to by the elements of the argv
array); a pointer abstraction maintains points-to information (p 7→ {argv}); a
string abstraction maintains predicates on the position of the terminating 0
(∃k ∈ [0 . . . size(@) − 1] : @[k] = 0); and a numeric abstraction infers ranges
and affine inequalities. Despite abstracting very different objects, these domains
obey a common signature and are loosely coupled, and so can be easily plugged
in and out. Moreover, they collaborate in several ways:

1. Cartesian products, to combine domains discussing about orthogonal seman-
tic objects (such as pointer variables and numeric variables);

2. reduced products, to combine domains abstracting the same semantic object
in different ways (such as interval and polyhedra [8]);

3. delegation, for a domain to rely on another one for its computations (e.g. the
pointer domain relies on numeric domains to maintain offset information).

When combined, these mechanisms allow a powerful interaction between do-
mains. For instance, Fig. 2 shows that it is possible to infer affine relations
between integer variables and other integer quantities introduced by the other
abstract domains, such as pointer offsets and string sizes.

Section 2 presents our representation of programs in Mopsa, which is close
to the source level to avoid losing high-level information and uses extensible
abstract syntax trees to support the addition of analysis targets. This is in con-
trast to traditional analyzers, that translate source programs into a simplified,
fixed, low-level representation (such as simplified C, or LLVM bitcode), on which
the semantic analysis is performed. Section 3 presents the dynamic simplifica-
tion of expressions performed during the analysis. This again contrasts to tradi-
tional analyzers, where front-ends perform static simplifications, and it is key to
achieve a flexible delegation mechanism of domain computations while keeping
a fully relational analysis. Section 4 details how the combination of domains is
achieved. Section 5 presents our application to analyzing a large subset of the
C and Python languages, as well as preliminary experimental results. Although
Mopsa is not yet able to analyze large-scale C nor realistic Python programs, we
believe that these results are encouraging as few tools have yet shown the ability
to analyze languages as dynamic as Python, nor been able to factor the analysis
of such different languages as C and Python in the same framework. Moreover,
Mopsa is intended as a platform for research, and has been exploited in sev-
eral exploratory works on analyzing Python [10], strings [11], and trees [12]. We
plan to release our implementation as open-source software. Section 6 concludes.
This article extends on a short presentation of Mopsa from [17] by giving no-
tably more details and examples on Mopsa’s abstractions, dynamic expression
simplification, domain compositions, as well as more recent benchmarks.

2 Unified Extensible Language

Classic static analyzers operate on an intermediate language — such as LLVM
bitcode [14] — rather than the source language. One benefit is that the semantic



analysis needs to handle far less constructions, with a simpler semantics. Sup-
porting a new target language is then only a matter of writing a new front-end
that translates it into this fixed intermediate language. However, some infor-
mation is lost in the translation, which may hurt the subsequent analysis (e.g.
LLVM forgets whether integer types are signed or unsigned, while transformation
to 3-address code puts a strain on relational domains to maintain precision [18]).
Additionally, a common intermediate language may not fit all possible language
kinds. On the contrary, Mopsa employs an extensible AST data-type to keep
as much high-level information as possible and be open for new targets. Each
analyzer module can define additional variants for syntactic objects: statements,
expressions, types, variables, etc. Currently, Mopsa supports the following:

– Universal, a toy-language that mainly features an unbounded integer data-
type and simple control constructs (loops, conditionals, functions);

– most of C, through Clang’s parser, and a contract annotation language in-
spired by ACSL [9] to model library functions (Sect. 5.2);

– a large subset of Python 3 (using a dedicated parser).

