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Fostering agent cooperation in AmI: a
context-aware mechanism for dealing with
multiple intentions

Arthur Casals and Assia Belbachir and Amal El-Fallah Seghrouchni and Anarosa
Alves Franco Brandão

Abstract Ambient Intelligent (AmI) environments dynamically provide contextual
information to intelligent agents that interact with them. In such environments, could
these agents cooperate to improve their goal achievement, considering multiple in-
tentions from several agents? With multiple agents, cooperation will depend on each
agent’s own intentions. Agents adapt to dynamic changes in the environment using
context-aware planning mechanisms such as the Contextual Planning System (CPS),
which proposes an optimal plan for a single agent based on the current context. In
this paper we present the Collective CPS (CCPS), an opportunistic cooperative plan-
ning mechanism for multiple agents in AmI environments. CCPS allows agents to
partially delegate their own plans or to collaborate with other agents’ plans during
their execution, while retaining individual planning capabilities. A working scenario
is shown for a realistic AmI environment, such as a smart Campus.

1 Introduction

Ambient Intelligence (AmI) is a reference to electronic environments in which elec-
tronic devices or systems can perceive and respond to the presence of people, while
also being able to communicate with each other [1]. In such environments, coop-
eration and coordination among different systems may exist in different forms, and
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for different purposes. This paper presents an approach to cooperatively deal with
multiple intentions for a specific type of intelligent agent that interacts with AmI
environments, denominated ambient agent (AA). The cooperative model in place
is opportunistic, i.e., cooperation may exist if there are favorable conditions for
it to occur. Since AmI environments provide dynamic contextual information, the
AA’s reasoning process must adapt to environment changes as efficiently as possi-
ble, while still making it possible for the AA to achieve its goals.

Adopting Multiagent Systems (MAS) to deal with contextual information in AmI
applications is interesting because of its very nature, where different entities au-
tonomously interact in a dynamic and uncertain environment [3, 15]. MAS whose
agents follow the BDI model are specially tailored for AmI due to its inherent use
of contextual information in the form of beliefs. These agents, however, may have
different and independent goals, and still need cooperation to perform specific tasks.
This can be illustrated in a real-world situation: if a person has an appointment but
cannot be there in time, getting a ride from someone will make this goal achiev-
able. Other similar AmI-related situations include cooperative collision warnings
in vehicular ad-hoc networks [8] and opportunistic problem-solving using ontology
negotiation [2].

While extensive research has been conducted in the field of intelligent agent co-
operative planning [7, 18, 10, 13], most of the existing work relies on central coordi-
nation or communication mechanisms. Such restrictions can make it difficult to use
the existing research in AmI scenarios where agents possess individual goals, but
cooperation without previous commitment is still beneficial. With that in mind, we
propose a cooperative planning mechanism that can be used by an AA to delegate
specific plans to other agents. The objective is to provide cooperation in each of the
agents’ planning processes without having to commit to common goals, or make
use of central planning engines of any kind. In terms of scientific contribution, this
work also makes it possible to deal with multiple intentions while maintaining the
collaboration mechanism among intelligent agents strictly opportunistic. In addi-
tion, we also improve the BDI agent reasoning mechanism by using a preemptive
planning mechanism in conjunction with contextual planning. Thus, the proposed
mechanism makes possible for different agents to cooperate among themselves to
achieve goals otherwise unachievable by delegating the execution of specific plans.
It is important to notice that the cooperation mechanism does not assume benevo-
lent agents, nor it is based in existing commitments of any sort: AAs only cooperate
among themselves if it is on their best interests.

This paper is organized as follows: Section 2 introduces relevant aspects of plan-
ning and cooperation used along this paper, with a description of the contextual
planning system (CPS [6]). Section 3 describes the Collective CPS (CCPS) by pre-
senting its formal structure and related algorithms. Section 4 presents, as proof of
concept, an implementation of CCPS in a real-world based scenario, and describes
the experiments performed. Finally, Section 5 concludes this paper and presents
some perspectives for future work.
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2 Background

In this section we present an overview of planning and cooperation in the domain
of BDI agents, followed by the CPS, which is the contextual planning mechanism
used as a basis for the present work.