Extensible Syntax. Using OCaml’s extensible variant types, any OCaml mod-
ule can extend Mopsa’s AST. For instance, Mopsa’s abstract syntax for simple
while loops in Universal is introduced as:

type stmt_kind += S_while of expr * stmt

Then, the C syntax module defines loops as:

type stmt_kind += S_c_for of stmt * expr option * expr option * stmt

| S_c_do_while of stmt * expr

We do not redefine while loops for C as they are identical to the ones in Universal.
However, we add for and do-while loops, which have a different syntax, so as
to keep separate each kind of loops in the program representation, instead of
lowering them to while loops. For completeness, Python loops are defined as:

type stmt_kind += S_py_for of expr * expr * stmt * stmt

| S_py_while of expr * stmt * stmt

They feature an additional statement, which denotes the else clause of the loops.

Distributed Iterator. The semantic effect is defined by a domain which pro-
vides an exec function. Like the syntax, the exec function can be distributed
among several modules. A global iterator will call in turn the exec functions
until one of them returns a non-None value. For instance, the semantics of while
loops in Universal is defined as a fixpoint as follows, where flow represents the
flow of abstract information, lfp performs classic fixpoint iteration with accel-
eration, and join computes the union of abstract information:

let exec stmt man flow = match stmt_kind stmt with

| S_while (cond, body) ->



let i = lfp (fun f -> Flow.join f (man.exec (S_assume cond) f |>

man.exec body)

) flow

in Some (man.exec (S_assume (E_not cond) i))

| _ ->

None (* pass-through to the next domain *)

The semantics of loops is defined in terms of the semantics of the loop body and
conditions (S_assume), hence, its exec function must be able to call the global
iterator that will in turn find the proper module to handle these statements; this
is the role of the manager man passed as argument to all abstract functions.

The semantics of a C for loop can be defined in terms of Universal loops
as a simple syntactic transformation, which will be automatically delegated to
Universal’s loop iterator, after executing the loop initialization statement:

let exec stmt man flow = match stmt_kind stmt with

| S_c_for (init, cond, incr, body) ->

let body’ = ... in

Some (man.exec (mk_block [init; S_while (cond, body’)]) flow)

| _ -> None

This has the benefit of factoring the logic for fixpoint computation in one place.
Such a translation is done at analysis time: it could access information from the
abstract state (through flow) and manipulate it (through man). While this is not
the case for this simple example, we will see its benefit in Sect. 3.

Domains. Traditional analyzers separate iterators, that work on high-level con-
trol structures or control-flow-graphs, from abstract domains, that ultimately
handle atomic statements, such as assignments and tests. However, Mopsa uses
the same signature for both. The same way the global exec function available
through the manager man is composed of exec functions defined in all domains,
the abstract flow of information flow is composed of information from each do-
main (such as intervals, pointers, etc.) and can be manipulated by any domain
(e.g. to perform joins). A loop iterator happens to be a domain with empty
abstract state, and the policy of finding the first domain that handles a specific
statement is one example of domain composition, called sequence. Other domain
composition operators, such as reduced and Cartesian products, are discussed
in Sect. 4. A typical analysis instance contains dozens of domains. This is illus-
trated in Fig. 3 for the case of the C analyzer (we give more details on these
domains in Sects. 4 and 5). Note that many domains defined for Universal are
reused in the C analysis.

3 Dynamic Expression Rewriting

When analyzing a program, the original AST goes through successive transfor-
mations that reduce its complexity. For instance, an assignment in C can be
first translated into a simplified subset of C by flattening all data structures



C.program # C.fun # C.goto # C.switch # C.loops #

C.stubs # U.intraproc # U.loops # U.fun # U.stubs #

C.compiler # C.mopsa # C.files # C.printf # C.variadic #

U.heap

∧

C.cells C.strings

◦

×

C.machineNum C.pointers

◦

∧

U.intervals U.linearRel

Universal

C specific

# Sequence

∧ Reduced product

× Cartesian product

Fig. 3. Domain composition in Mopsa’s C analyzer (see also Sect. 5.1)

into arrays, before moving to another subset containing only scalar variables by
resolving dereferences. These transformations are performed dynamically during
the analysis in order to gain in precision by leveraging the inferred constraints.

Evaluating to Expressions. An important particularity of these translations
in Mopsa is the evaluation mechanism of expressions. In order to preserve rela-
tional constraints present in the original structure of the program, expressions
are not evaluated into abstract values, but into other expressions.

As an illustration, consider the assignment x = a[i] + 1 in the Universal
language. The numeric domain is responsible for assignments to integer variables,
but can not handle expressions with arrays. Therefore, it delegates, with eval, the
evaluation of the right-hand-side expression to other domains via the manager:

let exec stmt man flow = match skind stmt with

| S_assign(E_var x, e) ->

let e’ = man.eval e flow in

...

| _ -> None

A domain that abstracts arrays as smashed variables implements the evaluation
of a[i] by providing an eval function returning an auxiliary numeric variable,
a*, introduced by the abstraction to denote the values of all the array elements:

let eval exp man flow = match ekind e with

| E_subscript(E_var a,i) ->



let smash = mk_smash a in

Some (Eval.return smash flow)

| _ -> None

The original statement x = a[i] + 1 is thus translated into the simplified as-
signment x = a* + 1, which can be handled directly by the numeric domain.

Keeping the right-hand side of the assignment symbolic allows a relational
domain to infer relations between program variables. Consider, for instance, a
memory domain abstracting arrays by expansion, creating variables a0, a1, . . .
to denote the values of a[0], a[1], . . . Then, in an environment where i = 1,
the domain will translate x = a[i] + 1 into x = a1 + 1, allowing a domain such
as polyhedra [8] to maintain the relation x = a1 + 1.

Note that neither adding an array data-type, nor choosing whether to ab-
stract by smashing or by expansion, required any change to the numeric domain;
the new abstraction is conveyed through expression rewriting. This mechanism
makes it easy to reuse existing abstractions with novel operators and semantics.
As another example, while Universal features arithmetic on mathematical inte-
gers, which fits classic numeric domains well, C expressions are evaluated using
machine integers. Thus, we added a domain that translates machine arithmetic
into integer arithmetic. It checks for overflows in the current abstract state, and
exploits the fact that, in the absence of overflow, the two semantics coincide, to
output, when possible, expressions that are close to the original ones.

Disjunctions. Evaluations in Mopsa also offer an elegant way to perform a
case analysis. Domains can evaluate an expression into a disjunction of different
expressions, for different subsets of the abstract state. To manipulate these dis-
junctive evaluations easily, two mechanisms are provided. Firstly, domains can
use a monadic bind operator >>= to execute a transfer function on each case of
the evaluation. Secondly, abstract versions of common test statements, such as
if and switch, are introduced to express guarded evaluations.

Consider an abstraction of 0-terminated C strings [11] that abstracts strings
with their length, i.e. the position of the first 0 in the array. To each memory
block b, the domain associates an integer auxiliary variable bl such that:

b[bl] = 0 ∧ ∀i ∈ [0, bl − 1] : b[bl] 6= 0

Using this auxiliary variable, the evaluation of an access b[i] is decomposed into
three cases using the abstract operator switch. Indeed, depending on the ordering
between i and bl, b[i] may evaluate to a non-null, a null, or an arbitrary byte
value. Each case is a pair containing a guard and the associated expression:

let eval exp man flow = match ekind e with

| E_c_subscript(b, i) ->

(* Evaluate the index expression *)

man.eval i flow >>= fun i’ flow ->

...

(* After checking out-of-bound accesses *)

let length = mk_length b in



Some (switch [

(* Case 1: access before the first 0 *)

(mk_lt i’ length), (* i < length(b) *)

(fun flow -> Eval.return (mk_interval 1 255) flow); (* [1,255] *)

(* Case 2: access at the first zero *)

(mk_eq i’ length), (* i = length(b) *)

(fun flow -> Eval.return zero flow); (* 0 *)

(* Case 3: access after the first zero *)

(mk_gt i’ length), (* i > length(b) *)

(fun flow -> Eval.singleton (mk_interval 0 255) flow) (* [0,255] *)

] man flow)

| _ -> None

The conditions i < bl, i = bl and i > bl are interpreted by numeric domains
and refine the abstract environments during the evaluation. Then, an assignment
such as x = b[i] will trigger three assignments in the numeric domain, one for
each case, after which the cases are merged with an abstract join. When using
a relational numeric domain, this allows us to infer easily relations between
auxiliary variables, such as bl, and program variables.