2.1 Planning and Cooperation

The planning process used by a BDI agent involves choosing a set of actions to be
executed and it is triggered whenever new information is perceived. Re-planning
over new information allows the agent to adapt its plans accordingly and re-evaluate
its goals at each interaction, so it can adopt the best course of action at the time.

Environmental changes can occur independently from the agent (such as the nat-
ural passage of time), or as a consequence of an executed action. One agent’s ac-
tions can impact the perceptions of other agents in the same environment. If agents
have different goals, one agent’s actions may cause another agent’s goals to become
unachievable. Using coordination mechanisms can mitigate these impacts [9], and
eventually increasing the overall planning efficacy or efficiency in face of a dynamic
environment [12, 14]. It may also be the case that coordinated planning is a require-
ment for solving the problem at hand.

While there exist solutions aimed at solving situations that require cooperative
planning processes [7, 18, 10], they usually consider joint goals situations, either
relying on central coordination systems or being limited by the problem domain.
AA could benefit from cooperative planning in situations where individual effi-
ciency is affected by environmental conditions, ultimately executing certain tasks
more efficiently. If multiple agents were to cooperate, context-dependent tasks could
be delegated among them, and otherwise unachievable goals could be successfully
achieved. Our approach aims at exploring situations where contextual-dependent
tasks may be delegated by one AA as part of its planning process, giving the coordi-
nation process a contextual dynamic characteristic. We will detail this approach in
the following paragraphs, from the formalism involved to the planning mechanism.

2.2 Contextual Planning System (CPS)

In the original BDI-agent model, an interpreter manages the agent states related
to its beliefs (B), desires (D), and intentions (I) in order to achieve goals through
planning. Let A= {A1,A2, ...,An} be the set of agents and Ai ∈ A.

Chaouche et. all [6] proposed a model to deal with multiple intentions for an
agent Ai. It represents an agent plan P̃(Ai) as a tree structure composed of a set
of intention plans (P̂j) and elementary plans (Pl,k). P̃(Ai) is composed of multiple
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intention plans P̂j, and each intention plan corresponds to the achievement of an
agent’s intention.

An intention plan P̂j can be an alternate of multiple elementary plans: P̂j =
{Pj,0, ...,Pj,q}. Alternating elementary plans allows achieving an specific intention
in different manners, each one expressed by an elementary plan.

Elementary plans Pj,k are described by AgLOTOS expressions [4], referring to
behaviour expressions Ei,k expressed as an ordered finite set of observable actions ai
to be executed by the agent. Any AgLOTOS expression is associated with contextual
information related to the (current) BDI state of an agent. These elementary plans
are obtained from a library of plans (LibP).

Using this model, Chaouche et al. [5] proposed a predictive planning mechanism
that uses the contextual information to verify which among the actions known by
the agent are feasible. ”Feasibility” of an action is determined by any conditions
the agent must met to execute it. For instance, moving from point A to point B is
only feasible if agent is at point A. Once this verification occurs, CPS selects an
execution path that maximizes the number of satisfied intentions [5], producing an
optimal plan P̃(Ai). In the next section we will explain how this plan is used by the
Collective Contextual Planning System (CCPS) in conjunction with its cooperative
mechanism.

3 Collective Contextual Planning System (CCPS)

The Collective Contextual Planning System (CCPS) structure is designed to process
plans from multiple CPS-capable agents. The novelty here, in comparison with the
CPS mechanism, is that when an agent plan cannot be executed for any reason,
the agent can ask for help and delegates part of this plan to other agents, avoiding
re-planning. By doing this, the agent eliminates the problem while maintaining the
consistency of its goals. At the same time, all the parallelism and concurrence taken
into consideration by the original CPS mechanism are maintained.

In the first step of the CCPS mechanism, an agent has an initial plan resulting
from the CPS mechanism execution and verifies if it can be executed without the
help of any other agent. If that is not the case, the agent detects which actions are
preventing the plan from being executed. These actions are listed in a help request
message that is sent to other agents. After receiving this message, each agent decides
about offering help for each action and reply its answer. The requester agent and
decides about accepting help and inform the helper agent its decision. In the case
where no other agent is able to provide help, the agent tries to replace the intention
associated with the plan that cannot be executed with a different one that could
provide similar results. If no such intention is found, then the original intention is
removed.

The idea behind this mechanism is similar to the contract net protocol [16], de-
signed for distributed problem-solving. Aspects related to connection and contract
negotiation, however, are simplified - either by considering that it is provided by the
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agent’s environment or by taking the opportunistic aspect into account. The concepts
involved in CCPS will be formalized and explained in the next paragraphs.

3.1 Formal framework

In this section, we introduce some of the definitions necessary to formally describe
the CCPS and its algorithm.

• Environment: Env(t) is a set of logical propositions representing contextual in-
formation that can be perceived by any agent at time t.

• Action: An action a represents the finest granular activity performed by the
agent in the environment. If an agent Ai moves from point X to point Y , there is
an associated action move(X ,Y ). Each action a is subject to three sets of logical
propositions (as in STRIPS [11]): preconditions list (Pre(a)); delete list (Del(a));
and post-conditions list (Post(a)). An action a if feasible if all of its preconditions
Pre(a) are satisfied by the conditions of Env(t). After an action a is executed, its
conditions can be changed by Del(a) or Post(a)- also altering Env(t).

• Intention: Each agent A j ∈ A has a set of intentions, and each intention is asso-
ciated with a weight factor that serves as a comparator index, used to determine
order of importance between two intentions. Thus, the intention function over
the known agents is defined as I : A−→ IxW, and the set of intentions for an agent
is expressed by:

I(A j) = {(i0,w0),(i1,w1), ...,(in,wn)},A j ∈ A, i0, ..., in ∈ I,w0, ...,wn ∈ N∗

Two intentions are comparable according to their associated weight factors: given
(ip,wp),(iq,wq) ∈ I(A j),0≤ p,q≤ n, ip is at least as important as iq if wq ≤ wp.

• Plan: Plan definition follows exactly the one from CPS, presented at 2.2.
• Plan Feasibility: Being a composite and partially ordered set of actions, the fea-

sibility of an elementary plan Pi, j can be given by the feasibility of its actions:
Pj,k is feasible in Env(t) if and only if all of its actions are feasible in Env(t). An
intention plan P̂j is feasible if and only if at least one of its elementary plans is
feasible. In the case of an agent plan P̃(Ai), we determine that it is completely
feasible if and only if all of its intention plans are feasible.

There might be situations where it is necessary to consider partial feasibility of
an agent plan P̃(Ai). Suppose that P̃(Ai) contains a set of intention plans {P̂1, ..., P̂q}
referring to I j = {(i0,w0),(i1,w1), ...,(i j,w j)}, I j ⊆ I(Ai). In this case, if only P̂j
is unfeasible and w j is relatively much lesser than the other intentions’ weights, it
could make sense for the plan P̃(Ai) to be executed anyway, while the intention I j is
still unfeasible. However, if we have a situation where w j is relatively much greater
than the other intentions’ weights, we should not want to proceed with P̃(Ai) at all,
and re-planning becomes necessary.
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Let us also consider the following notations: the average weight of all intentions
associated with all intention plans in P̃(Ai) is given by wI , and the average weight
of all intentions associated with all feasible intention plans in P̃(Ai) is given by wF .
With that in mind, we define the concept of partial feasibility for an agent plan:
P̃(Ai) = {P̂1, ..., P̂j} is partially feasible if wF ≥ wI . In the rest of this work, we will
consider an agent plan P̃(Ai) unfeasible if it is not partially feasible. In the same
manner, a plan P̃(Ai) will be considered feasible if it is at least partially feasible.

It is also important to formalize a few aspects related to agent communication - in
particular, the aspects involving the exchanged messages between agents, and their
possible effects on the CCPS mechanism. When an agent A j requests help to other
agents, this is done through a message M containing at least one unfeasible action
selected from P̃(A j). This message also contains temporal limits and a deadline.
Temporal limits are associated with actions, and are formed by two different limits:
a beginning (when an action should start), and an end (when an action should be
finished). The deadline, on the other hand, is associated with the message and it is
the time limit for the message to be answered. Once the deadline expires, the agent
won’t expect any replies to that particular message.