4 Domain Combination

Mopsa provides several combination operators that simplify the construction of
complex abstractions, such as the Cartesian product operator × , the sequence
operator # , and the reduced product operator ∧ . To preserve modularity,
domains should be loosely coupled by keeping their abstraction private. On the
other hand, domains are not isolated and need to cooperate in order to exploit
the available abstractions.

Queries. Similarly to input channels in Astrée [6], domains in Mopsa can
request the computation of abstract properties, such as the interval of a numeric
expression. This is done by defining a query, which is an extensible GADT type
encoding the query argument and its result. For instance, the interval query can
be defined as follows:

type _ query += Q_interval: expr -> (int option * int option) query

Answering to queries is done by defining a transfer function ask in the domain:

let ask : type r. r query -> t -> r option = fun query state ->

match query with

| Q_interval e ->

let l, u = ... in

Some (l, u)

| _ -> None



A domain returns None for queries it cannot handle. Client domains can retrieve
this information via their manager by calling man.ask (Q_interval e) flow, and
do not need to know which domain(s) can answer. Queries come with lattice
operators to combine the replies from several domains.

Reductions. Reduced products [5,6] are a common example of cooperation in
abstract interpreters. A reduced product computes the intersection of domains
approximating the same concrete semantics, and allows refining the abstract
state of a domain by exploiting information computed by the other domains.

To illustrate this form of cooperation, consider the classic example of reducing
intervals and congruences [16]. Given an interval [11, 12] and a congruence 2Z+1,
we can refine both values in two steps. Firstly, using the fact that the value is
odd, the interval is refined into [11, 11]. After that, since the interval is now a
singleton, the congruence is refined into 0Z + 11.

Defining reductions in Mopsa is different than in existing analyzers in sev-
eral ways. Firstly, it is simpler while being powerful enough to define complex
reductions. Reduction rules are not part of the transfer functions of domains
and do not require using particular communication channels to retrieve required
information. Instead, they are defined externally in separate modules with a
simplified signature that allows access to the internal representation of abstract
elements easily. It is thus easy to design new reductions, or remove them, while
keeping the core transfer functions of the abstract domains unchanged. For in-
stance, the reduction between intervals and congruences is defined as:

let reduce man pointwise =

let i = man.get Interval.id pointwise

and c = man.get Congruence.id pointwise in

let i’, c’ = meet_interval_congruence i c in

man.set Interval.id i’ pointwise |>

man.set Congruence.id c’

Secondly, in contrast to Astrée [6], there is no fixed order of computation in a
reduced product. Post-conditions are computed independently, before applying
reduction rules on the pointwise result. Finally, reduced products in Mopsa are
not limited to iterated pairwise reductions, but support n-ary reduction rules,
which enables more precision [7].

Sharing. While many abstract interpreters offer the possibility to build reduced
products [2,9], a distinctive feature of Mopsa is the ability to define products
of abstract domains that share a part of their abstraction. For instance, the C
analysis (Fig. 3) features a Cartesian product of a domain C.machineNum handling
statements over C numeric expressions by rewriting them into mathematical
integer expressions, and a domain C.pointers handling C pointer expressions
and storing points-to information. These domains are assembled in a Cartesian
product as their semantics do not overlap: unlike reduced products, they target
orthogonal expressions. However, both abstractions delegate a part of their state



to an underlying numeric domain: integer C variables for C.machineNum, and
pointer offsets for C.pointers. Mopsa offers the possibility for these two domains
to share some underlying abstract state (denoted as ◦ in Fig. 3). We can thus
exploit a numeric domain to infer relations between pointer offsets and integer
variables. As a consequence of this sharing, the composition of abstract states
from individual domains forms a DAG, not a tree.

Logs. As for the Cartesian product, Mopsa allows domains composed in a
reduced product to delegate part of their abstraction to another (potentially
shared) domain. This is the case for the reduced product between the C.cells and
the C.strings domains in the C analysis of Fig. 3. The cell domain [15] is used to
represent the C memory: it translates the semantics of all C memory accesses into
a semantics over a set of scalar variables. Abstracting the values of these variables
is then delegated to an underlying abstraction. Recall that the string domain
represents the length of a C string, i.e. the position of the first 0, by associating a
numeric variable to each memory region [11]. The cell and string domains provide
information on common parts of the C memory, hence, they are composed in a
reduced product. Sharing the underlying domain allows the discovery of relations
between string lengths (managed by the string abstraction), and numeric and
pointer variables (managed by the cell abstraction).

In the case of a Cartesian product, a statement is always handled by at
most one of the domains in the product. In contrast, in the case of a reduced
product, the statements are handled by all the domains. Each domain transforms
the shared underlying domain, inducing several different states for the shared
component, which must then be merged into a sound post-condition.

As an example, consider a simplified abstraction defined as the reduced prod-
uct between the cell and string domains delegating to a shared numeric domain.

Consider moreover the statement s
def
= a[0] = ’\0’ executed in the shared nu-

meric abstract state S] = {a0 = 1, al ≥ 3}, where al is the variable encoding
the length of string a (managed by the string domain) and a0 is the variable
representing the values of a[0], the first character of the a string (managed by
the cell domain). The cell abstraction will translate s into a0 = 0. The string
abstraction will translate s into al = 0 (indeed the length of string a will be 0).
The execution of the abstract statements on S] yields the two following abstract
states: S]

1 = {a0 = 0, al ≥ 3} and S]
2 = {a0 = 1, al = 0}. Neither state is a sound

post-condition for statement s. Indeed, the effect of the statement should update
both variables, but here each domain instead only updates its own variable. S]

1

and S]
2 must therefore be merged into a sound post-condition. In our example, the

abstract elements can be merged by forgetting the constraints on the variables
modified by the other domain, and then intersecting the two resulting abstract
states, yielding S]

r = {a0 = 0, al = 0}, which is a sound post-condition contain-
ing both the transformations induced by the cell and string domains. In order
to know which variables were modified by the other component of the product,
we automatically log the list of statements that were applied on each abstract



element, and use these two logs to merge together the parts of the abstraction
that we want shared.

To sum up, the computation of post-conditions is done independently on each
abstract domain as if no sharing was present, then the tree of domains is merged
back into a DAG. The process is mostly automated, and does not require any
action from the domains in the reduced product. It is sufficient that all shareable
domains, such as numeric domains, define a suitable merging function.

5 Implementation and Applications

Mopsa is written in OCaml. Parsers and utilities account for 19,000 lines of code
(we used the cloc command to measure the length of our files). The framework,
describing the structure of abstract domains and the domain combinators, con-
sists in 8,000 LOC. The analysis of Universal takes 3,000 LOC, while the one of
C and its stubs takes 7,100 LOC, and the analysis of Python is 7,700 LOC long.

5.1 C Analysis

Mopsa performs a reachability analysis of C programs to infer invariants and
report run-time errors, such as arithmetic overflows, invalid pointer uses, or
failed assertions. Mopsa first parses the source files using a front-end based on
Clang, and converts the AST to OCaml, keeping all C high-level syntax and
type information. The files are then linked, i.e. merged into a single AST by
resolving symbol definitions. The analyzer is then called on the main entry-point
using the configuration of abstract domains currently described in Fig. 3. This
configuration is naturally intended to evolve as new abstractions are introduced.