The concepts of complementary and equivalent intentions are also important to
the CCPS mechanism since they are related to the cooperative process. Suppose
that there are no other agents present in the environment, or no other agent can
provide help. In this case, the agent asking for help tries to find any complemen-
tary and equivalent intentions that may exist within its original set of intentions.
Complementarity and equivalence are defined considering that different intentions
can have similar or equal results when their plans are executed. We consider that
two intentions are complementary if at least one precondition of one of the inten-
tions corresponds to a post-condition of the other. Additionally, two intentions are
equivalent if at least one precondition of these intentions is identical, and if all the
post-conditions of both intentions are the same.

4 Experiments

To verify the proper functioning of the CCPS structure, we implemented a proof-of-
concept (PoC) version of the mechanism and tested it in conjunction with an appli-
cation scenario. The CCPS PoC mechanism used the algorithm previously described
and was implemented in Java. All interactions between the agents were simulated
with the use of the JADE framework1. This implementation was evaluated according
to a formal experimentation process appropriate for case studies in the Software En-
gineering domain [19]. The study protocol used in this evaluation was: (i) Using the
concept of opportunistic cooperation as a basis, create a scenario with predictable
outcomes; (ii) Defining the situations in which the scenario would be executed;
(iii) Defining the theoretical outcome of the scenario for each of the situations; (iv)

1 http://jade.tilab.com
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Running the scenario for each of the situations, using the PoC implementation; (v)
Analyzing the results, comparing the obtained data with the expected outcomes for
each situation; and (vi) Discussing the results, pointing out any relevant issues or
points of attention regarding the evaluation and its elements.

The objective of the evaluation was to observe if the CCPS mechanism could
properly identify and act on situations involving opportunistic cooperation. Hence,
we decided to study a specific scenario considering (i) isolated agents, with no com-
munication in-between, and (ii) agents that are able to communicate and delegate
individual tasks to each other. We used the CCPS formalization as a frame of refer-
ence to determine which would be the behavior in both situations, so that we could
compare the outcome of the experiments with a theoretical baseline. By running the
same scenario under different contextual conditions (simulating a dynamic environ-
ment), we wanted to compare how the use of the newly implemented opportunistic
cooperation mechanism would affect the performance of each agent in terms of
reaching individual goals. Our expectation was that the use of the CCPS mecha-
nism would allow the agents to reach their individual goals more frequently when
exposed to different environment conditions.

4.1 Scenario

To evaluate the CCPS mechanism in the domain of Ambient Intelligence (AmI), we
chose to model a scenario related to Smart Cities, as described by Streitz [17]. Ac-
cording to this author, one of the goals of designing smart cities should be ”enabling
people to experience everyday life and work”. Achieving this goal could be done
through the use of location-based services and communication infrastructure used
to connect different citizens among themselves and the city.

Having these concepts in mind, we based our scenario in a situation involving
four different agents: Alice, Bob, Claire, and Damien. All agents play different roles
within the campus of a University. Some of the agents could cooperate to achieve
their individual intentions, such as retrieving a specific resource (book) or getting
to a specific location (parking) in a specific time (taking the bus respecting the bus
schedule). Cooperation among the agents was passively stimulated with the use of
contextual restrictions, such as means of transportation, the agents’ initial locations,
temporal restrictions (duration of different actions, and time limits in which they
should be performed), and so on. The scenario location was modeled after a univer-
sity campus, and possesses different locations: a laboratory, three different offices, a
parking lot, a bus stop, and the residence of all agents. Each of the agents possess the
following routines (used to model their intentions): (i) Morning preparation (actions
that take place before each agent leaves their residence); (ii) Going to the university;
(iii) Going to work; and (iv) Going back home. Also, individual conditions were at-
tributed to the agents (Alice and Claire have cars, but Bob and Damien take the bus;
Alice and Bob work in the same office; and a few others).
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4.2 Situations and expected outcomes

The scenario described above was executed in three different environment condi-
tions (contexts), considering starting time (enough time to achieve time-sensitive
intentions), inherently unachievable intentions, and the presence of equivalent inten-
tions. Considering the aforementioned experiment situations, the expected results in
the next paragraphs refer to the situations where communication between the agents
is possible. The situation where the agents cannot communicate with each other was
used as a reference to measure the efficacy of the implementation.