Iterators. The configuration starts with a long sequence of iterators, C.program
to C.variadic, i.e. state-less domains that handle individual parts of the C com-
pound syntax by induction, including loops, switch, goto, etc. As explained
in Sect. 2, the configuration merges domains reused from the Universal toy-
language and C-specific domains. C domains often delegate to Universal ones,
e.g., in the case of loops (respectively C.loops and U.loops). As another exam-
ple, Mopsa currently handles function calls by semantic inlining (i.e. calling
recursively the iterator on the function body at each call), which is implemented
in a Universal domain U.fun (although we are experimenting with summary-
based modular function analyses [11]). A C-specific domain, C.fun, translates
C function calls into Universal ones, taking care of C-specific aspects such as
calls through function pointers. Additional domains handle special calls, such
as variadic arguments (C.variadic), calls to builtin analyzer functions (such as
printf or file operations) or user-defined stubs (Sect. 5.2).

Domains. Following these iterators, the C analysis contains a composition of
domains that handle atomic statements such as assignments and tests. Dynamic



memory is handled by U.heap using recency abstraction [1]: each allocation site is
associated with at most two abstract blocks, one representing the lastly allocated
block at this site (on which we can perform strong updates, which is critical for
precision), and one representing all the allocated blocks before (on which we must
perform weak updates) — this domain could be easily replaced with any domain
that partitions the possibly unbounded set of allocated blocks into a bounded
set of abstract blocks. Each variable or abstract heap block is then decomposed
into a set of virtual variables, called cells, of scalar type, by C.cells. In order to
handle transparently union types and type-punning, we use the cell abstraction
from [15], where the decomposition is adapted dynamically according to the ac-
tual access pattern during the execution (rather than based on the static type,
which can be deceiving). As explained in Sect. 4, the cell domain is composed
using a reduced product with a string abstraction, C.strings, tracking the posi-
tion of 0 in character arrays. Both domains are able to rewrite expressions into
dereference-free expressions on scalar variables. These are handled by a Carte-
sian product: C.machineNum translates machine integer arithmetic into mathe-
matical arithmetic, handing overflow-checking and wrap-around semantics; while
C.pointers translates pointer arithmetic into byte-offset arithmetic while main-
taining in its internal abstract state the bases (i.e. pointed-to variables) of each
pointer. Both these domains collaborate to rewrite scalar expressions into ex-
pressions on mathematical integers, which are then handled natively by classic
numeric abstract domains, such as integer intervals (U.intervals). Mopsa also
features a rational polyhedra domain (U.linearRel), which is a work in progress
and was not enabled in our benchmarks. Floating-point arithmetic is also sup-
ported, using intervals, but not shown here for simplicity.

Benchmarks. To assess the effectiveness of Mopsa, we have analyzed real-
world C programs from the GNU Coreutils package, which is a collection of
command-line utilities. Mopsa was easily integrated into the make-based build
system, without modifying any source file or build script. We have also tested
Mopsa on a part of the Juliet test suite developed by NIST. These programs
differ from Coreutils as they are composed of a large number of small functions
for testing analyzers on common software weaknesses.

The results are summarized in Table 1. As the analyzer is still a work in
progress, not all programs from the benchmarks were analyzed. For Coreutils
programs, each analysis terminated under 10s, while the number of reported
alarms was generally high. This imprecision is mainly due to the absence of an
adequate abstraction of pointer arrays, which is currently under development.
For Juliet, we focused on three kinds of weaknesses relevant to Mopsa: NULL-
pointers, integer overflows, and divisions by zero. The results for Juliet tests were
more precise, as they do not employ complex data structures. Nevertheless, the
analysis of the CWE369 tests for assessing the detection of divisions by zero
shows a high imprecision rate due to the absence of a partitioning abstraction.



Table 1. Benchmark results for the analysis of some programs from GNU Coreutils
v8.30 and NIST Juliet v1.3

Benchmark Name LOC Time Alarms

GNU Coreutils v8.30

true 759 6.92s 20
printenv 814 6.66s 20
getlimits 970 8.83s 119

test 1,238 7.06s 0
runcon 1,295 7.16s 11
comm 2,634 7.63s 46
hostid 2,730 7.61s 31

id 2,733 7.12s 31
logname 2,735 7.58s 32
whoami 2,742 4.69s 36

link 2,747 7.76s 42
nice 2,955 6.92s 24
sleep 3,151 7.87s 35

NIST Juliet v1.3
CWE476 25k 5min51s 0
CWE369 109k 17min00s 324
CWE190 440k 1h22min56s 0

5.2 C Stub Modeling

To soundly analyze a C program, Mopsa needs to know the semantic effect of ev-
ery function that can be called, directly or indirectly, from the main entry-point,
including all library functions. Linking the full source of all libraries is not always
possible (low-level functions may be written in assembly or use compiler intrin-
sics) nor convenient (as they may be large). Solutions include hard-coding in the
analyzer the effect of these functions, or writing a stub, i.e. a C function modeling
its effect as done in Astrée [13] and Frama-C [9]. Instead, Mopsa introduces a
dedicated modeling language to ease the quick specification of stubs, and ensure
a fast and precise analysis. This language is inspired by ACSL: Frama-C’s con-
tract language [9] using pre/post-condition directives put in special comments
at function declarations. For instance, the specification of strlen is:

/*$

* requires: valid_string(s);

* ensures: return in [0, size(s)-1];

* ensures: s[return] == 0;

* ensures: forall unsigned int k in [0, return-1]: s[k] != 0;

*/

size_t strlen (const char *s);

where the predicate valid_string is defined as:

/*$$

* predicate valid_string(s):

* valid_ptr(s) and

* exists int i in [0, size(s)-1]: s[i] == 0;

*/



Whenever encountering a call to such a specification, Mopsa checks that the
pre-condition (here, that s points to a valid string) is satisfied, and reports a
run-time error if this is not true.

In Mopsa, the modeling language does not benefit from a special treatment:
it is simply another language that extends the global AST with its own syn-
tax, including logic connectors, such as forall or and, built-in functions, such as
valid_ptr and size, while reusing the syntax of side-effect free C expressions.
Whenever a function with a model available is called, this model AST is inter-
preted. This is handled by the iterators C.stubs and U.stubs from Fig. 3, which
interpret contracts by relying on a translation into assertions (to verify pre-
conditions) and assignments (to enforce post-conditions) of C expressions, using
the same mechanism as described in Sect. 2. Additionally, the string domain
has been enriched to interpret the simple logical expressions found in the model
of strlen and valid_string: ∀k ∈ [0, r] : s[k] 6= 0 and ∃k ∈ [0, r] : s[k] = 0.
The domain is actually able to analyze either the model of strlen or an actual
implementation of strlen with the same degree of precision.

While similar to logical languages used in deductive methods, such as the
WP plugin of Frama-C [9], our modeling language is used in quite a different
way. Firstly, it is not used to check the implementation of a function with re-
spect to a functional specification, but rather to replace a function having no
implementation with this specification. Secondly, while deductive methods rely
on powerful, but costly automated theorem provers to check expressive classes
of quantified logic formulas, we rely instead on fast abstract domains that are
generally only able to process a very restricted subset of logic formulas, with
very specific shapes, but do so in a way consistent with the abstract information
they encode — for instance, the string domain only matches simple formulas
stating the presence or absence of a 0 in a partition of an array. An interesting
point is that C and stub modeling employ quite different kinds of languages,
respectively an imperative and a logical language. Mopsa thus achieves a form
of multi-lingual analysis, analyzing mixed programs by combining abstractions
dedicated to each language while sharing common abstractions.

5.3 Python Analysis

Python’s configuration (shown in Fig. 4) is currently simpler than its C counter-
part, as it focuses on finding type errors rather than low-level numeric properties.
Nevertheless, as Python is a very dynamic language, finding statically such type
errors is both difficult and useful for programmers. We also plan to add a value
analysis in Mopsa [10]. Python’s configuration is composed of several parts:

– Py.program, which takes care of program parsing.
– A desugarization, focusing on translating Python-specific control-statements

into the Universal language.
– Py.exceptions, handling the analysis of specific control-flow statements such

as exceptions.
– Universal iterators, handling the intraprocedural (U.intraproc, U.loops) and

interprocedural (U.fun) analysis of statements in the Universal language.