In the first context (1), the scenario started at 8 a.m., and each agent was given a
set of intentions to be evaluated and eventually achieved along the day (e.g., going
to work, working, coming back home). These intentions did not necessarily require
cooperation of agents, and the temporal restrictions related to all actions involved
were set in a manner that cooperation was not necessary at any part of the planning
process. In this context, we expected that none of the agents would ask for any help.

In the second context (2), the starting time was kept at 8 a.m., but a few unsatis-
fiable intentions were also included (e.g., asking a book to the agents when none of
them have it), with no equivalent or complementary intentions that could be used.
In the case of the satisfiable intentions, in some cases we included equivalent inten-
tions to reach the same goal (going back home by bus or by a ride in another agent’s
car). In this context, we expected that the agents with unsatisfiable intentions to ask
the other agents for help; however, since they were designed to be absolutely unfea-
sible, we expected the agents to ask for help and - in the absence of any replies - to
try and find any equivalent intentions that could be used. Ultimately, we expected
that the agents to discard the unfeasible intentions and re-plan using the remaining
intentions.

In the third context (3), we started the scenario at 9 a.m., but included unfeasible
intentions with equivalent feasible intentions. This context was supposed (i) to allow
opportunistic cooperation to effectively take place and (ii) to allow the agents to
properly use the equivalent intention mechanism. In this context, we expected the
agents to use more time in the planning process, but also to achieve more goals
(compared to the non-communicating situation).

4.3 Results

Once properly coded and parametrized within the implementation, the scenario de-
scribed in section 4.1 was executed, and the results were compared with the expected
outcomes for each context.

In the first experiment (context 1), the agents behaved as expected. Both the
non-communicating and the communicating agents were able to generate achievable
plans for all of their intentions using the same amount of time. Our conclusion was
that the verification involved in checking if cooperation was needed had no impact
in the computational resources required.
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In the second experiment (context 2), the communicating agents spent consid-
erable additional time (about 200% more) trying to ask for help and trying to find
an equivalent intention before reaching the same plan as the non-communicating
agents. However, the outcome was still consistent with the expected results.

In the third experiment (context 3), the communicating agents also took consider-
ably more time to reach a final plan, but in this case their plans also had much more
achievable intentions than the non-communicating agents. In some cases, where all
intentions were dependent on the achievability of a single one (duration and tem-
poral limit for reaching specific locations), some non-communicating agents had
considerable less intentions included in their plans, since the others were simply not
achievable (as expected). On the other hand, the plan created by the communicating
agents, while feasible, took a considerable amount of time to be generated.

5 Conclusion and future work

In this paper we formally presented CCPS, a cooperative contextual planning mech-
anism to be used by AA in AmI scenarios. CCPS was designed reusing an existing
contextual planning mechanism (CPS) in conjunction with cooperation based on
delegation. The resulting structure makes it possible for an agent to achieve goals
otherwise unachievable through the cooperation with other agents running in the
same environment. We were able to properly evaluate the CCPS mechanism by
simulating a specific scenario in different contexts, using a proof-of-concept imple-
mentation and comparing the obtained results with the theorized expected situations.
While we were able to confirm the proper functioning of the mechanism, there are
a few considerations that must be taken into account.

The first one is related to efficiency: we observed that taking advantage of oppor-
tunistic cooperation situations also drastically increased the planning process time.
In a real-world situation, this could negatively impact the goal achievement success
rates of the agents using the CCPS mechanism. This situation is not completely
unexpected, however, and we expect to address in future research.

Another consideration related to the experiments performed was related to the
communication process. When the CCPS mechanism finds an unfeasible intention,
the communication process that takes place is simple, but not optimal. I a worst-
case scenario, the environment might be flooded by help requests. We also intend to
study this limitation by testing different constraint mechanisms.

Finally, there are multiple aspects yet to be explored in the proposed CCPS mech-
anism. Different parts of its algorithm can be detailed studied, and concepts such as
complementary and equivalent intentions can be refined. Implementation can also
be extended to support multiple scenario variations in runtime, and more complex
scenarios can be used to verify how the CCPS mechanism performs under different
conditions. We intend to explore all of these aspects in future work.
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