Py.program # Py.desugar # Py.exceptions #

U.intraproc # U.loops # U.fun #

Py.libraries # Py.objects # Py.data model #

U.heap

◦

Py.typechecker

◦

×
Py.lists Py.dicts

Py.tuples

Universal

Python specific

# Sequence

∧ Reduced product

× Cartesian product

Fig. 4. Domain composition in Mopsa’s Python analyzer

Table 2. Analysis of official Python benchmarks

Name LOC Analysis time # Alarms # False Alarms

bm fannkuch.py 59 0.07s 0 0
bm float.py 63 0.06s 0 0

bm spectral norm.py 74 0.33s 0 1
bm nbody.py 157 1.5s 0 1
bm chaos.py 324 5.6s 1 0

bm unpack sequence.py 458 3.1s 0 0
bm hexiom.py 674 2m58s 0 52

– A domain implementing the abstract effect for some parts of Python’s vast
standard library (this modeling is currently hard-coded in OCaml and does
not use a modeling language as for C).

– A domain handling Python objects such as classes and functions.

– A description of Python’s data model, encoding the semantics of built-in
Python operators, such as attribute accesses, arithmetic operations and sub-
script operators.

– The stateful part of the analysis, composed of the recency abstraction U.

heap [1] from Universal; an abstract domain of Python types; and, finally, a
smashing-based abstraction of data containers, such as lists and dictionar-
ies, while tuples are abstracted by expansion. Note that the data container
abstraction is defined independently from the type analysis, and could be
reused in a value analysis instead.



We show the results of our analysis in Table 2, on benchmarks used by the
standard Python interpreter.3 We focused on 7 benchmarks, which were cho-
sen for their low number of external dependencies. We found one TypeError in
bm chaos.py,4 which was never reached in the actual test, but could be trig-
gered by instantiating a class using non-default arguments. The last benchmark
bm hexiom.py has a number of false alarms due to our analysis being unable to
distinguish empty lists from non-empty ones.

6 Conclusion

We presented the design of our platform for static analysis by abstract interpre-
tation, based on the idea of a collaboration of loosely coupled, highly reusable
abstractions. Compared to existing analysis platforms, it makes a few original
choices: using a unified extensible abstract syntax tree to both represent faith-
fully high-level source languages as well as intermediate languages, unifying iter-
ators and abstract domains, domain collaboration through dynamic expression
rewriting, as well as reduced and Cartesian products, possibly sharing abstract
state. Currently, our OCaml implementation is not yet able to analyze large pro-
grams. Yet, we demonstrated the feasibility of our approach by implementing
abstractions of different kinds (numeric as well as pointer, dynamically allo-
cated memory, structured types, objects, strings, etc.) and applying them to the
reachability analysis of two widely different languages: Python and C (includ-
ing a library modeling language). In addition to the implementation of classic
abstractions, Mopsa has also been used to implement and test novel abstract
domains such as [10], [11], and [12].

Future work will include improving our implementation to reliably analyze
realistic C and Python programs, notably with a better support for libraries. We
will also consider incorporating novel abstractions into our framework to improve
precision and efficiency, or to prove properties beyond the absence of run-time
errors. The framework could also be extended to support backward analysis and
incremental analysis. Finally, we will consider supporting new target languages.
An interesting aspect is that syntax and abstractions targeting different lan-
guages can be included in an analyzer configuration, which opens the possibility
of analyzing a program written in several languages. We had some success com-
bining C programs with libraries modeled in a logic-based contract language. It
would be an interesting challenge to consider the analysis of programs mixing C
and Python.
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L., Miné, A., Rival, X.: Astrée: Proving the absence of runtime errors. In: Proc. of
ERTS2 2010 (May 2010)

14. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: Proc. of CGO’04 (Mar 2004)
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